CN105606143A - 微机械弹簧装置 - Google Patents

微机械弹簧装置 Download PDF

Info

Publication number
CN105606143A
CN105606143A CN201510789373.6A CN201510789373A CN105606143A CN 105606143 A CN105606143 A CN 105606143A CN 201510789373 A CN201510789373 A CN 201510789373A CN 105606143 A CN105606143 A CN 105606143A
Authority
CN
China
Prior art keywords
spring
stop element
spring assembly
micromechanics
leg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510789373.6A
Other languages
English (en)
Inventor
O-A·普吕茨
H·施佩希特
A·皮格勒尼耶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of CN105606143A publication Critical patent/CN105606143A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/18Leaf springs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/16Elements for restraining, or preventing the movement of, parts, e.g. for zeroising
    • G01D11/18Springs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/0051For defining the movement, i.e. structures that guide or limit the movement of an element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/18Leaf springs
    • F16F1/26Attachments or mountings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2226/00Manufacturing; Treatments
    • F16F2226/04Assembly or fixing methods; methods to form or fashion parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0047Measuring, indicating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2238/00Type of springs or dampers
    • F16F2238/02Springs
    • F16F2238/022Springs leaf-like, e.g. of thin, planar-like metal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pressure Sensors (AREA)
  • Springs (AREA)
  • Micromachines (AREA)

Abstract

微机械弹簧装置(100),具有:-两个基本上相互平行地布置的弹簧腿(10);和-至少一个止挡元件(10),所述止挡元件布置用于阻止所述两个弹簧腿(10)相互止挡。

Description

微机械弹簧装置
技术领域
本发明涉及一种微机械弹簧装置。此外,本发明涉及一种用于制造微机械弹簧装置的方法。
背景技术
在微机械惯性传感器、即例如转速传感器、加速度传感器或者微镜这样的具有可运动结构的传感器中,大多使用微机械弹簧,在微机械弹簧上悬挂振动质量。除了其质量悬挂功能之外,这些弹簧悬挂装置常常也作为机械的止挡使用,以便在过载时制动或者说限制运动进而避免例如弹簧断裂这样的破坏。
过载情况可能由于外部的加速或者也由于旋转加速而出现。因为每个惯性传感器也与分析电路连接,过载情况也可能由于静电力而出现,所述静电力由于从外部施加的电压而有意或者无意地产生。
尽管这种做法、即将弹簧悬挂也作为机械止挡来使用被多次证明是可行的,然而也总是存在以下事实:振动结构与固定连接上的结构的各种接触代表一定风险的材料损耗。
例如,在具有数十kHz的谐振频率的转速传感器中,由于在少数几分钟之内过高的驱动电压而可能发生数百万次止挡。
除了可能的颗粒形成和与之有关的、在电短路和机械短路方面的风险之外,这样的材料损耗例如也可能导致机械地起作用的弹簧结构变薄进而其机械刚性改变。在极端情况下,机械地起作用的弹簧结构也可能被分开。
图1a示出常规的微机械弹簧装置100,其具有两个相互平行地布置的弹簧腿10、由氧化物材料构成的固定连接装置30和可运动的振动质量40。在弹簧装置100普通运行时,两个弹簧腿10绝不应接触,相应地设计弹簧腿10的宽度。
图1b画虚线表明地示出固定连接装置30和振动质量40之间的潜在接触区域,其中,在该接触区域中示出固定连接装置30与可运动的质量40的无意的相互碰撞。
图1c示出多次这种止挡的结果,其中,可看到,弹簧腿10在固定连接装置30和可运动的质量40的区域中由于“尘埃磨损(Feinstaubabrieb)”而明显变薄,这对于弹簧腿10来说是巨大的断裂危险并且可能意味着弹簧装置100的重要的功能减损。尤其,由此产生机械上较软的弹簧腿10,所述弹簧腿可能造成弹簧装置100的驱动频率降低。
发明内容
因此,本发明的任务在于,提供一种改进的微机械弹簧装置。
根据第一方面,该任务通过一种微机械弹簧装置解决,该弹簧装置具有
-两个基本上相互平行地布置的弹簧腿;和
-至少一个止挡元件,该止挡元件布置用于阻止两个弹簧腿相互止挡。
因此,借助于止挡元件,能够以有利的方式在质量相互止挡时不损坏弹簧腿。借此提供有效的预防性措施,所述预防性措施使得能够在时间上有限的故障运行中使弹簧装置不在关键性的部位上受损坏。
根据第二方面,该任务通过用于制造微机械弹簧装置的方法来解决,该方法具有同时实施的步骤:
-构造两个相互平行地布置的弹簧腿;
-构造止挡元件,和
-这样布置止挡元件,使得因此可以阻止弹簧腿的相互止挡。
微机械弹簧装置和方法的有利拓展方案为从属权利要求的主题。
微机械弹簧装置的有利拓展方案的特征在于,止挡元件的宽度处于弹簧装置头部尺寸的数量级上。以此方式,这样特定地确定止挡元件的尺寸,使得可以阻止两个弹簧腿相互止挡。
微机械弹簧装置的另一种有利拓展方案的特征在于,止挡元件与弹簧装置整体地构成。以此方式促进止挡元件的技术简单的制造,所述止挡元件因此可以在与整个弹簧装置相同的生产过程中制成。
弹簧装置的另一种有利拓展方案的特征在于,所述止挡元件布置在弹簧腿的区域之外。由此可以阻止弹簧腿的损坏。
弹簧装置的另一种有利的拓展方案的特征在于,所述止挡元件布置在用于弹簧腿的保持装置上。由此,虽然弹簧腿的保持装置可以相互止挡并且由此引起止挡元件的一定的有意的损坏,但是,弹簧腿保持不受该损坏影响。在止挡情况下,以此方式在最大程度上避免弹簧腿的材料损耗。
弹簧装置的另一种有利的拓展方案设置,止挡元件尽可能大面积地构成。以此方式可以使作用到止挡元件上的力作用均匀,从而可以使止挡的次数最大。
弹簧装置的另一种有利的拓展方案的特征在于,止挡元件的材料是与其余弹簧装置材料相同的材料。借此使得止挡元件可以通过微系统技术的、证明可行的加工方法处理。
附图说明
以下通过另外的特征和优点参照多个附图详细说明本发明。在此,全部的特征——与它们在说明书和附图中的表示无关或者说与它们在权利要求中的引用关系无关地——构成本发明的主题。附图不必按比例示出并且尤其适用于直观地说明根据本发明的原理。
在附图中示出:
图1a常规的微机械弹簧装置;
图1b在止挡情况下的、常规的微机械弹簧装置;
图1c在多个止挡事件之后的、图1a和图1b的微机械弹簧装置;
图2a微机械弹簧装置的第一实施方式;
图2b在止挡情况下的、图2a的微机械弹簧装置;
图2c在多个止挡事件之后的、图2a和图2b的微机械弹簧装置;和
图3根据本发明的方法的实施方式的原理过程;
具体实施方式
本发明提出,微机械弹簧装置100的在过载情形下可能出现机械接触的部位在结构上通过止挡元件20来保护,所述止挡元件实现一种磨损提前(Verschleissvorhalt)。以此方式,材料损耗不会首先导致弹簧结构的削弱,而仅仅在不那么重要的部位上导致期望的材料损耗。以此方式,例如可以根据实施方案而定截获数千至数十万止挡事件,而不发生有效的弹簧结构的显著削弱。
弹簧结构在大多数情况下在固定结构和可运动结构的连接点上相对置地布置。本发明设置,借助于止挡座或者说止挡粒或者说止挡牺牲结构形式的止挡元件20来加强可能发生弹簧腿10接触的部位。这优选在这些区域上进行,相对置地可运动的质量结构处于所述区域中,所述质量结构对弹簧装置100的弹簧质量系统的刚性不作出贡献。
优选,止挡元件20的几何形状尺寸与弹簧腿10的几何形状尺寸相匹配,所述弹簧腿的几何形状尺寸由微机械弹簧装置100的常规制造过程(沟槽蚀刻步骤和气相蚀刻步骤)产生。在这里,弹簧腿10的长度可为数百微米的数量级,并且弹簧腿10的厚度可为数微米的数量级。优选止挡元件20的厚度与弹簧装置100的头部尺寸d相匹配。
图2a示出根据本发明的、具有所提到的止挡元件20的弹簧装置100的实施方式,该止挡元件布置在固定连接装置30的一侧上。在此,止挡元件20的材料优选为与其余的弹簧装置100相同的材料、尤其为与弹簧装置100的支座40和弹簧腿10相同的材料。优选,止挡元件20由多晶体硅构成。替代地,也可以考虑其它的材料,如例如单晶体硅、锗等等。可看到,止挡元件20布置在固定连接装置30的这样的区域中,该区域处于弹簧腿10与固定连接装置或者说振动质量40的连接区域之外。
替代地,止挡元件20也可以在振动质量40的区域中布置在相应的位置中(未示出)。优选,止挡元件20尽可能大面积地构造,以便由此使作用到止挡元件20的单个平面段上的压力保持得尽可能小。例如,在一种变型中可以设置,止挡元件20遮盖固定连接装置30和振动质量40之间的整个潜在接触区域。
以此方式,在弹簧腿10的区域中不发生机械接触,如在图2b中原理性地表明的这样。这意味着,即使在止挡情况下,弹簧腿10不再接触,从而在弹簧腿10的区域中不会发生材料损耗。
图2c示出在多次止挡事件之后的微机械弹簧装置100。可看到,尽管经常止挡,弹簧腿10不受损坏并且仅仅在可运动的质量40的区域中发生呈凹槽或者说凹陷21形式的材料损耗,但是,该材料损耗对于弹簧装置100来说是可接受的损坏。
因此,有利地,弹簧装置100可以补偿受限定的数量的错误事件,例如它们也可以用于寿命非常短的装置,比如用于短寿命的消费品的传感器。
图3以流程图示出根据本发明的方法的原理性过程,在该方法中同时实施步骤200至220。由此允许所述同时性,因为在微机械制造过程中实施所述步骤,在所述制造过程中使用外延、曝光和蚀刻技术。
在步骤200中构造两个相互平行布置的弹簧腿10。
在步骤210中构造止挡元件20。
在步骤220中,这样布置止挡元件20,使得可以由此阻止弹簧腿10的相互止挡。
概括地,通过本发明提出了一种微机械弹簧装置和一种用于制造这类弹簧装置的方法,借助于所述弹簧装置和所述方法实现,在这样的部位上发生材料损耗,所述部位在微机械弹簧装置的弹簧刚性方面是中性的。即有意地容忍弹簧装置的损坏,然而所述损坏仅仅有利地在以下部位出现,在所述部位中,所述损坏对于配备有微机械弹簧装置的传感器来说不具有重要意义。
以此方式可以有利地提供错误操作保护或者说阻止外部压入的机械过载的保护,借助于所述保护可以截住所定义的数量的错误操作。
有利地,止挡元件20的几何形状延伸是这样的,使得该止挡元件面式地遮盖固定连接装置30的区域。以此方式,材料损耗可以面式地分配,这促使止挡事件的数量提高。
有利地,例如微机械弹簧装置可以使用于汽车领域中的惯性传感器。
尽管在前面参照具体的实施方式说明了本发明,本发明不局限于这些实施方式。本领域技术人员可看到,多种变型是可能的,而不偏离本发明的核心。

Claims (11)

1.微机械弹簧装置(100),具有:
-两个基本上相互平行地布置的弹簧腿(10);和
-至少一个止挡元件(10),所述止挡元件布置用于阻止所述两个弹簧腿(10)相互止挡。
2.根据权利要求1所述的微机械弹簧装置(100),其特征在于,所述止挡元件(10)的宽度处于所述弹簧装置(100)头部尺寸(d)的数量级。
3.根据权利要求1或2所述的微机械弹簧装置(100),其特征在于,所述止挡元件(10)与所述弹簧装置(100)整体地构成。
4.根据以上权利要求中任一项所述的微机械弹簧装置(100),其特征在于,所述止挡元件(10)布置在所述弹簧腿(10)的区域之外。
5.根据以上权利要求中任一项所述的微机械弹簧装置(100),其特征在于,所述止挡元件(10)布置在用于所述弹簧腿(10)的保持装置(30,40)上。
6.根据权利要求5所述的微机械弹簧装置(100),其特征在于,所述止挡元件(10)尽可能大面积地构成。
7.根据以上权利要求中任一项所述的微机械弹簧装置(100),其特征在于,所述止挡元件(20)的材料为与其余弹簧装置(100)的材料相同的材料。
8.用于制造微机械弹簧装置(100)的方法,具有以下同时实施的步骤:
-构造两个相互平行地布置的弹簧腿(10);
-构造止挡元件(20);和
-将所述止挡元件(20)布置为使得由此可以阻止所述弹簧腿(10)相互止挡。
9.根据权利要求8所述的方法,其中,所述止挡元件(20)布置在所述弹簧腿(10)之外的区域中。
10.根据权利要求9所述的方法,其中,所述止挡元件(20)布置在所述弹簧腿(10)的保持装置(30,40)上。
11.根据权利要求1至7中任一项所述的微机械弹簧装置(100)在惯性传感器中的使用。
CN201510789373.6A 2014-11-17 2015-11-17 微机械弹簧装置 Pending CN105606143A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014223351.8A DE102014223351A1 (de) 2014-11-17 2014-11-17 Mikromechanische Federeinrichtung
DE102014223351.8 2014-11-17

Publications (1)

Publication Number Publication Date
CN105606143A true CN105606143A (zh) 2016-05-25

Family

ID=55855047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510789373.6A Pending CN105606143A (zh) 2014-11-17 2015-11-17 微机械弹簧装置

Country Status (4)

Country Link
US (1) US20160138667A1 (zh)
CN (1) CN105606143A (zh)
DE (1) DE102014223351A1 (zh)
TW (1) TW201632452A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596423A (zh) * 2019-08-29 2019-12-20 南京理工大学 一种抗高过载梳齿电容式单轴加速度计

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014223329A1 (de) * 2014-11-14 2016-05-19 Robert Bosch Gmbh Mikromechanische Feder für Inertialsensor
DE102017213644A1 (de) * 2017-08-07 2019-02-07 Robert Bosch Gmbh Drehratensensor, Verfahren zur Herstellung eines Drehratensensors
DE102017217975A1 (de) 2017-10-10 2019-04-11 Robert Bosch Gmbh Mikromechanische Federstruktur

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10051973A1 (de) * 2000-10-20 2002-05-02 Bosch Gmbh Robert Mikromechanisches Bauelement
US7013730B2 (en) * 2003-12-15 2006-03-21 Honeywell International, Inc. Internally shock caged serpentine flexure for micro-machined accelerometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596423A (zh) * 2019-08-29 2019-12-20 南京理工大学 一种抗高过载梳齿电容式单轴加速度计
CN110596423B (zh) * 2019-08-29 2021-10-08 南京理工大学 一种抗高过载梳齿电容式单轴加速度计

Also Published As

Publication number Publication date
TW201632452A (zh) 2016-09-16
DE102014223351A1 (de) 2016-05-19
US20160138667A1 (en) 2016-05-19

Similar Documents

Publication Publication Date Title
Rezaeisaray et al. Low frequency piezoelectric energy harvesting at multi vibration mode shapes
CN105606143A (zh) 微机械弹簧装置
TWI610880B (zh) 半撓性的驗證質量
JP4510068B2 (ja) 微小構造体の変位量測定装置および変位量測定方法
Daeichin et al. Dynamic response of a tunable MEMS accelerometer based on repulsive force
KR20100002228A (ko) Mems 구조 내에서의 다단계 프루프 매스 운동 감속
Rafiee et al. A review of the most important failure, reliability and nonlinearity aspects in the development of microelectromechanical systems (MEMS)
Zhao et al. A sensor for stiffness change sensing based on three weakly coupled resonators with enhanced sensitivity
JP2009002834A (ja) 角速度検出装置
JP2012522656A (ja) マイクロメカニカルシステムおよびマイクロメカニカルシステムを製造する方法
Ghemari et al. Appropriate choice of damping rate and frequency margin for improvement of the piezoelectric sensor measurement accuracy
Alqasimi et al. Vibrational response of initially deformed bistable microbeams under the combined effect of mechanical shock loads and electrostatic forces
Sinha et al. Design and simulation of MEMS differential capacitive accelerometer
Trusov et al. A substrate energy dissipation mechanism in in-phase and anti-phase micromachined z-axis vibratory gyroscopes
Heinz et al. High-G (> 20,000 g) inertial shock survivability of epitaxially encapsulated silicon MEMS devices
JP6627663B2 (ja) 物理量センサ
Sharma et al. Design optimization of MEMS comb accelerometer
Selvakumar et al. Constructing and characterizing a novel MEMS-based Tuning Fork Gyroscope using PolyMUMPs
JP5816707B2 (ja) 角速度検出装置
Brenes et al. Electrostatically-induced modal crosstalk phenomena in resonant MEMS sensors
CN111183112B (zh) 具有干扰模式的抑制的mems设备以及相应的运行方法
TWI702375B (zh) 具有組合的驅動及偵測的微機電系統轉速感應器
Chen et al. Low-voltage shock-mitigated micro-electromechanical systems structure
Alkharabsheh et al. The dynamics of MEMS arches of non-ideal boundary conditions
JP6517507B2 (ja) センサ素子及び角速度センサ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160525