CN105597761B - 利用固相之间的迁移制备高分散高比表面积过渡金属合金催化剂的方法 - Google Patents

利用固相之间的迁移制备高分散高比表面积过渡金属合金催化剂的方法 Download PDF

Info

Publication number
CN105597761B
CN105597761B CN201610156442.4A CN201610156442A CN105597761B CN 105597761 B CN105597761 B CN 105597761B CN 201610156442 A CN201610156442 A CN 201610156442A CN 105597761 B CN105597761 B CN 105597761B
Authority
CN
China
Prior art keywords
transition metal
metal alloy
surface area
specific surface
migration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610156442.4A
Other languages
English (en)
Other versions
CN105597761A (zh
Inventor
王荣方
王兴谱
廖锦云
李�浩
王辉
季山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Xiongtao Hydrogen Fuel Cell Technology Co ltd
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201610156442.4A priority Critical patent/CN105597761B/zh
Publication of CN105597761A publication Critical patent/CN105597761A/zh
Application granted granted Critical
Publication of CN105597761B publication Critical patent/CN105597761B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种利用固相之间的迁移制备高分散高比表面积过渡金属合金催化剂的方法,属于绿色能源材料领域。本发明将过渡金属盐,能作为反应剂、分散剂、阻断剂的小分子物质研磨混合均匀后移入反应容器中,在其表面平铺一层固体还原剂,在室温下保持一段时间;产物离心洗涤、干燥,即得过渡金属合金催化剂。实验表明,本发明制备过渡金属合金也都具有较高分散性、高比表面积和高活性,可应用于催化氨硼烷、硼氢化钠类化合物水解制氢,催化甲醇氧化等多个领域;另外本发明工艺简单,成本低,不需要任何溶剂和助剂,绿色环保,而且产品的颗粒大小和反应速率可控,因而具有很好的工业应用前景。

Description

利用固相之间的迁移制备高分散高比表面积过渡金属合金催 化剂的方法
技术领域
本发明涉及一种过渡金属合金催化剂的制备,尤其涉及利用固相之间的迁移制备高分散、高比表面积过渡金属合金催化剂的方法,属于绿色能源材料领域,应用于催化氨硼烷、硼氢化钠类化合物水解制氢,催化甲醇氧化等多个领域。
背景技术
能源是人类社会赖以生存的物质基础,社会和经济的发展离不开能源。现代工业社会极度依赖能源,化石能源的大量消耗,产生了严重的环境问题,同时也面临着百年内全球化石能源储量终将枯竭的问题。在我国,过度开采沉陷造成东部平原矿区土地大面积水受淹或盐渍化,西部矿区水土流失和土地荒漠化加剧。化石能源开采和利用过程中会产生以废气和可吸入颗粒物为主要危害的煤烟型大气污染,不仅导致生态系统的破坏,还会直接损害人体健康。能源和环境问题已经成为制约各国经济持续发展的重要因素。事实表明,人们必须开发新的能源才能阻止环境的进一步恶化。
氢能作为一种洁净的、可再生的二次能源,具有热值高、对环境无污染等特点,受到了人们越来越多的关注。如何安全高效地储氢是亟待解决的问题。近几年来,人们把目光投向氢化物,如硼氢化钠(NaBH4)、氢化铝钠(NaAlH4)等。化学氢化物水解供氢技术发展迅速,硼氢化钠作为氢化物的代表,遇水即发生水解,放出氢气,并具有储氢量高、反应条件温和、反应可控等优点,并且硼氢化钠水解制氢技术由于硼氢化钠水解放出的氢气不含COX、SOX、NOX等杂质气体,可以直接作为燃料电池的氢源,是一种十分有潜力的供氢技术,因此成为化学氢化物催化水解制氢技术的研究热点。
为了使物质循环利用、实现零排放、零污染,一般将反应生成的副产物通过一定的方法重新合成反应物,在硼氢化钠水解制氢技术中,硼氢化钠水解制氢反应的副产物偏硼酸钠通过电解、烧结、球磨等方法重新合成硼氢化钠,能够使硼氢化钠水解制氢反应实现循环供氢。硼氢化钠碱液通过催化水解反应,产生氢气为燃料电池供氢,燃料电池输出电能和水。由此可以看出,硼氢化钠水解制氢能够实现循环供氢,是一种可行性高、环境友好的供氢方式。
在硼氢化钠水解制氢的反应中,催化剂的结构和性能直接影响产氢的速率。目前主要以CoCl2、NiCl2、FeCl2等过渡金属盐为催化剂。研究发现,硼-过渡金属合金对于硼氢化钠水解制氢具有很好的催化作用。然而,采用常规方法制备的硼-过渡金属合金由于比表面积小,粒径大容易产生团聚等现象而影响了其催化活性,进而影响了硼氢化钠水解制氢的速率。
发明内容
本发明的目的是提供制备一种具有高分散、高比表面积过渡金属合金催化剂,以提高催化硼氢化钠水解制氢的速率和效率。
本发明过渡金属合金催化剂的制备方法,是将过渡金属盐,能作为反应剂、分散剂、阻断剂的小分子物质研磨混合均匀后移入反应容器中,在其表面平铺一层固体还原剂,在室温下保持10~12h;产物离心洗涤、干燥,即得过渡金属合金催化剂。
为了使Co2+和尿素能均匀配位形成Co(NH3)4(H2O)2Cl2,先将过渡金属盐,能作为反应剂、分散剂、阻断剂的小分子物质研磨混合均匀后,油浴条件下加热至140~160℃使其溶解,并保持10~15 min,待自然冷却至室温后,再移入反应容器中,在其表面平铺一层固体还原剂,通过固相迁移法得到过渡金属合金催化剂。
所述过渡金属盐为氯化盐、硫酸盐、硝酸盐等;所述能作为反应剂、分散剂、阻断剂的小分子物质为尿素、葡萄糖、三聚氰胺、蔗糖中的至少一种;所述固体还原剂为NaBH4、LiBH4、KBH4中的至少一种。
过渡金属盐、固体还原剂、小分子物质的比例不同,得到反应产物颗粒的大小不同。实验表明,过渡金属盐、小分子物质、固体还原剂的质量比控制在1:10:1~1:200:300时,反应产物颗粒的粒径在10~1000nm。
反应速率可以通过控制反应器的大小控制或通过反应器中固体还原剂与过渡金属盐、小分子物质混合物的厚度比例大小控制。实验表明,当固体还原剂与过渡金属盐、小分子物质混合物的厚度比在1:10~1:20时,反应速率最大为5.5 mg/min。
本发明的机理为:首先CoCl2和CO(NH2)2在150℃的条件生成Co(NH3)4(H2O)2Cl2。接着发生如下反应BH4 -+2Co2++2H2O=2Co+BO2 -+4H++2H2;BH4 -+H2O=B+OH-+2.5H2。B作为小原子进到大原子Co的晶格中形成CoB合金。此实验过程中利用Co(NH3)4(H2O)2Cl2配合物缓慢释放Co2+可以有效减缓反应速率进而使产物可以沿着某一特定的晶面生长,最终达到制备形貌均一、结构稳定以及大比表面积产物的目的。与常规合成的过渡金属合金相比,本发明利用固相之间的迁移,加入小分子物质起到反应剂、分散剂、阻断剂的作用,避免了大块颗粒物质的生成,从而制备得到了高分散、高比表面积的过渡金属合金。
下面以CoB合金为例对本发明制备的过渡金属合金的结构和性能进行分析和测试。
1、XRD分析
图1为本发明制备CoB合金的中间过程产物Co(NH3)4(H2O)2Cl2的X 射线电子衍射(XRD)图。从图1中可以看出,此钴硼合金的生成存在中间配位过程,进一步减缓了反应速率。由于我们做材料的依据是结构决定性质,好结构下有好的性质,Co(NH3)4(H2O)2Cl2配合物缓慢释放Co2+从而减缓反应速率可以使物质沿着某特定的晶面生长从而达到好的结构和较大的比表面积,最终满足结构决定性能的目标。
图2为本发明制备CoB合金的X 射线电子衍射(XRD)图。从图2中可以看到,在2θ=44.2°附近有一个较大的衍射峰,说明制备的CoB合金是短程有序、长程无序的非晶态结构。
2、SEM及TEM分析
图3为本发明制备的CoB合金的扫描电镜(SEM)图。从图3中可以看出,本发明制备的CoB合金是纳米级尺寸、形貌均一、分散性较好。
图4为本发明制备的CoB合金的透射电镜扫描(TEM)图。结合TEM与SEM,可以看出物质的内部也是絮状,因而为具有较大的比表面积提供了依据。
3、N2-吸脱附曲线图及孔容-孔径分布
图5为本发明制备的CoB合金的N2-吸脱附曲线图及孔容-孔径分布图。经数据分析表明,本发明制备的CoB合金的比表面积为102m2g-1。从孔径分布图(根据N2-脱附曲线通过BJH算法计算得到)可以看出,本发明球磨辅助界面还原制备的CoB合金的孔径均处于介孔范围,并且孔径主要集中于7.5 nm左右,孔道相对较小,这对Co-B合金催化剂具有大比表面积提供了理论依据。
4、性能分析
图6为CoB合金样品的产氢数据图,并且测了它的耐受性。其中1、2、3分别就是拿同一个样测三次。从图6中第1条曲线的斜率为48.15 mL·min-1,从而推断CoB合金催化剂具有较好的催化活性,以及第2条曲线的斜率为36.85 mL·min-1、第3条曲线的斜率为29.53mL·min-1,第三次重复使用后相较与第一次的效率保持率为60%以上。从而推断出它具有良好的耐受性。
大量实验表明,本发明制备的其它过渡金属合金也都具有较高分散性、高比表面积和高活性,可应用于催化氨硼烷、硼氢化钠类化合物水解制氢,催化甲醇氧化等多个领域。另外本发明工艺简单,成本低,不需要任何溶剂和助剂,绿色环保,而且产品的颗粒大小和反应速率可控,因而具有很好的工业应用前景。
附图说明
图1为本发明制备CoB合金过程中中间产物Co(NH3)4(H2O)2Cl2的X射线衍射图谱。
图2为本发明制备的CoB合金样品的X射线衍射图谱。
图3为本发明制备的CoB合金样品的扫描电镜照片。
图4为本发明制备的CoB合金样品的透射电镜照片。
图5为本发明制备的CoB合金样品的BET数据图
图6为本发明制备的CoB合金样品的产氢数据图。
具体实施方式
下面通过具体实施例对本发明过渡金属合金的制备、样品的性能作进一步说明。
实施例一、CoB合金的制备
取20 mg CoCl2·6H2O、1000 mg CO(NH2)2,混合研磨均匀得前驱体;移入烧瓶,在150℃的油浴条件下加热10 min,使其处于共熔状态并且混合均匀;待产物自然冷却后在10min之内研磨均匀,然后移入50 ml其横截面积为12.56 cm2的容器中,并在表面平铺20 mgNaBH4,室温下保持12h;最后产物用去离子水和乙醇交替离心洗涤4次,40℃条件下真空干燥12 h,得到钴硼合金的CoB合金。
CoB合金的比表面积是102 m2g-1,产氢速率达到了48.15 mL·min-1,活性高,是催化NaBH4水解产氢的理想催化剂。并且在验证催化剂的耐用性的时候也达到了较好的效果。
实施例二、PdB合金的制备
取20 mg PdCl2、1000 mg CO(NH2)2,混合研磨均匀得前驱体;移入烧瓶,在140℃的油浴条件加热10 min,使其处于共熔状态并且混合均匀;待产物自然冷却后在10 min之内研磨均匀,然后移入50 ml其横截面积为12.56 cm2的容器中,并在表面平铺20 mg NaBH4,室温下保持12h;最后产物用去离子水和乙醇交替离心洗涤4次,40℃条件下真空干燥12h,得到PdB合金。
PdB合金的比表面积是56m2g-1。产物PdB以20%的载量载到商业碳粉上,在催化甲酸氧化的实验中,经测定,正向扫描过程中催化剂的峰电流密度为10.8Am-2,是普通还原的PdB以20%的载量载到商业碳粉上的峰电流密度4.3Am-2的2.5倍。
实施例三、PtB合金的制备
取20 mg PtCl2、1000 mg CO(NH2)2,混合研磨均匀得前驱体;移入烧瓶,在160℃的油浴条件加热10 min,使其处于共熔状态并且混合均匀;待产物自然冷却后在10 min之内研磨均匀,然后移入50 ml其横截面积为12.56 cm2的容器中,并在表面平铺20 mg NaBH4,室温下保持12h;最后产物用去离子水和乙醇交替离心洗涤4次,40℃条件下真空干燥12h,得到PtB合金。
PtB合金的比表面积是49m2g-1。产物PtB以20%的载量载到商业碳粉上对催化氧还原时半波电位为-0.08 V,而普通还原的PtB以20%的载量载到商业碳粉上对催化氧还原时半波电位为-0.17 V。

Claims (3)

1.利用固相之间的迁移制备高分散高比表面积过渡金属合金催化剂的方法,其特征在于:先将过渡金属盐,能作为反应剂、分散剂、阻断剂的小分子物质研磨混合均匀后,油浴条件下加热至140~160℃,并保持10~15min,待自然冷却至室温后,再移入反应容器中,在其表面平铺一层固体还原剂,在室温下保持10~12h;产物离心洗涤、干燥,即得过渡金属合金催化剂;
所述过渡金属盐为氯化盐、硫酸盐、硝酸盐;所述能作为反应剂、分散剂、阻断剂的小分子物质为尿素;且过渡金属盐、小分子物质、固体还原剂的质量比为1:10:1~1:200:300;所述固体还原剂为NaBH4、LiBH4、KBH4中的至少一种。
2.如权利要求1所述利用固相之间的迁移制备高分散高比表面积过渡金属合金催化剂的方法,其特征在于:固体还原剂与过渡金属盐、小分子物质混合物在反应容器中的厚度比在1:10~1:20。
3.如权利要求1所述利用固相之间的迁移制备高分散高比表面积过渡金属合金催化剂的方法,其特征在于:干燥是在40 ~60 ℃下进行真空干燥。
CN201610156442.4A 2016-03-18 2016-03-18 利用固相之间的迁移制备高分散高比表面积过渡金属合金催化剂的方法 Active CN105597761B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610156442.4A CN105597761B (zh) 2016-03-18 2016-03-18 利用固相之间的迁移制备高分散高比表面积过渡金属合金催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610156442.4A CN105597761B (zh) 2016-03-18 2016-03-18 利用固相之间的迁移制备高分散高比表面积过渡金属合金催化剂的方法

Publications (2)

Publication Number Publication Date
CN105597761A CN105597761A (zh) 2016-05-25
CN105597761B true CN105597761B (zh) 2018-02-09

Family

ID=55978427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610156442.4A Active CN105597761B (zh) 2016-03-18 2016-03-18 利用固相之间的迁移制备高分散高比表面积过渡金属合金催化剂的方法

Country Status (1)

Country Link
CN (1) CN105597761B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110479290B (zh) * 2019-07-05 2022-04-22 嘉兴学院 一种低温固相界面掺杂型CoB催化剂及其制备方法与应用
CN113976120B (zh) * 2021-11-30 2023-12-01 西安工业大学 一种高活性CoB催化剂的制备方法
CN116393151B (zh) * 2023-03-23 2024-09-13 淮阴师范学院 一种碱式氯化物催化剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1397491A (zh) * 2002-07-29 2003-02-19 南京大学 氮化硼和碳化硼纳米结构及其制备方法
CN103157803A (zh) * 2013-04-17 2013-06-19 新疆大学 一种固相化学反应制备纳米合金的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090214417A1 (en) * 2007-12-26 2009-08-27 University Of Delaware Preparation of cobalt-boron alloy catalysts useful for generating hydrogen from borohydrides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1397491A (zh) * 2002-07-29 2003-02-19 南京大学 氮化硼和碳化硼纳米结构及其制备方法
CN103157803A (zh) * 2013-04-17 2013-06-19 新疆大学 一种固相化学反应制备纳米合金的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Crystalline CoB:solid state reaction synthesis and electrochemical properties;Yaping Wang et al.;《Journal of Power Sources》;20110223;第196卷;第5731-5736页 *
Effects of nickel ethylenediamine complex on the preparation of Ni-B amorphous alloy catalyst with ultrasonic assistance;Jie Guo et al.;《Materials Letters》;20110922;第67卷;第151-153页 *
不同制备方法对CoBalt催化NaBH4水解放氢性能的影响;任秋丽等;《南开大学学报(自然科学版)》;20100430;第43卷(第2期);第56-59页 *

Also Published As

Publication number Publication date
CN105597761A (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
Yao et al. Facile synthesis of graphene-supported Ni-CeO x nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane
Zhao et al. CeO2/3D g-C3N4 heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO2 reduction
Han et al. Metallic ruthenium-based nanomaterials for electrocatalytic and photocatalytic hydrogen evolution
Fang et al. Metal-organic framework derived Fe-Co-CN/reduced graphene oxide for efficient HER and OER
He et al. Air-engaged fabrication of nitrogen-doped carbon skeleton as an excellent platform for ultrafine well-dispersed RuNi alloy nanoparticles toward efficient hydrolysis of ammonia borane
Zhang et al. g‐C3N4 nanosheet nanoarchitectonics: H2 generation and CO2 reduction
Saka Phosphorus decorated g-C3N4-TiO2 particles as efficient metal-free catalysts for hydrogen release by NaBH4 methanolysis
Dou et al. Shaggy-like Ru-clusters decorated core-shell metal-organic framework-derived CoOx@ NPC as high-efficiency catalyst for NaBH4 hydrolysis
Yao et al. Co-CeO x nanoparticles anchored on a nitrogen-doped carbon nanosheet: a synergistic effect for highly efficient hydrolysis of sodium borohydride
Jiao et al. Non-precious transition metal single-atom catalysts for the oxygen reduction reaction: progress and prospects
CN105597761B (zh) 利用固相之间的迁移制备高分散高比表面积过渡金属合金催化剂的方法
CN107185528A (zh) 石墨烯负载Pt‑Pd纳米催化剂、制备方法及其用途
He et al. 0D/1D/2D Co@ Co2Mo3O8 nanocomposite constructed by mutual-supported Co2Mo3O8 nanosheet and Co nanoparticle: Synthesis and enhanced hydrolytic dehydrogenation of ammonia borane
Bu et al. Magnetic recyclable catalysts with dual protection of hollow Co/N/C framework and surface carbon film for hydrogen production from NaBH4 hydrolysis
Lu et al. Coexisting Fe single atoms and nanoparticles on hierarchically porous carbon for high-efficiency oxygen reduction reaction and Zn-air batteries
Fan et al. Hydrogen generation from Al/NaBH4 hydrolysis promoted by Co nanoparticles and NaAlO2 solution
Xu et al. Activating Co nanoparticles on graphitic carbon nitride by tuning the Schottky barrier via P doping for the efficient dehydrogenation of ammonia-borane
Zheng et al. Fabrication of Co (PO3) 2@ NPC/MoS2 heterostructures for enhanced electrocatalytic hydrogen evolution
Zhang et al. Photo-generated charges escape from P+ center through the chemical bridges between P-doped g-C3N4 and RuxP nanoparticles to enhance the photocatalytic hydrogen evolution
Wang et al. Heterostructured Co3O4–SnO2 composites containing oxygen vacancy with high activity and recyclability toward NH3BH3 dehydrogenation
Hong et al. Catalytic upcycling of waste polypropylene for gram-scale production of FeCo@ N-doped carbon nanotubes toward efficient oxygen reduction electrocatalysis
Li et al. Terminal p-π conjugation induced excited-state symmetry-breaking charge separation for porous carbon nitride based heterojunction
CN104888853A (zh) 一种石墨烯负载PVP稳定纳米Ru催化剂、制备方法及其用途
Liao et al. Defect engineering of Fe–N doped crumpled graphene for improved ORR performance
Liang et al. Porous silicon film overcoating biomass char-supported catalysts for improved activity and stability in biomass pyrolysis tar decomposition

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190603

Address after: 037000 Yunzhou Street 1169, Datong Development Zone, Shanxi Province

Patentee after: Datong Hydrogen Xiongyunding Hydrogen Energy Technology Co.,Ltd.

Address before: 730070 No. 967 Ning Ning Road, Anning District, Lanzhou, Gansu

Patentee before: Northwest Normal University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230508

Address after: 430000 No.1 general aviation and satellite Industrial Park, Wuhan Economic and Technological Development Zone, Hubei Province

Patentee after: WUHAN XIONGTAO HYDROGEN FUEL CELL TECHNOLOGY Co.,Ltd.

Address before: 037000 Yunzhou Street 1169, Datong Development Zone, Shanxi Province

Patentee before: Datong Hydrogen Xiongyunding Hydrogen Energy Technology Co.,Ltd.