CN105590997A - 一种超辐射发光二极管的制备方法 - Google Patents

一种超辐射发光二极管的制备方法 Download PDF

Info

Publication number
CN105590997A
CN105590997A CN201610172794.9A CN201610172794A CN105590997A CN 105590997 A CN105590997 A CN 105590997A CN 201610172794 A CN201610172794 A CN 201610172794A CN 105590997 A CN105590997 A CN 105590997A
Authority
CN
China
Prior art keywords
slice
thin piece
preparation
layer
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610172794.9A
Other languages
English (en)
Other versions
CN105590997B (zh
Inventor
苏辉
薛正群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJIAN LITECORE PHOTOELECTRIC TECHNOLOGY Co Ltd
Original Assignee
FUJIAN LITECORE PHOTOELECTRIC TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJIAN LITECORE PHOTOELECTRIC TECHNOLOGY Co Ltd filed Critical FUJIAN LITECORE PHOTOELECTRIC TECHNOLOGY Co Ltd
Priority to CN201610172794.9A priority Critical patent/CN105590997B/zh
Publication of CN105590997A publication Critical patent/CN105590997A/zh
Application granted granted Critical
Publication of CN105590997B publication Critical patent/CN105590997B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本发明涉及一种超辐射发光二极管的制备方法,其特征在于,包括以下步骤:(1)采用MOCVD在InP衬底上外延生长形成优化的外延片;(2)在外延片表面沉积200nm的SiO2介质层,对其进行光刻、湿法腐蚀形成特定的脊波导结构;(3)对形成脊波导结构的片子去除表面介质;再生长钝化层;对片子进行光刻、金属溅射、减薄及金属溅射,从而实现片子P型接触电极制备、减薄及N型接触电极制备;并对片子进行合金形成芯片;(4)将芯片解离成bar条,对其出光和背光面蒸镀高透和高反膜。本发明采用优化的外延结构和掺杂分布来制备SLD芯片,该方法制备的芯片,输出功率高、耦合效率高,能有效提高器件出纤功率。

Description

一种超辐射发光二极管的制备方法
技术领域
本发明涉及一种超辐射发光二极管芯片的制备方法,尤其是一种高输出功率、低发散角1550nmSLD芯片的制备方法。
背景技术
超辐射发光二极管,具有宽光谱、弱时间相干性、高输出功率、高效率的特性,其具有比LD更宽的发光光谱和更短的相干长度,同时比LED具有更高的输出功率,其主要优点是宽光谱、相对较大的输出功率;被广泛应用在光纤陀螺、光纤传感、光学相干层析等领域。
对于SLD器件来说,高的光纤输出功率,能保证在高速旋转的情况下,光纤陀螺仪的高精度和高敏感性;同时,高的光纤输出功率能提高光学相干层析的轴向分辨率。因此提高SLD的出纤功率具有重要意义,常规的SLD器件由于芯片自身输出功率相对偏低,同时发散角大,光纤耦合效率低,使得光纤耦合输出功率很难提高。
对于芯片而言,通过提高芯片腔长是增加出光功率的一个直接方法,然而当腔长增加到1mm以上时,大电流注入容易使得载流子纵向分布不均,导致空间烧孔,引起增益饱和,使得输出功率过早饱和。
发明内容
本发明的目的是提供一种超辐射发光二极管的制备方法。
本发明采用以下技术方案实现:一种超辐射发光二极管的制备方法,其特征在于,包括以下步骤:(1)采用MOCVD在InP衬底上外延生长形成优化的外延片;(2)在外延片表面沉积200nm的SiO2介质层,对其进行光刻、湿法腐蚀形成特定的脊波导结构;(3)对形成脊波导结构的片子去除表面介质;再生长钝化层;对片子进行光刻、金属溅射、减薄及金属溅射,从而实现片子P型接触电极制备、减薄及N型接触电极制备;并对片子进行合金形成芯片;(4)将芯片解离成bar条,对其出光和背光面蒸镀高透和高反膜。
进一步的,步骤(1)包括以下具体步骤:采用MOCVD外延生长方法依次在InP衬底上生长掺杂浓度8×1017的1000nmN-InP缓冲层、200nmInGaAsP下分别限制层、含三层InGaAsP量子阱的有源区,量子阱发光波长为1540-1560nm、200nmInGaAsP上分别限制层、掺杂浓度1×1017的100nmP-InP空间层、掺杂浓度2×1017的25nmP-InGaAsP腐蚀停止层、掺杂浓度3×1017的1500nmP-InP覆盖层、掺杂浓度2×1019的250nmP+-InGaAs接触层。
进一步的,步骤(2)包括以下具体步骤:光刻形成特定形状的脊波导结构,采用H3PO4:HCl=3:1溶液对片子进行脊型控制腐蚀,腐蚀时间4min;所述脊波导结构包括锥形波导结构和直波导结构;其中锥形波导结构锥形张角为1.5°,沿腔长方向长度为600um,逐渐过渡到宽度为2um的直波导结构,直波导结构脊宽2um,直波导结构沿腔长方向长度600um,直波导结构结构与芯片端面法向夹角为3°
进一步的,步骤(3)包括以下步骤:生长SiO2钝化层后采用金属磁控溅射Ti(40nm)/Pt(100nm)/Au(60nm)作为P面一次金属,金属磁控溅射Ti(25nm)/Au(200nm)作为P面二次金属;对片子进行减薄至厚度为110um,金属磁控溅射Ti(50nm)/Pt(100nm)/Au(200nm)作为N面金属;对片子在415℃、N2氛围中合金50s。
进一步的,步骤(4)包括以下步骤:将芯片解离成腔长1200um的bar条,采用电子束分别在芯片出光端面和背光端面蒸镀SiO高透膜和Al2O3/Si高反膜,高透膜和高反膜的反射率分别为<1%和90%。
本发明通过优化应变补偿量子阱,使得量子阱中轻、重空穴子能带的位置发生变化,提高大电流注入下载流子在阱内分布的均匀性;同时采用优化的量子阱层数进一步改善载流子的分布,实现了长腔长的结构,便于芯片输出功率的提高。同时增加外延结构分别限制层的厚度来提高光场的纵向限制,降低垂直发散角;并且在靠近分别限制层区域采用较低的掺杂,进一步降低光损耗提高输出功率。最后在脊波导结构上进一步优化,采用倾斜锥形出光结构,进一步降低光场的水平发散角。本发明制备的芯片输出功率高、发散角低,能实现高的光纤耦合输出。
附图说明
图1是本发明的外延片结构图。
图2是本发明SLD芯片的结构。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
本发明提供一种超辐射发光二极管的制备方法,包括以下步骤:(1)采用MOCVD在InP衬底上外延生长形成优化的外延片;(2)在外延片表面沉积200nm的SiO2介质层,对其进行光刻、湿法腐蚀形成特定的脊波导结构;(3)对形成脊波导结构的片子去除表面介质;再生长钝化层;对片子进行光刻、金属溅射、减薄及金属溅射,从而实现片子P型接触电极制备、减薄及N型接触电极制备;并对片子进行合金形成芯片;(4)将芯片解离成bar条,对其出光和背光面蒸镀高透和高反膜。
进一步的,步骤(1)包括以下具体步骤:采用MOCVD外延生长方法依次在InP衬底上生长
掺杂浓度8×1017的1000nmN-InP缓冲层、200nmInGaAsP下分别限制层、含三层InGaAsP量子阱的有源区,量子阱发光波长为1540-1560nm、200nmInGaAsP上分别限制层、掺杂浓度1×1017的100nmP-InP空间层、掺杂浓度2×1017的25nmP-InGaAsP腐蚀停止层、掺杂浓度3×1017的1500nmP-InP覆盖层、掺杂浓度2×1019的250nmP+-InGaAs接触层。
图1是本发明的外延片结构图,图中1为InP衬底层,2为掺杂浓度8×1017的1000nmN-InP缓冲层,3为200nm无掺杂InGaAsP下分别限制层,4为含三层InGaAsP量子阱的有源区,其量子阱发光波长为1540-1560nm,5为200nm无掺杂InGaAsP上分别限制层,6为掺杂浓度1×1017的100nmP-InP空间层、7为掺杂浓度2×1017的25nmP-InGaAsP腐蚀停止层、8为掺杂浓度3×1017的1500nmP-InP覆盖层、9为掺杂浓度2×1019的250nmP+-InGaAs接触层。
进一步的,步骤(2)包括以下具体步骤:光刻形成特定形状的脊波导结构,采用H3PO4:HCl=3:1溶液对片子进行脊型控制腐蚀,腐蚀掉曝光区域图1所示的8和9层,形成脊结构,腐蚀时间4min;所述脊波导结构包括锥形波导结构和直波导结构;其中锥形波导结构锥形张角为1.5°,沿腔长方向长度为600um,逐渐过渡到宽度为2um的直波导结构,直波导结构脊宽2um,直波导结构沿腔长方向长度600um,直波导结构与芯片端面法向夹角为3°。
图2是本发明SLD芯片的结构,芯片腔长为1200μm,宽为250μm。图中10为出光端面,11为背光端面,12为锥形波导结构(锥形张角为1.5°,沿腔长方向长度为600um,逐渐过渡到宽度为2um的直波导结构),13为脊宽2um的直波导结构(沿腔长方向长度600um,直波导结构与芯片端面法向夹角为3°)。通过采用倾斜波导来优化光谱波纹,降低镀膜要求;同时采用锥形波导结构出光降低水平发散角。
进一步的,步骤(3)包括以下步骤:生长SiO2钝化层后采用金属磁控溅射Ti(40nm)/Pt(100nm)/Au(60nm)作为P面一次金属,金属磁控溅射Ti(25nm)/Au(200nm)作为P面二次金属;对片子进行减薄至厚度为110um,金属磁控溅射Ti(50nm)/Pt(100nm)/Au(200nm)作为N面金属;对片子在415℃、N2氛围中合金50s。
进一步的,步骤(4)包括以下步骤:将芯片解离成腔长1200um的bar条,采用电子束分别在芯片出光端面和背光端面蒸镀SiO高透膜和Al2O3/Si高反膜,高透膜和高反膜的反射率分别为<1%和90%。
本发明采用优化的外延结构和掺杂分布来制备SLD芯片,该方法制备的芯片,输出功率高、耦合效率高,能有效提高器件出纤功率。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

1.一种超辐射发光二极管的制备方法,其特征在于,包括以下步骤:
(1)采用MOCVD在InP衬底上外延生长形成优化的外延片;
(2)在外延片表面沉积200nm的SiO2介质层,对其进行光刻、湿法腐蚀形成特定的脊波导结构;
(3)对形成脊波导结构的片子去除表面介质;再生长钝化层;对片子进行光刻、金属溅射、减薄及金属溅射,从而实现片子P型接触电极制备、减薄及N型接触电极制备;并对片子进行合金形成芯片;
(4)将芯片解离成bar条,对其出光和背光面蒸镀高透和高反膜。
2.根据权利要求1所述的超辐射发光二极管的制备方法,其特征在于:步骤(1)包括以下具体步骤:采用MOCVD外延生长方法依次在InP衬底上生长掺杂浓度8×1017的1000nmN-InP缓冲层、200nmInGaAsP下分别限制层、含三层InGaAsP量子阱的有源区,量子阱发光波长为1540-1560nm、200nmInGaAsP上分别限制层、掺杂浓度1×1017的100nmP-InP空间层、掺杂浓度2×1017的25nmP-InGaAsP腐蚀停止层、掺杂浓度3×1017的1500nmP-InP覆盖层、掺杂浓度2×1019的250nmP+-InGaAs接触层。
3.根据权利要求1所述的超辐射发光二极管的制备方法,其特征在于:步骤(2)包括以下具体步骤:光刻形成特定形状的脊波导结构,采用H3PO4:HCl=3:1溶液对片子进行脊型控制腐蚀,腐蚀时间4min;所述脊波导结构包括锥形波导结构和直波导结构;其中锥形波导结构锥形张角为1.5°,沿腔长方向长度为600um,逐渐过渡到宽度为2um的直波导结构,直波导结构脊宽2um,直波导结构沿腔长方向长度600um,直波导结构与芯片端面法向夹角为3°。
4.根据权利要求1所述的超辐射发光二极管的制备方法,其特征在于:步骤(3)包括以下步骤:生长300nmSiO2钝化层后进行光刻,再采用金属磁控溅射Ti(40nm)/Pt(100nm)/Au(60nm)作为P面一次金属,金属磁控溅射Ti(25nm)/Au(200nm)作为P面二次金属;对片子进行减薄至厚度为110um,金属磁控溅射Ti(50nm)/Pt(100nm)/Au(200nm)作为N面金属;对片子在415℃、N2氛围中合金50s。
5.根据权利要求1所述的超辐射发光二极管的制备方法,其特征在于:步骤(4)包括以下步骤:将芯片解离成腔长1200um的bar条,采用电子束分别在芯片出光端面和背光端面蒸镀SiO高透膜和Al2O3/Si高反膜,高透膜和高反膜的反射率分别为<1%和90%。
CN201610172794.9A 2016-03-24 2016-03-24 一种超辐射发光二极管的制备方法 Active CN105590997B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610172794.9A CN105590997B (zh) 2016-03-24 2016-03-24 一种超辐射发光二极管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610172794.9A CN105590997B (zh) 2016-03-24 2016-03-24 一种超辐射发光二极管的制备方法

Publications (2)

Publication Number Publication Date
CN105590997A true CN105590997A (zh) 2016-05-18
CN105590997B CN105590997B (zh) 2018-02-06

Family

ID=55930429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610172794.9A Active CN105590997B (zh) 2016-03-24 2016-03-24 一种超辐射发光二极管的制备方法

Country Status (1)

Country Link
CN (1) CN105590997B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863686A (zh) * 2017-10-25 2018-03-30 中国科学院福建物质结构研究所 一种激光二极管与背光探测器集成的制备方法及集成芯片
CN108521073A (zh) * 2018-06-07 2018-09-11 江苏华兴激光科技有限公司 一种基于直波导全反射耦合连接的微结构片上光源装置及其制作方法
CN111261756A (zh) * 2020-03-25 2020-06-09 武汉光谷信息光电子创新中心有限公司 一种半导体发光器件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098006A (zh) * 2015-09-09 2015-11-25 中国科学院福建物质结构研究所 一种超辐射发光二极管芯片的制备方法及制得的发光二极管芯片

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098006A (zh) * 2015-09-09 2015-11-25 中国科学院福建物质结构研究所 一种超辐射发光二极管芯片的制备方法及制得的发光二极管芯片

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107863686A (zh) * 2017-10-25 2018-03-30 中国科学院福建物质结构研究所 一种激光二极管与背光探测器集成的制备方法及集成芯片
CN107863686B (zh) * 2017-10-25 2023-05-09 中国科学院福建物质结构研究所 一种激光二极管与背光探测器集成的制备方法及集成芯片
CN108521073A (zh) * 2018-06-07 2018-09-11 江苏华兴激光科技有限公司 一种基于直波导全反射耦合连接的微结构片上光源装置及其制作方法
CN108521073B (zh) * 2018-06-07 2023-11-24 江苏华兴激光科技有限公司 一种基于直波导全反射耦合连接的微结构片上光源装置及其制作方法
CN111261756A (zh) * 2020-03-25 2020-06-09 武汉光谷信息光电子创新中心有限公司 一种半导体发光器件
CN111261756B (zh) * 2020-03-25 2021-12-14 武汉光谷信息光电子创新中心有限公司 一种半导体发光器件

Also Published As

Publication number Publication date
CN105590997B (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
US9048631B2 (en) Laser light source
JP5958916B2 (ja) スーパールミネッセントダイオード
WO2021102722A1 (zh) 侧面光栅氧化限制结构单纵模边发射激光器及其制备方法
CN106785904B (zh) 一种dfb半导体激光器制备方法及激光器
JP2004289157A (ja) レーザダイオード構造およびその製造方法
US8995490B2 (en) Edge-emitting semiconductor laser diode and method for producing the same
JP2015519008A (ja) ビーム形状の改良を伴うレーザ
CN102148478B (zh) 980nm单模波长稳定半导体激光器的制备方法
US10381521B2 (en) Optoelectronic component and method for producing an optoelectronic component
JP2011124442A (ja) 半導体レーザ装置及びその製造方法
CN105098006A (zh) 一种超辐射发光二极管芯片的制备方法及制得的发光二极管芯片
CN103053035A (zh) 半导体发光装置
CN105590997A (zh) 一种超辐射发光二极管的制备方法
US6709881B2 (en) Method for manufacturing semiconductor and method for manufacturing semiconductor device
JP2023176020A (ja) 半導体レーザダイオードおよび半導体レーザダイオードの製造方法
CN111816737A (zh) GaN基超辐射发光二极管的外延结构及其应用
CN212011600U (zh) 侧面光栅氧化限制结构单纵模边发射激光器
CN105280763B (zh) 一种超辐射发光二极管的制作方法及制得的发光二极管
US11177414B2 (en) Optoelectronic component and method for producing an optoelectronic component
CN101958512B (zh) 通过腔面镀膜来提高量子点激光器温度特性的方法
CN109037403B (zh) 带透明窗口的超辐射发光二极管结构
JP3712855B2 (ja) スーパールミネッセントダイオード
CN101983461A (zh) 半导体器件以及用于制造半导体器件的方法
WO2015187046A1 (en) Alingan-based superluminescent diode
WO2021212598A1 (zh) 一种808nm激光外延片及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant