WO2021212598A1 - 一种808nm激光外延片及其制备方法 - Google Patents

一种808nm激光外延片及其制备方法 Download PDF

Info

Publication number
WO2021212598A1
WO2021212598A1 PCT/CN2020/092470 CN2020092470W WO2021212598A1 WO 2021212598 A1 WO2021212598 A1 WO 2021212598A1 CN 2020092470 W CN2020092470 W CN 2020092470W WO 2021212598 A1 WO2021212598 A1 WO 2021212598A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
grating
epitaxial wafer
laser epitaxial
preparing
Prior art date
Application number
PCT/CN2020/092470
Other languages
English (en)
French (fr)
Inventor
罗帅
季海铭
徐鹏飞
王岩
王俊
徐智鹏
Original Assignee
江苏华兴激光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华兴激光科技有限公司 filed Critical 江苏华兴激光科技有限公司
Publication of WO2021212598A1 publication Critical patent/WO2021212598A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0268Integrated waveguide grating router, e.g. emission of a multi-wavelength laser array is combined by a "dragon router"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers

Definitions

  • the present invention relates to the field of semiconductor technology, in particular to a 808nm laser epitaxial wafer and a preparation method thereof.
  • DFB Distributed feedback
  • GaAs-based materials usually choose GaAs/AlGaAs materials to make Bragg reflector materials with their lattice matching and large refractive index difference.
  • problems such as interface oxidation of aluminum-containing materials give high-quality materials a secondary epitaxial growth zone. It was very difficult.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a 808nm laser epitaxial wafer and a preparation method thereof.
  • the laser epitaxial wafer has low wavelength drift coefficient and high injection efficiency.
  • the technical solution of the present invention is: a method for preparing a 808nm laser epitaxial wafer, the difference lies in that it includes the following steps:
  • Step 1 Choose a GaAs substrate
  • Step 2 Depositing a buffer layer, a lower confinement layer and a grating layer on the substrate in sequence;
  • Step 3 preparing a grating pattern on the grating layer
  • Step 4 Continue to grow the cover layer, the cladding layer, the lower waveguide layer, the quantum well layer, the upper waveguide layer, the upper confinement layer and the contact layer on the grating layer prepared with the grating pattern in order to complete the preparation.
  • the material of the buffer layer is GaAs
  • the doping concentration is between 1 ⁇ 10 18 -3 ⁇ 10 18 cm -3
  • the growth rate is between 0.4 and 0.6 nm/s.
  • the grating layer is divided into three layers from bottom to top: the first grating layer, the second grating layer, and the third grating layer.
  • the materials of the first grating layer and the third grating layer are all GaInP, so The material of the second grating layer is (In)GaAsP.
  • the grating duty ratio of the grating layer ranges from 20% to 80%.
  • the material of the covering layer is GaInP or GaAs, and the thickness is 50-100 nm.
  • the material of the cladding layer is (Al x Ga 1-x ) y In 1-y P, the Al composition x is between 0.1 and 0.6, and the range of y is between 0.4 and 0.6, The thickness is 50 to 500 nm.
  • the material of the quantum well layer is GaAsP or InGaAsP, and the thickness is 5-15 nm.
  • the material of the lower waveguide layer and the upper waveguide layer is GaInP or AlGaInP, and the thickness is 400-1200 nm.
  • the material of the lower confinement layer and the upper confinement layer is (Al x Ga 1-x ) y In 1-y P, the Al composition x is between 0.3 and 0.8, and the range of y is between 0.4 Between ⁇ 0.6.
  • a 808nm laser epitaxial wafer prepared according to the above preparation method includes a substrate, a buffer layer, a lower confinement layer, a grating layer, a cover layer, a cladding layer, a lower waveguide layer, and a quantum well from bottom to top. Layer, upper waveguide layer, upper confinement layer and contact layer.
  • the present invention discloses a 808nm laser epitaxial wafer and a preparation method thereof.
  • the GaInP/InGaAsP/GaInP grating is inserted into the AlGaInP cladding to realize the locking of the laser wavelength drift speed with the injection current, and greatly improve the secondary epitaxy.
  • Material crystal quality; N-plane grating design reduces the impedance of carriers when passing through the Bragg reflector; through the cladding energy band design, high grating coupling efficiency is achieved, the spatial hole burning effect is reduced, and the laser output performance is improved.
  • Figure 1 is a schematic flow diagram of a preparation method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the overall structure of a laser epitaxial wafer according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the structure of the laser epitaxial wafer before the grating is prepared according to the embodiment of the present invention
  • FIG. 4 is a schematic diagram of the structure of the laser epitaxial wafer after preparing the grating according to the embodiment of the present invention
  • exemplary or “illustrative” as used herein means serving as an example, instance, or illustration. Any embodiment described herein as “exemplary” or “illustrative” is not necessarily construed as being preferred or advantageous over other embodiments. All the embodiments described below are exemplary embodiments. These exemplary embodiments are provided to enable those skilled in the art to make and use the embodiments of the present disclosure and are not intended to limit the scope of the present disclosure. The scope of the present disclosure is determined by Claims are defined. In other embodiments, well-known features and methods are described in detail so as not to obscure the present invention.
  • the method for preparing a 808nm laser epitaxial wafer according to the present invention is different in that it includes the following steps:
  • Step 1 Choose a GaAs substrate 1, where GaAs substrate 1 is a GaAs single wafer, the crystal orientation is (001), the off angle is within ⁇ 0.5 o , the thickness is 325-375 ⁇ m, and the doping concentration is (2-8) ⁇ 10 18 cm -3 ;
  • Step 2 Deposit a GaAs buffer layer 2, a lower confinement layer 3, and a grating layer on the substrate 1 in sequence; the GaAs buffer layer 2 has a thickness of 500 nm, a growth temperature of 600 to 660°C, and a doping concentration of 1 ⁇ Between 10 18 and 3 ⁇ 10 18 cm -3 , the growth rate is about 0.4-0.6 nm/s.
  • the lower confinement layer 3 is (Al x Ga 1-x ) y In 1-y P material, the Al composition x is 0.5, the doping concentration is between 1 ⁇ 10 18 to 2 ⁇ 10 18 cm -3 , the growth temperature is between 630-680 °C, and the thickness is 1000 nm ;
  • the grating layer is divided into the first grating layer 4, the second grating layer 5, and the third grating layer 6 from bottom to top.
  • the materials are GaInP, InGaAsP and GaInP, the material mismatch is less than ⁇ 500ppm, and the growth temperature is between 630- Between 680°C, the total thickness is 70nm.
  • Step 3 Making N-face grating patterns on the above-mentioned epitaxial substrate (grating layer). Specifically, the above-mentioned substrate is cleaned with an organic solvent, rinsed with a large amount of deionized water, and dried. After pre-baking, homogenizing, post-baking, holographic exposure, development, hardening, etching, and debinding, the secondary Bragg grating required for 808nm DFB semiconductor laser epitaxial wafer production is obtained. A duty ratio of 0.25 is obtained through the combination of exposure time and development time. The grating period is 240nm and the depth is 60nm.
  • the surface morphology, period and depth of the grating are tested by atomic force microscope (AFM) and scanning electron microscope (SEM) to ensure that the produced graphics meet the design requirements.
  • FAM atomic force microscope
  • SEM scanning electron microscope
  • the three layers of material of the grating layer will be partially etched away, and then the covering layer 7 and the following layers will be grown in the etched trench.
  • Step 4 Continue to grow the cover layer 7, the cladding layer 8, the lower waveguide layer 9, the quantum well layer 10, the upper waveguide layer 11, the upper confinement layer 12, and the contact layer 13 on the substrate prepared with the grating pattern.
  • the substrate produced in step 3 is cleaned with a solvent to clean the remaining photoresist, rinsed with a large amount of deionized water, and dried. Then put it into the MOCVD growth reaction chamber, and fully desorb the surface oxide layer after raising the temperature.
  • the covering layer 7 is made of GaInP material with a growth thickness of 50-100 nm to ensure that the grating layer is fully covered.
  • the cladding layer 8 is (Al x Ga 1-x ) y In 1-y P material, the Al composition x is 0.3, the doping concentration is between 5 ⁇ 10 17 to 1 ⁇ 10 18 cm -3 , and the growth temperature It is between 630-680°C and the thickness is 50-500nm.
  • the lower waveguide layer 9 and the upper waveguide layer 11 are made of GaInP material, the material mismatch is less than ⁇ 500ppm, the growth temperature is between 630-680°C, and the total thickness is 400-1200nm.
  • the quantum well layer 10 is made of GaAsP material, and its thickness is 5-15nm; the upper confinement layer 12 is made of (Al x Ga 1-x ) y In 1-y P material, the Al composition x is 0.5, Zn or Mg is used as the dopant, and the doping concentration is 5 ⁇ 10 17 To 1.5 ⁇ 10 18 cm -3 , the growth temperature is between 630-680°C, and the thickness is 500-1500 nm.
  • the contact layer 13 is made of GaAs material, the doping concentration is greater than 5E18cm -3 , and the growth temperature is lower than 650°C. In this embodiment, the doping concentration we use is 5E19cm -3 and the growth temperature is 600°C. This causes Zn to diffuse out and escape, thereby reducing the doping concentration of the contact layer and increasing the contact resistance.
  • the 808nm laser epitaxial wafer prepared according to the above preparation method is different in that it includes a GaAs substrate, a buffer layer, a lower confinement layer, a grating layer, a cover layer, a cladding layer, a lower waveguide layer, and a quantum well layer from bottom to top. , The upper waveguide layer, the upper confinement layer and the contact layer. N-face grating patterns are prepared on the grating layer.
  • the above-mentioned epitaxial material growth equipment is MOCVD, and the sources used in the epitaxial growth process are trimethyl indium (TMIn), trimethyl gallium (TMGa), triethyl gallium (TEGa), arsine (AsH3), and phosphorus.
  • TMIn trimethyl indium
  • TMGa trimethyl gallium
  • TMGa triethyl gallium
  • AsH3 arsine
  • phosphorus phosphorus
  • the embodiment of the present invention is based on energy band structure design, combined with MOCVD epitaxial process and grating microstructure production.
  • the 808nm band semiconductor laser epitaxial material is grown by molecular beam epitaxy (MBE) or metal organic chemical vapor deposition (MOCVD), combined with holography, electron beam exposure or nanoimprint technology to make gratings, which achieves a low wavelength drift coefficient and high injection efficiency
  • MBE molecular beam epitaxy
  • MOCVD metal organic chemical vapor deposition
  • the 808nm band laser epitaxial wafer is used for laser pumping.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明涉及半导体技术领域,尤其涉及一种808nm激光外延片及其制备方法,其不同之处在于,包括以下步骤:步骤1:选择一GaAs衬底;步骤2:在所述衬底上依次沉积缓冲层、下限制层和光栅层;步骤3:在所述光栅层上制备光栅图形;步骤4:在制备有光栅图形的所述光栅层上继续依次生长覆盖层、包层、下波导层、量子阱层、上波导层、上限制层和接触层,完成制备。本发明制备的激光外延片波长漂移系数低、注入效率高。

Description

一种808nm激光外延片及其制备方法 技术领域
本发明涉及半导体技术领域,尤其涉及一种808nm激光外延片及其制备方法。
背景技术
自上世纪六十年代初半导体激光器问世以来,因其具有波长覆盖范围广、结构紧凑、可靠性高和易于集成性等性能优势,已在人们的日常生活,工、农业生产以及国防军事等领域得到广泛的应用。半导体激光器的性能很大程度上取决于半导体外延片的质量,因此高质量外延片的制备是制备高性能半导体激光器的关键。工作在808nm波段的半导体激光器是Nd:YAG激光器工作不可或缺的泵浦源。随着技术的发展,无铝材料相比含铝材料做成的器件具有更高的腔面光学灾变功率密度、更高的热导率和电导率,且不易氧化等优势逐渐在实际应用中成为主流。目前常用的法布里珀罗(FP)腔半导体激光器由于其光谱线宽比较宽,光谱随温度和工作电流的变化比较大,限制了它在抽运固体激光器等领域的应用。分布反馈(DFB)半导体激光器是在激光器的外延结构中集成布拉格光栅,利用折射率周期变化的结构实现谐振腔反馈功能,其具有高的发射波长稳定性、窄的光谱线宽、宽的工作温度范围,具有广泛的应用前景和无可比拟的优越性。同时由于光栅材料选择及布拉格微结构的引入对二次外延的晶体质量及器件载流子注入效率具有非常大的影响,进而影响整个激光器的工作性能。一般来说,GaAs基材料通常选用GaAs/AlGaAs材料利用其晶格匹配同时具有较大折射率差的特点制作布拉格反射镜材料,但含铝材料界面氧化等问题给高质量材料二次外延生长带来了很大困难。
鉴于此,为克服上述技术缺陷,提供一种808nm激光外延片及其制备方法成为本领域亟待解决的问题。
发明内容
本发明的目的在于克服现有技术的缺点,提供一种808nm激光外延片及其制备方法,该激光外延片波长漂移系数低,注入效率高。
为解决以上技术问题,本发明的技术方案为:一种808nm激光外延片的制备方法,其不同之处在于,包括以下步骤:
步骤1:选择一GaAs衬底;
步骤2:在所述衬底上依次沉积缓冲层、下限制层和光栅层;
步骤3:在所述光栅层上制备光栅图形;
步骤4:在制备有光栅图形的所述光栅层上继续依次生长覆盖层、包层、下波导层、量子阱层、上波导层、上限制层和接触层,完成制备。
按以上技术方案,所述缓冲层的材料为GaAs,掺杂浓度介于1×10 18~3×10 18cm -3之间,生长速度介于0.4~0.6nm/s之间。
按以上技术方案,所述光栅层由下至上分为第一光栅层、第二光栅层、第三光栅层共三层,所述第一光栅层、第三光栅层的材料均为GaInP,所述第二光栅层的材料为(In)GaAsP。
按以上技术方案,所述光栅层的光栅占空比范围介于20%~80%之间。
按以上技术方案,所述覆盖层的材料为GaInP或GaAs,厚度为50~100nm。
按以上技术方案,所述包层的材料为(Al xGa 1-x) yIn 1-yP,Al组分x介于0.1~0.6之间,y的范围介于0.4~0.6之间,厚度为50~500nm。
按以上技术方案,所述量子阱层的材料为GaAsP或InGaAsP,厚度为5~15nm。
按以上技术方案,所述下波导层和上波导层的材料为GaInP或AlGaInP,厚度为400~1200nm。
按以上技术方案,所述下限制层和上限制层的材料为(Al xGa 1-x) yIn 1-yP,Al组分x介于0.3~0.8之间,y的范围介于0.4~0.6之间。
一种根据上述制备方法制备的808nm激光外延片,其不同之处在于:其由下至上依次包括衬底、缓冲层、下限制层、光栅层、覆盖层、包层、下波导层、量子阱层、上波导层、上限制层和接触层。
由上述方案,本发明公开了一种808nm激光外延片及其制备方法,其通过AlGaInP包层中插入GaInP/InGaAsP/GaInP光栅实现对激光波长随注入电流漂移速度的锁定,并大幅提高二次外延材料晶体质量;通过N面光栅设计降低载流子通过布拉格反射镜时的阻抗;通过对包层能带设计实现高光栅耦合效率,降低空间烧孔效应,提高激光器输出性能。
附图说明
图1为本发明实施例制备方法的流程示意图;
图2为本发明实施例激光外延片的整体结构示意图;
图3为本发明实施例激光外延片制备光栅前的结构示意图;
图4为本发明实施例激光外延片制备光栅后的结构示意图;
其中:1-衬底;2-缓冲层;3-下限制层;4-第一光栅层;5-第二光栅层;6-第三光栅层;7-覆盖层;8-包层;9-下波导层;10-量子阱层;11-上波导层;12-上限制层;13-接触层。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在下文中,将参考附图来更好地理解本发明的许多方面。附图中的部件未必按照比例绘制。替代地,重点在于清楚地说明本发明的部件。此外,在附图中的若干视图中,相同的附图标记指示相对应零件。
如本文所用的词语“示例性”或“说明性”表示用作示例、例子或说明。在本文中描述为“示例性”或“说明性”的任何实施方式未必理解为相对于其它实施方式是优选的或有利的。下文所描述的所有实施方式是示例性实施方式,提供这些示例性实施方式是为了使得本领域技术人员做出和使用本公开的实施例并且预期并不限制本公开的范围,本公开的范围由权利要求限定。在其它实施方式中,详细地描述了熟知的特征和方法以便不混淆本发明。出于本文描述的目的,术语“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”和其衍生词将与如图1定向的发明有关。而且,并无意图受到前文的技术领域、背景技术、发明内容或下文的详细描述中给出的任何明示或暗示的理论限制。还应了解在附图中示出和在下文的说明书中描述的具体装置和过程是在所附权利要求中限定的发明构思的简单示例性实施例。因此,与本文所公开的实施例相关的具体尺寸和其他物理特征不应被理解为限制性的,除非权利要求书另作明确地陈述。
请参考图1和图2,本发明一种808nm激光外延片的制备方法,其不同之处在于:其包括以下步骤:
步骤1:选择一GaAs衬底1,其中GaAs衬底1为GaAs单晶片,晶向为(001), 偏角在±0.5 o以内,厚度为325-375μm,掺杂浓度为(2-8)×10 18cm -3
步骤2:在该衬底1上依次沉积GaAs缓冲层2、下限制层3、光栅层;GaAs缓冲层2厚度为500nm,生长温度介于600至660℃之间,掺杂浓度介于1×10 18至3×10 18cm -3之间,生长速度约0.4-0.6nm/s,过快的生长速度不利于高质量缓冲层的形成;其中下限制层3为(Al xGa 1-x) yIn 1-yP材料,Al组分x为0.5,掺杂浓度介于1×10 18至2×10 18cm -3之间,生长温度介于630-680℃之间,厚度为1000nm;光栅层由下至上分为第一光栅层4、第二光栅层5、第三光栅层6,其材料分别为GaInP、InGaAsP和GaInP,材料失配度小于±500ppm,生长温度介于630-680℃之间,总厚度为70nm。
步骤3:在上述外延基片上(光栅层)制作N面光栅图形。具体的,将上述基片使用有机溶剂清洗干净,并用大量的去离子水冲洗,甩干。经过前烘、匀胶、后烘、全息曝光、显影、坚膜、刻蚀、去胶等过程后得到808nm DFB半导体激光外延片制作所需的二级布拉格光栅。通过曝光时间和显影时间配合得到0.25的占空比。其光栅周期为240nm,深度为60nm。制作完成后通过原子力显微镜(AFM)及扫描电子显微镜(SEM)对光栅进行表面形貌、周期和深度的测试,确保制作图形符合设计要求。本步骤中,光栅层的三层材料会被部分刻蚀掉,后续在刻蚀掉的沟槽里生长覆盖层7及后面各层。
步骤4:在制备有光栅图形的基片上继续生长覆盖层7,包层8,下波导层9、量子阱层10、上波导层11、上限制层12、接触层13。具体的,将经过步骤3制作的基片使用溶剂将残留光刻胶清洗干净,并用大量的去离子水冲洗,甩干。然后放入到MOCVD生长反应室中,经过升温将其表面氧化层充分脱附。其中,覆盖层7为GaInP材料,生长厚度为50-100nm,确保光栅层被充分覆盖。其包层8为(Al xGa 1-x) yIn 1-yP材料,Al组分x为0.3,掺杂浓度介于5×10 17至1×10 18cm -3之间,生长温度介于630-680℃之间,厚度为50-500nm。下波导层9、上波导层11为GaInP材料,材料失配度小于±500ppm,生长温度介于630-680℃之间,总厚度为400-1200nm,量子阱层10为GaAsP材料,其厚度为5-15nm;上限制层12为(Al xGa 1-x) yIn 1-yP材料,Al组分x为0.5,采用Zn或Mg作为掺杂剂,掺杂浓度介于5×10 17至1.5×10 18cm -3之间,生长温度介于630-680℃之间,厚度为500-1500nm。接触层13为GaAs材料,掺杂浓度大于5E18cm -3,生长温 度低于650℃,本实施例中,我们采用的掺杂浓度为5E19cm -3,生长温度为600℃,过高的生长温度会导致Zn向外扩散逃逸,从而降低接触层的掺杂浓度,增大接触电阻。
根据上述制备方法制备的808nm激光外延片,其不同之处在于:其由下至上依次包括GaAs衬底、缓冲层、下限制层、光栅层、覆盖层、包层、下波导层、量子阱层、上波导层、上限制层和接触层。所述光栅层上制备有N面光栅图形。
以上所述外延材料生长设备为MOCVD,外延生长过程中使用的源分别是三甲基铟(TMIn),三甲基镓(TMGa),三乙基镓(TEGa),砷烷(AsH3),磷烷(PH3),硅烷(SiH4),二乙基锌(DEZn)。
本发明实施例基于能带结构设计,结合MOCVD外延工艺及光栅微结构制作。通过分子束外延(MBE)或者金属有机化学气相沉积(MOCVD)生长808nm波段半导体激光外延材料,结合全息、电子束曝光或纳米压印技术制作光栅,实现了一种低波长漂移系数、高注入效率的激光泵浦用808nm波段激光外延片。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种808nm激光外延片的制备方法,其特征在于,包括以下步骤:
    步骤1:选择一GaAs衬底;
    步骤2:在所述衬底上依次沉积缓冲层、下限制层和光栅层;
    步骤3:在所述光栅层上制备光栅图形;
    步骤4:在制备有光栅图形的所述光栅层上继续依次生长覆盖层、包层、下波导层、量子阱层、上波导层、上限制层和接触层,完成制备。
  2. 根据权利要求1所述的808nm激光外延片的制备方法,其特征在于:所述缓冲层的材料为GaAs,掺杂浓度介于1×10 18~3×10 18cm -3之间,生长速度介于0.4~0.6nm/s之间。
  3. 根据权利要求1所述的808nm激光外延片的制备方法,其特征在于:所述光栅层由下至上分为第一光栅层、第二光栅层、第三光栅层共三层,所述第一光栅层、第三光栅层的材料均为GaInP,所述第二光栅层的材料为(In)GaAsP。
  4. 根据权利要求3所述的808nm激光外延片的制备方法,其特征在于:所述光栅层的光栅占空比范围介于20%~80%之间。
  5. 根据权利要求1所述的808nm激光外延片的制备方法,其特征在于:所述覆盖层的材料为GaInP或GaAs,厚度为50~100nm。
  6. 根据权利要求1所述的808nm激光外延片的制备方法,其特征在于:所述包层的材料为(Al xGa 1-x) yIn 1-yP,Al组分x介于0.1~0.6之间,y的范围介于0.4~0.6之间,厚度为50~500nm。
  7. 根据权利要求1所述的808nm激光外延片的制备方法,其特征在于:所述量子阱层的材料为GaAsP或InGaAsP,厚度为5~15nm。
  8. 根据权利要求1所述的808nm激光外延片的制备方法,其特征在于:所述下波导层和上波导层的材料为GaInP或AlGaInP,厚度为400~1200nm。
  9. 根据权利要求1所述的808nm激光外延片的制备方法,其特征在于:所述下限制层和上限制层的材料为(Al xGa 1-x) yIn 1-yP,Al组分x介于0.3~0.8之间,y的范围介于0.4~0.6之间。
  10. 一种根据权利要求1至9任一权利要求所述方法制备的808nm激光外延片,其特征在于:其由下至上依次包括衬底、缓冲层、下限制层、光栅层、覆盖层、包层、下波导层、量子阱层、上波导层、上限制层和接触层。
PCT/CN2020/092470 2020-04-24 2020-05-27 一种808nm激光外延片及其制备方法 WO2021212598A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010332114.1 2020-04-24
CN202010332114.1A CN111490450A (zh) 2020-04-24 2020-04-24 一种808nm激光外延片及其制备方法

Publications (1)

Publication Number Publication Date
WO2021212598A1 true WO2021212598A1 (zh) 2021-10-28

Family

ID=71794955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092470 WO2021212598A1 (zh) 2020-04-24 2020-05-27 一种808nm激光外延片及其制备方法

Country Status (2)

Country Link
CN (1) CN111490450A (zh)
WO (1) WO2021212598A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10200360B4 (de) * 2002-01-08 2004-01-08 Forschungsverbund Berlin E.V. Verfahren zur Herstellung eines Braggschen Gitters in einer Halbleiterschichtenfolge mittels Ätzen und Halbleiterbauelement
JP2005203392A (ja) * 2004-01-13 2005-07-28 Mitsubishi Electric Corp 半導体装置及びその製造方法
CN101841129A (zh) * 2010-05-24 2010-09-22 中国科学院长春光学精密机械与物理研究所 单片集成锁相面发射分布反馈半导体激光器阵列
CN205752984U (zh) * 2016-07-01 2016-11-30 单智发 一种dfb激光器的外延结构
CN106329312A (zh) * 2016-11-02 2017-01-11 中国电子科技集团公司第四十四研究所 带内置光栅半导体激光器
CN106340806A (zh) * 2016-11-14 2017-01-18 北京青辰光电科技有限公司 一种波长为650nm的分布反馈半导体激光器的制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3926313B2 (ja) * 2003-09-26 2007-06-06 シャープ株式会社 半導体レーザおよびその製造方法
CN1901301A (zh) * 2005-07-21 2007-01-24 中国科学院半导体研究所 高注入效率大功率808nm量子阱半导体激光器结构
CN106300012B (zh) * 2016-09-19 2020-02-14 山东华光光电子股份有限公司 一种含有高选择性腐蚀阻挡层的808nm半导体激光器
CN108346973B (zh) * 2017-01-24 2019-09-06 山东华光光电子股份有限公司 一种基于AlGaAs/GaInP有源区的795nm量子阱激光器
CN110535030B (zh) * 2019-09-17 2023-11-21 全磊光电股份有限公司 一种高速dfb激光器及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10200360B4 (de) * 2002-01-08 2004-01-08 Forschungsverbund Berlin E.V. Verfahren zur Herstellung eines Braggschen Gitters in einer Halbleiterschichtenfolge mittels Ätzen und Halbleiterbauelement
JP2005203392A (ja) * 2004-01-13 2005-07-28 Mitsubishi Electric Corp 半導体装置及びその製造方法
CN101841129A (zh) * 2010-05-24 2010-09-22 中国科学院长春光学精密机械与物理研究所 单片集成锁相面发射分布反馈半导体激光器阵列
CN205752984U (zh) * 2016-07-01 2016-11-30 单智发 一种dfb激光器的外延结构
CN106329312A (zh) * 2016-11-02 2017-01-11 中国电子科技集团公司第四十四研究所 带内置光栅半导体激光器
CN106340806A (zh) * 2016-11-14 2017-01-18 北京青辰光电科技有限公司 一种波长为650nm的分布反馈半导体激光器的制作方法

Also Published As

Publication number Publication date
CN111490450A (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
KR102461045B1 (ko) 그래핀 유형 기재 상에 성장된 나노와이어를 기반으로 하는 레이저 또는 led
Takeuchi et al. GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors
US6829273B2 (en) Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
JP3898537B2 (ja) 窒化物半導体の薄膜形成方法および窒化物半導体発光素子
JP4246242B2 (ja) 半導体発光素子
JP3688843B2 (ja) 窒化物系半導体素子の製造方法
JP3623713B2 (ja) 窒化物半導体発光素子
JP2000232238A (ja) 窒化物半導体発光素子及びその製造方法
EP1196971B1 (en) Nitride semiconductor layer structure and a nitride semiconductor laser incorporating a portion of same
JP2002374043A (ja) 窒化ガリウム系化合物半導体素子
JP4259709B2 (ja) 量子井戸型活性層
WO2021212597A1 (zh) 一种四元系张应变半导体激光外延片及其制备方法
TWI383555B (zh) 用於長波長活性區域之深井結構的方法及結構
JP2000332362A (ja) 半導体装置および半導体発光素子
US6709881B2 (en) Method for manufacturing semiconductor and method for manufacturing semiconductor device
CN212659824U (zh) 一种808nm激光外延片
JP2000208814A (ja) 半導体発光素子
WO2021212598A1 (zh) 一种808nm激光外延片及其制备方法
CN113422293B (zh) 一种具有阶梯状上波导的InGaN/GaN量子阱激光器及其制备方法
JP2009038408A (ja) 半導体発光素子
JPH10303502A (ja) 窒化ガリウム系化合物半導体発光素子及びその製造方法
CN113922208A (zh) GaN基蓝紫光垂直腔面发射激光器芯片及其制作方法
Dong et al. Continuous-wave operation of AlGaInP/GaInP quantum-well lasers grown by metalorganic chemical vapor deposition using tertiarybutylphosphine
CN109962405A (zh) 一种质子注入栅格vcsel及其制备方法
CN114389152B (zh) 一种半导体激光器的外延生长方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932623

Country of ref document: EP

Kind code of ref document: A1