CN105575432B - 一种分栅式双位存储单元闪存的数据读取方法 - Google Patents

一种分栅式双位存储单元闪存的数据读取方法 Download PDF

Info

Publication number
CN105575432B
CN105575432B CN201510939651.1A CN201510939651A CN105575432B CN 105575432 B CN105575432 B CN 105575432B CN 201510939651 A CN201510939651 A CN 201510939651A CN 105575432 B CN105575432 B CN 105575432B
Authority
CN
China
Prior art keywords
data
sub
reading
reference unit
flash memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510939651.1A
Other languages
English (en)
Other versions
CN105575432A (zh
Inventor
高超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Original Assignee
Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huahong Grace Semiconductor Manufacturing Corp filed Critical Shanghai Huahong Grace Semiconductor Manufacturing Corp
Priority to CN201510939651.1A priority Critical patent/CN105575432B/zh
Publication of CN105575432A publication Critical patent/CN105575432A/zh
Application granted granted Critical
Publication of CN105575432B publication Critical patent/CN105575432B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits

Abstract

本发明提供一种分栅式双位存储单元闪存的数据读取方法,将传统的以参考单元处于“11”状态下的电流为读判断基准的方式,改为以参考单元处于“10”状态下的电流乘以固定比例后作为读判断基准,保证了读取判决裕量,提高了分栅式双位存储单元闪存数据读取的可靠性;并通过求取多个参考单元电流平均值的方式,避免了不同批次产品之间的编程性能差异而造成的良率损失;进一步地,在每次分栅式双位存储单元闪存按块擦除之后、进行新一轮的数据读取之前,均对各个参考单元进行重新编程,将其重新置为“10”状态,从而避免了参考单元“10”状态的电流值受按块擦除后的编程深度影响而发生变化的情况,进一步提高了分栅式双位存储单元闪存数据读取的可靠性。

Description

一种分栅式双位存储单元闪存的数据读取方法
技术领域
本发明涉及FLASH存储器测试技术领域,尤其涉及一种分栅式双位存储单元闪存的数据读取方法。
背景技术
闪存(即FLASH存储器)为一种非易失性固态存储装置,可以电性抹除或写入数据。相较于其它存储器,闪存的优点包括低功率、非易失性储存、高效能、物理稳定性、可移植性等。闪存广泛使用于电子装置,特别是便携式电子装置,例如数码相机、个人数字助理(PDA)、动态图像专家组-1(MPEG-1)或动态图像专家组-2(MPEG-2)音频层面III(简称为MP3)播放器、移动电话、平板电脑等。该些电子装置可使用各种界面协议,例如安全数字(SD)、微安全数字(μSD)、内嵌式安全数字(eSD)、内嵌式多媒体卡(eMMC)、通用串行总线(USB)、快捷外设互联标准(PCIe)、串行高级技术附件(SATA)等。
闪存通常有单位存储单元(single-bit per cell)闪存和多位存储单元(multi-bit per cell)闪存两种类型,单位存储单元即单层式储存或单电平单元(Single LevelCell,SLC),技术特点是在浮置闸极与源极之中的氧化薄膜更薄,在写入数据时通过对浮置闸极的电荷加电压,然后透过源极,即可将所储存的电荷消除,通过这样的方式,每个存储单元便能存储1bit的信息,每个存储单元经写入后会有两种可能的状态:“0”或“1”,这种技术能提供快速的程序编程与读取,不过此技术受限于Silicon efficiency的问题,但必须要由较先进的流程强化技术(Process enhancements),才能向上提升SLC制程技术。多位存储单元,即多层式储存或多电平单元(Multi Level Cell,MLC),其技术特点是一个存储单元可储存多比特单位信息,每个存储单元经写入后会有多于两种可能状态。例如图1A所示的分栅式双位存储单元闪存(即一种2bits/cell FLASH存储器),这是一种共享字线式的分栅式闪存,该闪存相比堆叠栅闪存在编程和擦除的时候都体现出其独特的性能优势。从图1A上可以看出,该闪存包括:半导体衬底100,其上具有间隔设置的源极区域200和漏极区域300;字线400,设置于所述源极区域200和漏极区域300之间;第一存储位单元500,位于所述字线400与所述源极区域200之间;第二存储位单元600,位于所述字线400与所述漏极区域300之间,其中所述两个存储位单元500、600与所述字线400之间由隧穿氧化层700隔开,所述两个存储位单元500、600分别具有第一控制栅510、第一浮栅520和第二控制栅610、第二浮栅620,所述两个控制栅510、610具有间隔地分别设置于所述两个浮栅520、620上。所述两个控制栅510、610为多晶硅控制栅,所述两个浮栅520、620为多晶硅浮栅,所述字线400为多晶硅选择栅,所述隧穿氧化层700为氧化硅层。两个存储位单元500、600共用一个字线400,组成一个存储单元,可以节约所述闪存所占的芯片面积,所述源极区域200和漏极区域300之间间隔有两个存储位单元和一个字线,间距较大,即使随着半导体制作工艺的不断发展,半导体器件的尺寸不断减小,也不容易发生短沟道效应。在该闪存的实际应用中,通过在字线400、两个控制栅510、610以及源极区域200和漏极区域300上施加不同的编程电压,可以将两个单位(2bits)的信息分别存入到第一浮栅520和第二浮栅620(闪存存储单元中存放电荷的部分)中,即分别对两个存储位单元500、600进行编程(program),则1个存储单元可存取2bits的数据,每个存储单元经写入后的可能状态:“00”,“10”,“01”,“11”,其中第一浮栅520和第二浮栅620都被编程时,对应的分栅式双位存储单元的状态为“11”,第一浮栅520和第二浮栅620都未被编程时,对应的分栅式双位存储单元的状态为“00”,如果仅仅是第一浮栅520或第二浮栅620被编程了,对应的分栅式双位存储单元的状态为“01”或“10”。显然这种分栅式双位存储单元闪存的存储器容量显著增加,因此正被广泛使用。然而,在分栅式双位存储单元闪存的编程方法中,由于两个逻辑页的数据被编程到一个物理页中,因此为执行编程操作而花费的时间是相对长的并且执行编程操作的过程是相对复杂的。此外,随着读取电流分布的数量的增加,读取电流的分布之间的宽度变窄,导致读取裕量(SensingMargin或read Margin)减少,这带来了关于准确读取数据的顾虑。
目前对2bits/cell FLASH存储器(即本文中指的图1A所述的分栅式双位存储单元闪存)包含两种存储单元:一种是数据单元,其电阻状态可变,用于存储二进制数据;另一种是参考单元,其电阻状态已知,用于读取数据时,给数据单元提供判决参考,因此目前2bits/cell FLASH存储器的读取(read)操作基本分为两种:
第一种是给数据单元和一个参考单元(Reference Cell,一般是选定一个存储单元作为参考单元,其电阻记为Rref)施加相同的电压,该电压将参考单元置于“11”状态,在参考存储单元中产生一个参考电流Iref,数据单元产生读操作电流,用电流比较器比较数据单元和参考单元产生的电流大小,从而判断出数据单元中存储的信息,本发明中的存储器即采用此方法
第二种是给数据单元和一个参考单元施加相同的恒定电流(Fixed Current),该电流将参考单元置于“11”状态,在参考存储单元中产生一个参考电压Vref,用电压比较器比较数据单元和参考单元产生的电压大小,从而判断出数据单元中存储的信息。
为了得到最佳的读取判决裕量(Sensing Margin,简写为SM,定义为参考单元电压或电流与数据单元电压或电流的差值的绝对值的最小值),理论上,参考单元产生的参考电流Iref或参考电压Vref信号应等于数据单元产生的高低两种电流或电压信号的算数平均值,从而提高读取准确性。但是,在实际情况中,由于工艺参数偏差的存在,数据单元产生的高低两种电流或电压信号以及参考单元参考电流Iref或参考电压Vref信号的实际值可能会偏离目标设计值,从而导致读取判决裕量降低。当读取判决裕量不能克服读取电路本身的输入失配时,则可能产生读取错误,影响存储器的数据读取可靠性。
发明内容
本发明的目的在于提供一种分栅式双位存储单元闪存的数据读取方法,能够避免参考单元在同一状态下参考电流的变化,保证读取判决裕量,提高分栅式双位存储单元闪存数据读取的可靠性,同时避免不同批次产品之间的编程性能差异造成的良率损失。
为解决上述问题,本发明提出一种分栅式双位存储单元闪存的数据读取方法,包括:
在所述分栅式双位存储单元闪存的每一行上选取多个分栅式双位存储单元作为每一行的参考单元,并将每个参考单元的状态统一设置为“10”,而每一行上剩余的分栅式双位存储单元作为数据单元,并已存储有数据;
对所读取的数据单元和与其同一行的参考单元施加一相同的读取电压;
将所述同一行上的每个参考单元在所述读取电压下产生的电流乘以固定比例作为参考电流;
将所读取的数据单元在所述读取电压下产生的电流与其同一行上的多个参考单元的参考电流的平均值进行比较;
根据所述比较的结果判断出所读取的数据单元中存储的数据。
进一步的,在所述分栅式双位存储单元闪存的每一行上选取若干个固定的分栅式双位存储单元作为每一行上的参考单元。
进一步的,每一行上的参考单元均匀分布。
进一步的,进行所述比较之前,为每个数据单元选取的用于计算所述平均值的参考单元的数量大于等于4。
进一步的,所述固定比例为10%~60%。
进一步的,所述分栅式双位存储单元闪存在出厂前的测试期间时,基于所述读取的数据单元的状态不同,所述固定比例为50%~60%;所述分栅式双位存储单元闪存在出厂后的使用阶段,所述固定比例为20%~30%。
进一步的,所述的数据读取方法还包括:在每次分栅式双位存储单元闪存按块擦除或者编程清除数据或者重新写入新的数据之后,均对每个所述参考单元进行重新编程,将其重新置为"10"状态。
与现有技术相比,本发明提供的分栅式双位存储单元闪存的数据读取方法,将传统的以参考单元处于“11”状态下的电流为读判断基准的方式,改为以参考单元处于“10”状态下的电流乘以固定比例后作为读判断基准,保证了读取判决裕量,提高了分栅式双位存储单元闪存数据读取的可靠性;并通过求取多个参考单元电流平均值的方式,避免了不同批次产品之间的编程性能差异而造成的良率损失;进一步地,在每次分栅式双位存储单元闪存按块擦除之后、进行新一轮的数据读取之前,均对各个参考单元进行重新编程,将其重新置为"10"状态,从而避免了参考单元“10”状态的电流值受按块擦除后的编程深度影响而发生变化的情况,进一步提高了分栅式双位存储单元闪存数据读取的可靠性。
附图说明
图1A是现有技术中分栅式双位存储单元闪存的某个双位存储单元的剖面结构示意图;
图1B和图1C是现有技术中分栅式双位存储单元闪存数据读取操作中的"10"状态和"11"状态下的电流变化与分布;
图2是本发明具体实施例的分栅式双位存储单元闪存的数据读取方法流程图;
图3是本发明具体实施例的分栅式双位存储单元闪存的数据读取方法中"10"状态和"11"状态下电流分布图。
具体实施方式
为使本发明的目的、特征更明显易懂,下面结合附图对本发明的具体实施方式作进一步的说明,然而,本发明可以用不同的形式实现,不应只是局限在所述的实施例。
请参考图1B,对于现有技术分栅式双位存储单元闪存而言,当其按照第一种方式进行数据读取时,选取参考单元处于“11”状态下的电流,作为参考电流用于其余存储单元的数据读取判断。缺点是“11”状态时的参考电流与编程(program)深度无关,而如果读取单元是“10”状态,读取电流大小受“0”一端存储位的编程深度影响很大。请参考图1C,从图1C中可以看出,由于每一批次货(lot)与货之间存在程度不一的工艺参数变异,造成集成电路元件产生元件参数的变化,由这些元件组成的flash存储器的编程性能的差异很大,而现有技术中的这种方法,在进行同样的读取操作时,以不反映编程性能差异的“11”状态作参考电流,来判断受编程性能影响较大的“10”状态存储单元,将导致编程深(program strong)的产品批次的良率损失(yield loss)(即图1C中表示为10处的实线超过10处较粗的虚线)。
本发明的核心思想在于,克服现有技术中的技术偏见,对参考单元状态直接选用现有技术中不被采纳的“10”状态,来实现闪存数据读取并保证数据读取的准确性和可靠性。
请参考图2,本发明提供一种分栅式双位存储单元闪存的数据读取方法,包括以下步骤:
S1,在所述分栅式双位存储单元闪存的每一行上选取多个分栅式双位存储单元作为每一行的参考单元,并将每个参考单元的状态设置为“10”,而每一行上剩余的分栅式双位存储单元作为数据单元,并已存储有数据;
S2,对所读取的数据单元和与其同一行的参考单元施加一相同的读取电压;
S3,将所述同一行上的每个参考单元在所述读取电压下产生的电流乘以固定比例作为参考电流;
S4,将所读取的数据单元在所述读取电压下产生的电流与其同一行上的多个参考单元的参考电流的平均值进行比较;
S5,根据所述比较的结果判断出所读取的数据单元中存储的数据。
S6,在每次分栅式双位存储单元闪存按块擦除或者编程清除数据或者重新写入新的数据之后,均对每个所述参考单元进行重新编程,将其重新置为"10"状态,以用作新一轮的数据读取的参考。
在步骤S1中,对2bits/cell FLASH存储器(即分栅式双位存储单元闪存)包含两种存储单元:一种是数据单元,其电阻状态可变,用于存储二进制数据;另一种是参考单元,其电阻状态已知,用于读取数据时,给数据单元提供判决参考。即所述分栅式双位存储单元闪存的每一行的存储单元均由参考单元和数据单元组成,数据单元中已被写入数据。因此步骤S1中,在所述分栅式双位存储单元闪存的每一行上选取多个分栅式双位存储单元作为每一行的参考单元,即为每一行上的数据单元设置相应的参考单元,以为后续对数据单元中的存储数据进行读取的过程提供判断参考。本实施例中,步骤S1在每一行上均匀设置了若干固定的参考单元,并通过编程(program)来将各个参考单元的阈值电压VT进行调整到标准值,以将其状态重新置为"10"状态。
在步骤S2中,对所读取的数据单元和与其同一行的参考单元施加一相同的读取电压,以用于读取该数据单元中存储的数据,此时参考单元的状态仍保持为“10”状态。
在步骤S3中,以参考单元在所述读取电压下产生的电流乘以一固定比例后的大小作为参考电流,以此为读取数据的判断基准,可以增大读取判决裕量Sensing Margin(SM),即增大了参考单元与所读取的数据单元在上述读取电压下产生的电流的差值,同时可以降低参考单元“10”状态的电流值受后来按块擦除后的编程深度影响,从而可以提高存储器数据读取的可靠性。其中,基于所述读取的数据单元的状态不同,所述固定比例可以适应性地设置为10%~60%。优选的,所述分栅式双位存储单元闪存在出厂前的测试期间时,基于所述读取的数据单元的状态不同,所述固定比例可以为50%~60%,由此使得数据读取的参考标准相对严格;而在所述分栅式双位存储单元闪存在出厂后的使用阶段,所述固定比例可以设置为20%~30%,从而保证闪存投入使用后的正常数据读取。
在步骤S4中,为了提高每个数据单元的数据读取时的准确性,可以为每个所读取的数据单元选取同行上的多个参考单元来作为参考,并求取这些参考单元的参考电流的平均值(以下称为“平均电流”),以此来消除不同批次产品之间的编程性能差异,从而获得较为准确的评判标准,由此可见,选取的参考单元数量越多,读判断越准确可靠,闪存良率也得到提高。因此步骤S3中各个参考单元的固定比例可以相同,也可以不同。在各个参考单元的固定比例相同时,步骤S3可以省略,步骤S4中可以先对各个数据单元的参考单元的电流取平均值,然后将该平均值乘以所述固定比例,以此获得各个数据单元电流的比较值—“平均电流”。步骤S4中为每个数据单元选取的参考单元的数量均大于等于4,以提高所述平均电流的精度。
步骤S5中,根据所述比较的结果,判断出从所读取的数据单元中读取出的数据具体是什么,即根据每个数据单元的电流与最终获得的平均电流之间的大小不同,可以判断出所读取的数据单元中存储的二进制数据为“00”、“01”、“10”还是“11”。
在步骤S6中,由于闪存可能通过按块擦除操作以及编程操作清除数据或者重新写入新的数据,因此后续需要进行数据重读,即需要进行新一轮的数据读取,此时需要通过编程(program)来将参考单元的阈值电压VT进行调整到标准值,并将其重新置为"10"状态,从而产生符合条件的参考电流。这种在新一轮的数据读取之前对参考单元状态恢复的操作,可以保证参考单元“10”状态的电流值不受按块擦除后的编程深度影响。
请参考图3和图1C,对比本发明的结果(图3)以及现有技术的结果(图1C),可以发现本发明的技术方案,在进行同样的读取操作时,以反映编程性能差异的“10”状态作参考电流,来判断不受编程性能差异影响的“11”状态存储单元和受编程性能影响较大的“10”状态存储单元,能够准确读取“11”状态存储单元中的数据(即图1C和图3中11处的线条排布基本一致),同时还能够保证“10”状态存储单元中的数据的准确读取,即编程深(programstrong)的产品批次的良率不会损失,即如图3中表示为10处的实线未超过10处较粗的虚线。因此本发明的技术方案能够保证分栅式双位存储单元闪存数据读取时的读取判决裕量,提高分栅式双位存储单元闪存的数据读取的可靠性。
显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (7)

1.一种分栅式双位存储单元闪存的数据读取方法,其特征在于,包括:
在所述分栅式双位存储单元闪存的每一行上选取多个分栅式双位存储单元作为每一行的参考单元,并将每个参考单元的状态统一设置为“10”,而每一行上剩余的分栅式双位存储单元作为数据单元,并已存储有数据;
对所读取的数据单元和与其同一行的参考单元施加一相同的读取电压;
将所述同一行上的每个参考单元在所述读取电压下产生的电流乘以固定比例作为参考电流;
将所读取的数据单元在所述读取电压下产生的电流与其同一行上的多个参考单元的参考电流的平均值进行比较;
根据所述比较的结果判断出所读取的数据单元中存储的数据。
2.如权利要求1所述的数据读取方法,其特征在于,在所述分栅式双位存储单元闪存的每一行上选取若干个固定的分栅式双位存储单元作为每一行上的参考单元。
3.如权利要求1所述的数据读取方法,其特征在于,每一行上的参考单元均匀分布。
4.如权利要求1或3所述的数据读取方法,其特征在于,进行所述比较之前,为每个数据单元选取的用于计算所述平均值的参考单元的数量大于等于4。
5.如权利要求1所述的数据读取方法,其特征在于,所述固定比例为10%~60%。
6.如权利要求1或5所述的数据读取方法,其特征在于,所述分栅式双位存储单元闪存在出厂前的测试期间时,基于所述读取的数据单元的状态不同,所述固定比例为10%~60%;所述分栅式双位存储单元闪存在出厂后的使用阶段,所述固定比例为20%~40%。
7.如权利要求1所述的数据读取方法,其特征在于,还包括:在每次分栅式双位存储单元闪存按块擦除或者编程清除数据或者重新写入新的数据之后,均对每个所述参考单元进行重新编程,将其重新置为"10"状态。
CN201510939651.1A 2015-12-15 2015-12-15 一种分栅式双位存储单元闪存的数据读取方法 Active CN105575432B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510939651.1A CN105575432B (zh) 2015-12-15 2015-12-15 一种分栅式双位存储单元闪存的数据读取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510939651.1A CN105575432B (zh) 2015-12-15 2015-12-15 一种分栅式双位存储单元闪存的数据读取方法

Publications (2)

Publication Number Publication Date
CN105575432A CN105575432A (zh) 2016-05-11
CN105575432B true CN105575432B (zh) 2019-08-23

Family

ID=55885476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510939651.1A Active CN105575432B (zh) 2015-12-15 2015-12-15 一种分栅式双位存储单元闪存的数据读取方法

Country Status (1)

Country Link
CN (1) CN105575432B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106205665A (zh) * 2016-07-27 2016-12-07 上海华虹宏力半导体制造有限公司 存储器读取电路参考电流的获取方法及装置、读取方法
CN110060713B (zh) * 2019-04-28 2021-10-22 中国科学院微电子研究所 一种工艺浮动容忍的读取时序生成装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101023495A (zh) * 2004-09-22 2007-08-22 斯班逊有限公司 多电平虚拟接地内存的读取方法
CN101178932A (zh) * 2006-11-06 2008-05-14 旺宏电子股份有限公司 读取双位存储单元的方法
CN103035290A (zh) * 2012-11-30 2013-04-10 珠海艾派克微电子有限公司 Eeprom电路、数据读取方法以及非易失性存储器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324374B2 (en) * 2003-06-20 2008-01-29 Spansion Llc Memory with a core-based virtual ground and dynamic reference sensing scheme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101023495A (zh) * 2004-09-22 2007-08-22 斯班逊有限公司 多电平虚拟接地内存的读取方法
CN101178932A (zh) * 2006-11-06 2008-05-14 旺宏电子股份有限公司 读取双位存储单元的方法
CN103035290A (zh) * 2012-11-30 2013-04-10 珠海艾派克微电子有限公司 Eeprom电路、数据读取方法以及非易失性存储器

Also Published As

Publication number Publication date
CN105575432A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
US11721399B2 (en) Memory system with dynamic calibration using a trim management mechanism
US9361991B1 (en) Efficient scanning of nonvolatile memory blocks
US9711231B1 (en) System solution for first read issue using time dependent read voltages
US7643348B2 (en) Predictive programming in non-volatile memory
KR101905266B1 (ko) 데이터 보유 충전 손실 센서
US7551483B2 (en) Non-volatile memory with predictive programming
US9411669B2 (en) Selective sampling of data stored in nonvolatile memory
US9484098B1 (en) Smart reread in nonvolatile memory
US10892025B2 (en) Soft erase and programming of nonvolatile memory
JP2010040165A (ja) メモリ装置
US9384845B2 (en) Partial erase of nonvolatile memory blocks
US9401216B1 (en) Adaptive operation of 3D NAND memory
US9583207B2 (en) Adaptive data shaping in nonvolatile memory
US20220351787A1 (en) Memory device including dynamic programming voltage
CN105575432B (zh) 一种分栅式双位存储单元闪存的数据读取方法
US10504587B2 (en) Method and system for compensating for floating gate-to-floating gate (fg-fg) interference in flash memory cell read operations
US9442842B2 (en) Memory system performance configuration
TWI719653B (zh) 用於判定記憶體單元之預期資料使用期限之裝置及方法
US11189351B2 (en) Peak and average current reduction for sub block memory operation
US11894081B2 (en) EP cycling dependent asymmetric/symmetric VPASS conversion in non-volatile memory structures
US11837297B2 (en) Smart erase verify in non-volatile memory structures
US20230335200A1 (en) Auto-calibrated corrective read
US20230335201A1 (en) Conditional valley tracking during corrective reads
US20230410914A1 (en) Programming delay scheme for in a memory sub-system based on memory reliability
US20230343401A1 (en) Nonvolatile memory device, memory system, and programming method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant