CN105542131B - 含硼共轭高分子及其制备方法与应用 - Google Patents

含硼共轭高分子及其制备方法与应用 Download PDF

Info

Publication number
CN105542131B
CN105542131B CN201610064574.4A CN201610064574A CN105542131B CN 105542131 B CN105542131 B CN 105542131B CN 201610064574 A CN201610064574 A CN 201610064574A CN 105542131 B CN105542131 B CN 105542131B
Authority
CN
China
Prior art keywords
boracic
conjugated polymer
polymer
preparation
bnbp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610064574.4A
Other languages
English (en)
Other versions
CN105542131A (zh
Inventor
刘俊
窦传冬
龙晓静
王利祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN201610064574.4A priority Critical patent/CN105542131B/zh
Publication of CN105542131A publication Critical patent/CN105542131A/zh
Application granted granted Critical
Publication of CN105542131B publication Critical patent/CN105542131B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/125Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one oxygen atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3242Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more oxygen atoms as the only heteroatom, e.g. benzofuran
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3244Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing only one kind of heteroatoms other than N, O, S
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3422Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms conjugated, e.g. PPV-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

含硼共轭高分子及其制备方法与应用,属于高分子光伏电池技术领域。解决了现有技术中高分子光伏电池的能量转换效率较低的技术问题。本发明的含硼共轭高分子,具有如式(I)所示的结构,该共轭高分子的BNBP单元和桥联单元(‑Ar‑)含有多个氟原子,而氟原子具有很强的拉电子性质,对LUMO能级的影响很大,而对HOMO能级的影响较小,因此整体上高分子的带隙变窄,吸收光谱红移,提高了光吸收能力,利于光伏电池的光富集,同时,高分子主链上的氟原子会提高高分子的结晶能力,使高分子具有较强的结晶性质,进一步有利于实现材料的高电子迁移率。本发明的含硼共轭高分子适用于作为高性能高分子光伏电池的受体材料。

Description

含硼共轭高分子及其制备方法与应用
技术领域
本发明属于高分子光伏电池技术领域,具体涉及一种含硼共轭高分子及其制备方法与应用。
背景技术
光伏电池是能够有效吸收太阳能,并将其转化成电能的器件。具有可靠性高﹐寿命长﹐转换效率高等优点。光伏电池根据所用材料的不同,主要可分为:硅光伏电池(以硅为基体材料的光伏电池)、化合物半导体光伏电池(由两种或两种以上的元素组成的具有半导体特性的化合物制成的电池)、有机半导体光伏电池(用含有一定碳碳键且导电能力介于金属和绝缘体之间的半导体材料(分子晶体、电荷转移络合物、高分子)制成的电池)。其中,高分子光伏电池具有柔性、成本低、重量轻等突出优点,在建筑用绿色能源、汽车能源等方面具有广阔的应用前景,是近来国内外学术界和产业界的研究热点。
光伏电池若想实际使用,需要具有较高的光电转换效率。高分子光伏电池中,活性层的给体材料和受体材料很大程度决定了光伏电池的器件性能,因此设计合成优秀的活性层材料是实现器件性能不断突破的核心方法之一。现有技术中,常用的光伏电池一般是以共轭高分子为给体,以富勒烯衍生物(PCBM)为受体的共混膜。这类光伏电池具一定的能量转换效率,但是,由于富勒烯衍生物存在能级不可调控、吸收光谱窄以及制备成本高等技术问题,限制了光伏电池的性能提升和实际应用。如以聚苯撑衍生物(MEH-PPV)作为给体,PC61BM作为受体制备的有机光伏电池,在430nm单色光照射下能量转换效率可达2.9%,但是器件中PC61BM的吸收光谱在紫外区域,并且LUMO/HOMO能级分别在-4.0eV/-6.0eV左右,不可调控,限制了器件短路电流和开路电压的继续提升。
为解决这一问题,近些年高分子受体材料倍受人们关注,其中,含苝二酰亚胺(PDI)或萘二酰亚胺(NDI)单元的高分子作为受体材料具有宽吸收光谱、电子结构和能级可调、聚集态结构可调的优点,但是这类受体材料的光电转换效率仍与基于富勒烯体系的光伏电池的光电转换效率有一段差距。
发明内容
本发明的目的是解决现有技术中高分子光伏电池的能量转换效率较低的技术问题,提供一种含硼共轭高分子及其制备方法与应用。
本发明的含硼共轭高分子,具有如式(I)所示的结构:
式(I)中,n为2~100的整数;
-R1为以下结构中的一种:
-R1的结构中,m为1~24的整数;
-Ar-为以下结构中的一种:
上述含硼共轭高分子的制备方法如下:
在惰性气氛保护下,将BNBP的双溴单体和双三甲基锡单体溶解在有机溶剂中,再加入三(二亚苄基丙酮)二钯和三(邻甲基)苯基磷,在避光和加热回流条件下发生Stille聚合反应,Stille聚合反应结束后,加入封端剂进行封端,提纯,得到含硼共轭高分子;
所述双溴BNBP单体的结构式为
所述双三甲基锡单体的结构式为
优选的,所述有机溶剂为甲苯。
优选的,所述BNBP的双溴单体、双三甲基锡单体、三(二亚苄基丙酮)二钯和三(邻甲基)苯基磷的物质的量比1:1:0.02:0.16。
优选的,所述混合溶液中BNBP的双溴单体和双三甲基锡单体的浓度分别为0.005~0.1M。
优选的,所述Stille聚合反应的反应温度为110~120℃,反应时间为24~48h。
上述含硼共轭高分子能够作为高分子太阳能电池的受体材料应用。
与现有技术相比,本发明的有益效果是:
1、本发明的含硼共轭高分子的共轭主链含有两个单元,分别为BNBP单元和桥联单元(-Ar-)。因为BNBP单元和桥联单元都含有多个氟原子,而氟原子具有很强的拉电子性质,因此此类含硼共轭高分子具有低的LUMO能级,在-3.6eV到-3.90eV范围,与富勒烯衍生物的LUMO能级相当,适用于作为光伏电池的受体材料;此类含硼共轭高分子,氟原子对其LUMO能级的影响很大,而对HOMO能级的影响较小,因此整体上高分子的带隙变窄,导致吸收光谱红移,因此提高了材料的光吸收能力,利于光伏电池的光富集;高分子主链上的氟原子会提高高分子的结晶能力,此类含硼共轭高分子具有较强的结晶性质,有利于实现材料的高电子迁移率。经实验检测,本发明的含硼共轭高分子具有较低的LUMO能级,宽吸收光谱和高电子迁移率,适用于作为受体材料制备高性能高分子光伏电池。
2、本发明的含硼共轭高分子的制备方法简单,提纯工艺便捷,有利于高分子光伏电池器件的工业化生产。
3、本发明的含硼共轭高分子作为受体材料制备的光伏电池具有较高的光电转化效率,经实验检测,光电转化效率在6.0%以上。且具有较高的短路电流、开路电压和器件稳定性。
附图说明
图1为实施例1的含硼共轭高分子P-BNBP-FFBT的紫外可见吸收光谱;
图2为实施例1的含硼共轭高分子P-BNBP-FFBT的电化学测试曲线;
图3为实施例1的含硼共轭高分子P-BNBP-FFBT的空间电荷限制电流测试曲线和电子迁移率;
图4为实施例14的高分子光伏电池器件的I-V曲线;
图5为实施例14的高分子光伏电池器件的EQE曲线。
具体实施方式
为了进一步说明本发明,下面结合具体实施方式对本发明的优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点而不是对本发明专利要求的限制。
本发明的基于BNBP的共轭高分子,具有两个共聚单元,分别是双硼氮桥联联吡啶(BNBP)和桥联单元(-Ar-),具有如式(I)所示的结构:
式(I)中,n为2~100的整数;
-R1为以下结构中的一种:
其中,CmH2m+1表示不同长度烷基链,可以为直链也可以含有支链,m为1~24的整数;
桥联单元(-Ar-)的结构如上所示,此处不再赘述。本发明中,通过改变-Ar-的结构,能够有效的调节共轭高分子的电子结构,进而得到具有较低的LUMO能级和高结晶性的受体材料。经实验检测,本发明的含硼共轭高分子具有较低的LUMO能级,在-3.60eV到-3.90eV范围,与富勒烯衍生物的LUMO能级相当,并且在聚集态具有较强的结晶性和高电子迁移率,适用于作为受体材料制备高性能高分子光伏电池。
本发明的共轭高分子的封端基团依据封端剂的不同而不同,按照本领域技术人员常规选择即可,没有特殊限制,因为只要共轭高分子具有如式(I)所示的结构,就能解决本发明的技术问题,并取得相应效果。如采用苯硼酸和溴苯,则高分子由苯基封端,用噻吩硼酸和溴代噻吩,则高分子由噻吩封端等。
上述含硼共轭高分子通过Stille-型反应制备,作为优选方案,该制备方法可以为:
在惰性气氛保护下(一般采用氩气),将BNBP的双溴单体、双三甲基锡单体、三(二亚苄基丙酮)二钯和三(邻甲基)苯基磷按物质的量比1:1:0.02:0.16溶解在甲苯溶液中,BNBP的双溴单体和双三甲基锡单体的浓度分别可以为0.005~0.1M,避光条件下,以110~120℃回流24~48h,发生Stille聚合反应,加入封端剂封端,封端剂一般采用苯硼酸和溴苯,封端后提纯,得到共轭高分子;
反应式如下:
上述方法制备的共轭高分子的提纯方法可以为:将反应产物体系冷却到室温,溶入氯仿中,使用水洗,有机相干燥,除去有机溶剂后,将剩余的溶液滴入纯净的乙腈溶剂中,得到析出的固体。然后使用索氏提取器将析出的固体依次用丙酮、正己烷、四氢呋喃溶剂洗去低聚物和催化剂,然后用氯仿抽提,旋蒸除去大部分有机溶剂,最后将粘稠溶液在乙腈中沉降,得到共轭高分子。
本发明的共轭高分子能够作为高分子光伏电池的受体材料应用,其在高分子光伏电池的应用方法没有特殊限制,依照本领域的常规受体材料的使用方法使用即可。通常,光伏电池的结构从下至上依次为导电层、空穴传输层、光敏层、电子传输层和金属电极;导电层的材料可以为ITO、FTO或者AZO,厚度为50nm~200nm,空穴传输层的材料可以为PEDOT:PSS,厚度可以为20nm~60nm;光敏层的材料为现有的给体材料和本发明的受体材料的混合,混合方式按照常规操作即可,可以采用物质的量比1:1,厚度可以为100nm~150nm;电子传输层的材料可以为LiF,厚度可以为15nm~20nm;金属电极的材料可以为Al,厚度可以为100nm~200nm。
以下结合实施例进一步说明本发明。
实施例1
BNBP-FFBT高分子,结构式如下所示(结构式中,省略封端基团):
制备方法为:向经过烘烤的干净的聚合瓶中加入双溴代BNBP(135.6mg,0.14mmol)、3,3’-二氟-2,2’-联噻吩双锡盐(71.6mg,0.14mmol)、三(二亚苄基丙酮)二钯(2.8mg,0.003mmol)和三(邻甲基)苯基磷(6.6mg,0.022mmol),然后抽真空、通氩气对体系抽换气多次,避光状态下加入蒸馏的甲苯溶剂(60mL),115℃回流48h后,然后先加入苯硼酸(100mg,0.82mmol)继续回流3h,再加入溴苯(200mg,1.28mmol)回流3h。将反应体系冷却到室温,溶入100毫升氯仿中,水洗,干燥,除去大部分溶剂,剩余的溶液滴在乙腈中,聚合物析出,将析出物用索氏提取器依次用丙酮、正己烷、四氢呋喃洗去小分子和催化剂,最后用氯苯将聚合物提取出来。测得产率为:57%。
对制备的聚合物进行元素分析,结果如下:计算值为C,67.28;H,8.85;B,2.02;F,10.64;N,5.23;S,5.99。实验值为C,67.63;H,8.94;N,5.37;S,6.04。
对制备的聚合物进行凝胶渗透色谱(GPC,三氯苯,聚苯乙烯做标准,150℃)分析,得到:Mn=116000,PDI=2.6。
对实施例1制备的高分子P-BNBP-FFBT进行紫外可见吸收光谱分析、电化学测试和空间电荷限制电流测试,测试结果分别如图1、图2和图3所示。从图1和图2可以看出,高分子P-BNBP-FFBT的薄膜呈现宽的紫外可见光吸收光谱,吸收边带到660nm;高分子P-BNBP-FFBT的LUMO/HOMO能级为-3.62/-5.87eV,说明本发明的聚合物可以作为受体材料;从图3可以得到高分子P-BNBP-FFBT的膜态电子迁移率为2.4×10-4cm2V-1S-1,说明本发明的高分子作为受体材料可能会得到高性能器件。
实施例2
BNBP-BFT高分子,结构式如下所示(结构式中,省略封端基团):
制备方法为:在经过烘烤的干净的聚合瓶中加入双溴代BNBP(150mg,0.17mmol)、3,4-二氟噻吩双锡盐(75.25mg,0.17mmol)、三(二亚苄基茚丙酮)二钯(3.5mg,0.003mmol)和三(邻甲基)苯基磷(8.3mg,0.027mmol),然后抽真空、通氩气对体系抽换气多次,避光状态下加入蒸馏的甲苯溶剂(10mL),115℃回流48h后,先加入苯硼酸(100mg,0.82mmol)回流3h,再加入溴苯(200mg,1.28mmol)回流3h。将反应体系冷却到室温,溶入100毫升氯仿中,水洗,干燥,除去大部分溶剂,剩余的溶液滴在乙腈中,聚合物析出,将析出物用索氏提取器依次用丙酮、正己烷、四氢呋喃洗去小分子和催化剂,最后用氯仿将聚合物提取出来。聚合产物BNBP-BFT产量:121mg(产率82%)。
对制备的聚合物进行元素分析,结果如下:计算值为C,65.25;H,8.33;B,2.55;F,13.46;N,6.62;S,3.79。实验值为C,65.54;H,8.53;N,6.79;S,4.01。
对制备的聚合物进行凝胶渗透色谱(GPC,三氯苯,聚苯乙烯做标准,150℃)分析,得到:Mn=36600,PDI=1.96。
实施例3
BNBPP-2BFT高分子,结构式如下所示(结构式中,省略封端基团):
制备方法为:在经过烘烤的干净的聚合瓶中加入双溴代BNBP(180mg,0.17mmol)、二氟代联噻吩双锡盐(88mg,0.17mmol)、三(二亚苄基茚丙酮)二钯(3.5mg,0.003mmol)和三(邻甲基)苯基磷(8.3mg,0.027mmol),对体系进行抽换气多次,避光状态下加入蒸馏的甲苯溶剂(9mL),115℃回流48h后,先加入苯硼酸(100mg,0.82mmol)回流3h,再加入溴苯(200mg,1.28mmol)回流3h。将反应体系冷却到室温,溶入100毫升氯仿中,水洗,干燥,除去大部分溶剂,剩余的溶液滴在乙腈中,聚合物析出,将析出物用索氏提取器依次用丙酮、正己烷、四氢呋喃洗去小分子和催化剂,最后用氯仿将聚合物提取出来。聚合产物BNBP-2BFT产量:171.6mg(产率82%)。
对制备的聚合物进行元素分析,结果如下:计算值为C,68.28;H,7.86;B,1.76;F,12.34;N,4.55;S,5.21。实验值为C,69.02;H,7.99;N,4.15;S,5.01。
对制备的聚合物进行凝胶渗透色谱(GPC,三氯苯,聚苯乙烯做标准,150℃):Mn=45600,PDI=2.05。
实施例4
BNBPP-FFVBT高分子,结构式如下所示(结构式中,省略封端基团):
制备方法为:在经过烘烤的干净的聚合瓶中加入二氟代噻吩撑乙烯(75.7mg,0.13mmol)、双溴代BNBP(148mg,0.13mmol)、三(二亚苄基茚丙酮)二钯(3.1mg,0.003mmol)和三(邻甲基)苯基磷(6.3mg,0.021mmol),然后对体系抽换气多次,避光状态下加入蒸馏的甲苯溶剂(7mL),115℃回流48h后,先加入苯硼酸(100mg,0.82mmol)回流3h,再加入溴苯(200mg,1.28mmol)回流3h。将反应体系冷却到室温,溶入100毫升氯仿中,水洗,干燥,除去大部分溶剂,剩余的溶液滴在乙腈中,聚合物析出,将析出物用索氏提取器依次用丙酮、正己烷、四氢呋喃洗去小分子和催化剂,最后用氯苯将聚合物提取出来。聚合产物BNBP-FFVBT产量:126mg(产率77%)。
对制备的聚合物进行元素分析,结果如下:计算值为C,68.78;H,7.86;B,1.72;F,12.09;N,4.46;O,5.10。实验值为C,69.03;H,8.01;N,4.70。
对制备的聚合物进行凝胶渗透色谱(GPC,三氯苯,聚苯乙烯做标准,150℃)分析,得到:Mn=82000,PDI=1.97。
实施例5
BNBPT-FFTT高分子,结构式如下所示(结构式中,省略封端基团):
BNBP-FFTT聚合物的制备与实施例1一样。只是使用双三甲基锡含氟并噻吩单体替换3,3’-二氟-2,2’-联噻吩双锡盐,使用烷基噻吩取代的BNBP单元。聚合产物BNBP-FFTT产量:120mg(85%)。
对制备的聚合物进行元素分析,结果如下:计算值为C,65.07;H,8.75;B,1.83;F,9.65;N,4.74;S,10.86。实验值为C,65.17;H,8.02;N,4.91;S,11.02。
对制备的聚合物进行凝胶渗透色谱(GPC,三氯苯,聚苯乙烯做标准,150℃)分析,得到:Mn=28000,PDI=1.45。
实施例6
BNBPT-FFBSe高分子,结构式如下所示(结构式中,省略封端基团):
BNBP-FFBSe聚合物的制备与实施例1一样。只是使用双三甲基锡含氟联硒酚单体替换3,3’-二氟-2,2’-联噻吩双锡盐,使用烷基噻吩取代的BNBP单元。聚合产物BNBP-FFBSe产量:153mg(产率90%)。
对制备的聚合物进行元素分析,结果如下:计算值为C,60.92;H,7.28;B,1.66;F,8.76;N,4.31;S,4.93;Se,12.14。实验值为C,60.85;H,7.58;N,4.33;S,5.05。
对制备的聚合物进行凝胶渗透色谱(GPC,三氯苯,聚苯乙烯做标准,150℃)分析,得到:Mn=95000,PDI=2.33。
实施例7
BNBPM-TF高分子,结构式如下所示(结构式中,省略封端基团):
BNBPM-TF聚合物的制备与实施例1一样。只是使用氟苯并噻吩双锡盐替换3,3’-二氟-2,2’-联噻吩双锡盐。聚合产物BNBPM-TF产量:148mg(88%)。
对制备的聚合物进行元素分析,结果如下:计算值为C,49.36;H,3.91;N,12.79;S,7.32。实验值为C,50.50;H,3.99;N,13.01;S,7.55。
对制备的聚合物进行凝胶渗透色谱(GPC,三氯苯,聚苯乙烯做标准,150℃)分析,得到:Mn=123000,PDI=3.66。
实施例8
BNBPB-FBBT高分子,结构式如下所示(结构式中,省略封端基团):
BNBPB-FBBT聚合物的制备与实施例1一样。只是使用1,4’-二氟-3,6’-二噻吩双锡盐替换3,3’-二氟-2,2’-联噻吩双锡盐,使用烷氧基苯取代的BNBP单元。聚合产物BNBPB-FBBT产量:172mg(88%)。
对制备的聚合物进行元素分析,结果如下:计算值为C,73.65;H,9.87;N,2.89;S,3.30。实验值为C,73.22;H,9.99;N,2.98;S,3.59。
对制备的聚合物进行凝胶渗透色谱(GPC,三氯苯,聚苯乙烯做标准,150℃)分析,得到:Mn=181000,PDI=3.11。
实施例9
BNBPT-4FSe高分子,结构式如下所示(结构式中,省略封端基团):
BNBPT-4FSe聚合物的制备与实施例1一样。只是使用1,2,4,5-四氟-3,6’-二硒吩双锡盐替换3,3’-二氟-2,2’-联噻吩双锡盐,使用烷氧基噻吩取代的BNBP单元。聚合产物BNBPT-4FSe产量:159mg(77%)。
对制备的聚合物进行元素分析,结果如下:计算值为C,68.38;H,9.06;N,2.80;S,3.20。实验值为C,68.98;H,9.33;N,3.03;S,3.36。
对制备的聚合物进行凝胶渗透色谱(GPC,三氯苯,聚苯乙烯做标准,150℃)分析,得到:Mn=106500,PDI=2.95。
实施例10
BNBPT-2FTT高分子,结构式如下所示(结构式中,省略封端基团):
BNBPT-2FTT聚合物的制备与实施例1一样。只是使用E-1,2二氟,1,2二并噻吩双锡盐替换3,3’-二氟-2,2’-联噻吩双锡盐,使用烷基噻吩取代的BNBP单元。聚合产物BNBPT-2FTT产量:171mg(84%)。
对制备的聚合物进行元素分析,结果如下:计算值为C,70.81;H,9.51;N,2.87;S,9.86。实验值为C,71.03;H,10.05;N,3.16;S,10.78。
对制备的聚合物进行凝胶渗透色谱(GPC,三氯苯,聚苯乙烯做标准,150℃)分析,得到:Mn=73100,PDI=1.88。
实施例11
BNBPB-2F2B高分子,结构式如下所示(结构式中,省略封端基团):
BNBPB-2F2B聚合物的制备与实施例1一样。只是使用E-1,2二氟,1,2二苯基双锡盐替换3,3’-二氟-2,2’-联噻吩双锡盐,使用烷氧基苯取代的BNBP单元。聚合产物BNBPB-2F2B产量:141mg(73%)。
对制备的聚合物进行元素分析,结果如下:计算值为C,73.81;H,8.58;N,4.41。实验值为C,74.04;H,8.59;N,4.88。
对制备的聚合物进行凝胶渗透色谱(GPC,三氯苯,聚苯乙烯做标准,150℃)分析,得到:Mn=100100,PDI=3.89。
实施例12
BNBPB-2F2O高分子,结构式如下所示(结构式中,省略封端基团):
BNBPB-2F2O聚合物的制备与实施例1一样。只是使用3,3’-二氟,2,2’-联呋喃双锡盐替换3,3’-二氟-2,2’-联噻吩双锡盐,使用烷氧基苯取代的BNBP单元。聚合产物BNBPB-2F2O产量:128mg(69%)。
对制备的聚合物进行元素分析,结果如下:计算值为C,71.03;H,8.54;N,4.48。实验值为C,71.24;H,8.86;N,4.39。
对制备的聚合物进行凝胶渗透色谱(GPC,三氯苯,聚苯乙烯做标准,150℃)分析,得到:Mn=17800,PDI=2.66。
实施例13
BNBPB-2F2BT高分子,结构式如下所示(结构式中,省略封端基团):
BNBPB-2F2BT聚合物的制备与实施例1一样。只是使用氟苯并噻吩双锡盐替换3,3’-二氟-2,2’-联噻吩双锡盐,使用烷氧基噻吩取代的BNBP单元。聚合产物BNBPB-2F2BT产量:181mg(90%)。
对制备的聚合物进行元素分析,结果如下:计算值为C,73.89;H,9.71;N,2.87;S,3.29。实验值为C,74.15;H,10.06;N,2.99;S,3.05。
对制备的聚合物进行凝胶渗透色谱(GPC,三氯苯,聚苯乙烯做标准,150℃)分析,得到:Mn=25400,PDI=1.55。
实施例14
含硼共轭高分子作为高分子光伏电池的受体材料的应用:以PTB7-Th为给体材料,以实施例1的聚合物P-BNBP-FFBT作为受体材料,按照给体材料与受体材料的物质的量比1:1,制备高分子光伏电池器件,光伏电池器件的结构为ITO(100nm)/PEDOT:PSS(50nm)/PTB7-Th:P-BNBP-FFBT(100nm)/LiF(20nm)/Al(150nm)。
对实施例14的高分子光伏电池器件进行性能检测,图4为该高分子光伏电池器件的I-V曲线,图5为该高分子光伏电池器件的EQE曲线,从图4和图5可以看出,使用本发明的共轭高分子作为受体材料,PTB7-Th作为给体材料制备的器件效率为6.3%,本发明的含硼共轭高分子可以用做构建高性能器件的受体材料。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (7)

1.含硼共轭高分子,其特征在于,具有如式(I)所示的结构:
式(I)中,n为2~100的整数;
-R1为以下结构中的一种:
-R1的结构中,m为1~24的整数;
-Ar-为以下结构中的一种:
所述含硼共轭高分子LUMO能级在-3.6eV到-3.90eV范围,紫外可见光吸收光谱吸收边带到660nm,光电转化效率在6.0%以上。
2.权利要求1所述的含硼共轭高分子的制备方法,其特征在于,在惰性气氛保护下,将BNBP的双溴单体和双三甲基锡单体溶解在有机溶剂中,再加入三(二亚苄基丙酮)二钯和三(邻甲基)苯基磷,在避光和加热回流条件下发生Stille聚合反应,Stille聚合反应结束后,加入封端剂进行封端,提纯,得到含硼共轭高分子;
所述BNBP的双溴单体的结构式为
所述双三甲基锡单体的结构式为
3.根据权利要求2所述的含硼共轭高分子的制备方法,其特征在于,所述有机溶剂为甲苯。
4.根据权利要求2所述的含硼共轭高分子的制备方法,其特征在于,所述BNBP的双溴单体、双三甲基锡单体、三(二亚苄基丙酮)二钯和三(邻甲基)苯基磷的物质的量比1:1:0.02:0.16。
5.根据权利要求2所述的含硼共轭高分子的制备方法,其特征在于,所述混合溶液中BNBP的双溴单体和双三甲基锡单体的浓度分别为0.005~0.1M。
6.根据权利要求2所述的含硼共轭高分子的制备方法,其特征在于,所述Stille聚合反应的反应温度为110~120℃,反应时间为24~48h。
7.权利要求1所述的含硼共轭高分子作为高分子太阳能电池的受体材料应用。
CN201610064574.4A 2016-01-29 2016-01-29 含硼共轭高分子及其制备方法与应用 Active CN105542131B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610064574.4A CN105542131B (zh) 2016-01-29 2016-01-29 含硼共轭高分子及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610064574.4A CN105542131B (zh) 2016-01-29 2016-01-29 含硼共轭高分子及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN105542131A CN105542131A (zh) 2016-05-04
CN105542131B true CN105542131B (zh) 2018-06-19

Family

ID=55821717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610064574.4A Active CN105542131B (zh) 2016-01-29 2016-01-29 含硼共轭高分子及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN105542131B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107482083A (zh) * 2017-07-25 2017-12-15 王勇 可透光薄膜光伏电池的使用方法
CN107778457A (zh) * 2017-09-16 2018-03-09 华南理工大学 基于连呋喃的n型共轭聚合物及其在有机光电器件中的应用
CN110229316B (zh) * 2019-06-25 2021-01-05 中国科学院长春应用化学研究所 含硼氮配位键的高分子化合物及其制备方法与应用
GB2593878B (en) 2020-03-31 2024-02-21 Sumitomo Chemical Co Light-emitting marker
CN112736258B (zh) * 2020-12-25 2022-05-24 青岛大学 一种基于分子内或分子间非对称有机分子电催化剂的制备方法及其在锌空电池中的应用
CN113773338B (zh) * 2021-07-14 2022-05-13 吉林大学 一种含硼有机自由基化合物及其制备方法与应用
CN114262426A (zh) * 2021-12-02 2022-04-01 中国科学院重庆绿色智能技术研究院 一种π桥氟取代的硒化聚合物受体材料及其制备与应用
CN114560999B (zh) * 2022-04-18 2024-03-12 中国科学院长春应用化学研究所 基于硼氮配位键的n-型高分子化合物及其制备方法与应用
CN114716651B (zh) * 2022-04-18 2024-01-30 中国科学院长春应用化学研究所 一种α-位乙烯基桥联的BODIPY类共轭高分子及其制备方法
CN114685763B (zh) * 2022-05-06 2023-08-22 青岛大学 一种基于三芳基硼的共轭高分子及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534868A (zh) * 2011-03-10 2014-01-22 国立大学法人京都大学 有机色素材料及使用其的色素敏化型太阳能电池
CN104610329A (zh) * 2015-02-04 2015-05-13 中国科学院长春应用化学研究所 双硼氮桥联联吡啶及用其制备的有机/高分子材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534868A (zh) * 2011-03-10 2014-01-22 国立大学法人京都大学 有机色素材料及使用其的色素敏化型太阳能电池
CN104610329A (zh) * 2015-02-04 2015-05-13 中国科学院长春应用化学研究所 双硼氮桥联联吡啶及用其制备的有机/高分子材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
An Electron-Deficient Building Block Based on the B←N Unit: An Electron Acceptor for All‐Polymer Solar Cells;Dou C, et al;《Angewandte Chemie》;20151209;第128卷(第4期);第1458-1462页 *

Also Published As

Publication number Publication date
CN105542131A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN105542131B (zh) 含硼共轭高分子及其制备方法与应用
Huo et al. Organic solar cells based on a 2D benzo [1, 2‐b: 4, 5‐b′] difuran‐conjugated polymer with high‐power conversion efficiency
Coffin et al. Streamlined microwave-assisted preparation of narrow-bandgap conjugated polymers for high-performance bulk heterojunction solar cells
Sommer et al. Microphase‐Separated Donor–Acceptor Diblock Copolymers: Influence of HOMO Energy Levels and Morphology on Polymer Solar Cells
Jung et al. The effect of different chalcogenophenes in isoindigo-based conjugated copolymers on photovoltaic properties
CN102504212B (zh) 可交联的含氟苯封端的基于苯并二噻吩和双噻吩基取代的二氟苯并噻二唑的共轭聚合物及其在太阳能电池中的应用
Song et al. Conjugated polymers with broad absorption: synthesis and application in polymer solar cells
CN110229316B (zh) 含硼氮配位键的高分子化合物及其制备方法与应用
Helgesen et al. Thermally reactive Thiazolo [5, 4-d] thiazole based copolymers for high photochemical stability in polymer solar cells
CN105367561B (zh) 一种吲哚衍生物及其共轭聚合物的制备和用途
CN105295010A (zh) 基于双硼氮桥联联吡啶的共轭聚合物及其制备方法与应用
Chen et al. A polymer electron donor based on isoindigo units bearing branched oligo (ethylene glycol) side chains for polymer solar cells
CN109776766B (zh) 一种噻吩[3, 4-f]异苯并呋喃-4,8-二酮基聚合物、其制备方法及应用
Huang et al. Wide band gap copolymers based on phthalimide: synthesis, characterization, and photovoltaic properties with 3.70% efficiency
Fan et al. Improved photovoltaic performance of a 2D-conjugated benzodithiophene-based polymer by the side chain engineering of quinoxaline
Fan et al. Enhancing the photovoltaic properties of low bandgap terpolymers based on benzodithiophene and phenanthrophenazine by introducing different second acceptor units
Wang et al. Orthogonal solubility in fully conjugated donor-acceptor block copolymers: compatibilizers for polymer/fullerene bulk-heterojunction solar cells
CN101580567B (zh) 主链含有噻吩并[3,2-b]噻吩乙烯的共轭聚合物及其制备方法和用途
CN102936332B (zh) 侧链带有树枝状咔唑基团的窄带隙共轭聚合物材料、制备方法和应用
Zhu et al. Triisopropylsilylethynyl substituted benzodithiophene copolymers: synthesis, properties and photovoltaic characterization
CN107674183B (zh) 含萘[1,2-c;5,6-c]二[1,2,5]噻二唑的共轭聚合物及制备方法和应用
Liu et al. Asymmetric 2D benzodithiophene and quinoxaline copolymer for photovoltaic applications
Lin et al. Enhanced photovoltaic performance of donor-acceptor type polymer donors by employing asymmetric π bridges
CN102391479B (zh) 功能基封端的基于n-取代咔唑和氟代苯并噻二唑共轭聚合物及制备和应用
Tsuchiya et al. Synthesis and characterization of poly (3-hexylthiophene)-block-poly (dimethylsiloxane) for photovoltaic application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant