CN105541333B - 一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法 - Google Patents

一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法 Download PDF

Info

Publication number
CN105541333B
CN105541333B CN201510907747.XA CN201510907747A CN105541333B CN 105541333 B CN105541333 B CN 105541333B CN 201510907747 A CN201510907747 A CN 201510907747A CN 105541333 B CN105541333 B CN 105541333B
Authority
CN
China
Prior art keywords
porous ceramics
mixture
temperature
carborundum porous
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510907747.XA
Other languages
English (en)
Other versions
CN105541333A (zh
Inventor
邓义群
沈针
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN201510907747.XA priority Critical patent/CN105541333B/zh
Publication of CN105541333A publication Critical patent/CN105541333A/zh
Application granted granted Critical
Publication of CN105541333B publication Critical patent/CN105541333B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/068Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法,通过将Al2(SO4)3、Na2SO4和B2O3原料混合球磨后得到混合料A;再将混合料A与SiC粉料、造孔剂混合球磨后得到混合料B;混合料B经压制成型后进行干燥并煅烧,最后将煅烧后的样品通过超声波清洗后烘干即得。该方法一方面促进了碳化硅多孔陶瓷的低温烧结;另一方面,不仅克服了当高温粘结剂或助烧剂存在时材料在高温下使用的缺陷,而且还有助于进一步提高材料的孔隙率;更为重要的是,通过高温反应将碳化硅表面由于氧化而生成的SiO2转变为莫来石晶相,从而进一步改善了材料的高温力学性能和抗氧化性能。

Description

一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法
技术领域
本发明涉及多孔陶瓷制备技术领域,具体涉及一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法。
背景技术
碳化硅多孔陶瓷因其较高的孔隙率、良好的耐腐蚀性和耐高温性、优异的导热性能等优点,近年来被广泛应用于高温烟尘过滤、金属熔液除杂、催化剂载体等领域。多年来,各国学者围绕碳化硅多孔陶瓷的制备和改性开展了大量的研究工作,并取得了丰硕的成果。尽管如此,碳化硅多孔陶瓷目前仍存在两个主要问题。
一方面,如何使碳化硅粉料在较低温度下烧结是其面临的一个主要问题。由于碳化硅是一种强共价键化合物,因此纯的碳化硅陶瓷的烧结温度很高,通常在2100℃以上。一般而言,为保证碳化硅多孔陶瓷烧成后的高孔隙率,大多采用常压烧结的方式。为此,通常是采用以下两种方式得以实现:一种是在碳化硅粉料中引入一定量熔点相对较低的陶瓷粉料作为高温粘结剂,并利用自身熔融后产生的液相将碳化硅颗粒粘接在一起;另一种则是在碳化硅粉料中加入少量助烧剂,使其在较低温度下在碳化硅晶界处产生适量的液相,从而促进碳化硅晶粒的长大和碳化硅陶瓷的烧结。专利(CN 201310364696.1)公布了一种碳化硅多孔陶瓷的低温烧结技术,研究人员以氧化铝(或其前驱体)以及氧化硼(或其前驱体)作为助烧剂,并将其与碳化硅粉料混合均匀,经压制成型后于1100-1400℃下煅烧制得碳化硅多孔陶瓷;专利(CN 201410299601.7)则以A12O3、ZrO2和H3PO4为原料首先制备得到SiC烧结助剂,然后将其与SiC粉末进行混合研磨,接着再经干燥、成型、预烧得到素坯,最终在1200-1300℃下煅烧得到SiC多孔陶瓷。然而,需要指出的是,采用上述两种方式虽然可以使碳化硅粉料在较低温度下烧结,但由于内部低温液相的形成限制了材料在高温下的使用。因此,在无助烧剂或高温粘结剂的条件下,如何使得碳化硅粉料在较低温度下烧结,这对于提高材料的高温性能具有重要意义。
另一方面,SiC在烧结过程中由于氧化会在其表面生成一层薄的、致密的、与基体结合牢固的SiO2保护膜。这虽然在一定程度上缓解了其在高温进一步发生氧化,但SiO2的存在仍是碳化硅陶瓷在高温下长期使用而发生失效的一个重要因素。因此,如何提高碳化硅陶瓷的抗氧化性,从而改善其高温力学性质则是当前碳化硅陶瓷发展的另一个主要问题。
发明内容
针对现有技术中存在的上述问题,本发明的目的在于提供一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法,在无助烧剂或高温粘结剂的条件下,使得碳化硅陶瓷能在较低温度下烧结,同时提高碳化硅陶瓷的抗氧化性,从而改善其高温力学性质,以解决现有技术不足导致的诸多问题。
为了解决上述问题,本发明所采用的技术方案如下:
一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法,所述步骤如下:
(1)将Al2(SO4)3、Na2SO4和B2O3原料按1:4:1/6的摩尔比例进行配料,经混合球磨后过120目筛得到混合料A;
(2)将混合料A、SiC粉料和造孔剂按(2~10):100:(0~100)的质量比例进行配料,经混合球磨后过120目筛得到混合料B;
(3)采用干压成型法将步骤(2)得到的混合料B压制成形得到生坯;
(4)将步骤(3)得到的生坯干燥后置于电炉中,并以2~10℃/min的升温速率升温至800~1200℃进行煅烧,达到煅烧温度后保温1~5h,之后随炉冷却;
(5)将步骤(4)得到的样品在超声波清洗器中反复清洗,清洗结束后将样品烘干即得。
优选地,所述造孔剂可采用石墨粉、碳粉、淀粉或聚苯乙烯中的一种或几种的混合物。
优选地,所述压制成形的压制条件为:压力100~200Mpa,保压时间30~120s。
优选地,所述步骤(5)中超声波清洗器的清洗环境为自来水,清洗温度为80℃。
优选地,所述步骤(5)中对清洗后液体中Na+的浓度进行测定。当Na+浓度不超过自来水中Na+浓度的105%时即认为清洗结束。
本发明的有益效果在于:一方面,利用熔盐在较低温度下生成液相,从而促进了碳化硅多孔陶瓷的低温(低至800℃)烧结;另一方面,烧成后将熔盐溶解除去,不仅克服了由于高温粘结剂或助烧剂存在时导致的材料内部低温液相的形成,从而限制了材料在高温下使用的缺陷,而且由于熔盐的溶解去除还有助于进一步提高材料的孔隙率(开口孔隙率可高达87%);更为重要的是,通过高温反应将碳化硅表面由于氧化而生成的SiO2转变为莫来石晶相,从而进一步改善了材料的高温力学性能和抗氧化性能,因此所得碳化硅多孔陶瓷具有良好的机械强度、高温稳定性、抗氧化和抗热冲击等性能。
附图说明
图1为本发明所述的一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法的工艺流程图。
图2为本发明中碳化硅多孔陶瓷样品表面的SEM图;
图3为本发明中碳化硅多孔陶瓷样品断面的SEM及能谱分析图。
具体实施方式
下面结合附图及实施例对本发明作进一步说明。
实施例1:
首先,将Al2(SO4)3、Na2SO4和B2O3原料按摩尔比为1:4:1/6的比例进行配料,经混合球磨后过120目筛得到混合料A;然后,将混合料A与SiC粉料、碳粉按质量比为8:100:20的比例进行配料,经混合球磨后过120目筛得到混合料B;采用干压法在压力为200Mpa,保压时间为120s的压制条件下将上述混合料B压制成生坯;接着再在将其干燥后置于电炉中,并以5℃/min的升温速率升温至900℃进行煅烧,达到煅烧温度后保温3h,之后随炉冷却;最后,将该样品在80℃的条件下用自来水超声波清洗,当清洗后液体中的Na+浓度不超过自来水中Na+浓度的105%时停止清洗,将样品烘干即得到碳化硅多孔陶瓷。
经测试后样品的性能如下:抗弯强度可达23Mpa,开口孔隙率为66%,体积密度为1.6g/cm3,室温至800℃循环30次后其强度损失为12%。
实施例2:
首先,将Al2(SO4)3、Na2SO4和B2O3原料按摩尔比为1:4:1/6的比例进行配料,经混合球磨后过120目筛得到混合料A;然后,将混合料A与SiC粉料、石墨粉按质量比为10:100:100的比例进行配料,经混合球磨后过120目筛得到混合料B;采用干压法在压力为200Mpa,保压时间为90s的压制条件下将上述混合料B压制成生坯;接着再在将其干燥后置于电炉中,并以3℃/min的升温速率升温至1000℃进行煅烧,达到煅烧温度后保温5h,之后随炉冷却;最后,将该样品在80℃的条件下用自来水超声波清洗,当清洗后液体中的Na+浓度不超过自来水中Na+浓度的105%时停止清洗,将样品烘干即得到碳化硅多孔陶瓷。
经测试后样品的性能如下:抗弯强度可达9Mpa,开口孔隙率为87%,体积密度为1.1g/cm3,室温至800℃循环30次后其强度损失为17%。
实施例3:
首先,将Al2(SO4)3、Na2SO4和B2O3原料按摩尔比为1:4:1/6的比例进行配料,经混合球磨后过120目筛得到混合料A;然后,将混合料A与SiC粉料、石墨粉按质量比为2:100:0的比例进行配料,经混合球磨后过120目筛得到混合料B;采用干压法在压力为150Mpa,保压时间为60s的压制条件下将上述混合料B压制成生坯;接着再在将其干燥后置于电炉中,并以8℃/min的升温速率升温至1200℃进行煅烧,达到煅烧温度后保温5h,之后随炉冷却;最后,将该样品在80℃的条件下用自来水超声波清洗,当清洗后液体中的Na+浓度不超过自来水中Na+浓度的105%时停止清洗,将样品烘干即得到碳化硅多孔陶瓷。
经测试后样品的性能如下:抗弯强度可达32Mpa,开口孔隙率为26%,体积密度为1.9g/cm3,室温至800℃循环30次后其强度损失为6.2%。
实施例4:
首先,将Al2(SO4)3、Na2SO4和B2O3原料按摩尔比为1:4:1/6的比例进行配料,经混合球磨后过120目筛得到混合料A;然后,将混合料A与SiC粉料、石墨粉按质量比为5:100:50的比例进行配料,经混合球磨后过120目筛得到混合料B;采用干压法在压力为100Mpa,保压时间为30s的压制条件下将上述混合料B压制成生坯;接着再在将其干燥后置于电炉中,并以10℃/min的升温速率升温至800℃进行煅烧,达到煅烧温度后保温1h,之后随炉冷却;最后,将该样品在80℃的条件下用自来水超声波清洗,当清洗后液体中的Na+浓度不超过自来水中Na+浓度的105%时停止清洗,将样品烘干即得到碳化硅多孔陶瓷。
经测试后样品的性能如下:抗弯强度可达14Mpa,开口孔隙率为75%,体积密度为1.4g/cm3,室温至800℃循环30次后其强度损失为16%。
基于上述,如图2及图3所示,样品的孔隙率高,高温性能较好;所得的碳化硅陶瓷的最大抗弯强度可达32Mpa,开口孔隙率为26~87%,体积密度为1.1~1.9g/cm3,室温至800℃循环30次后其强度损失为6.2~17%。
综上所述,本发明不仅能促进碳化硅多孔陶瓷的低温烧结,而且通过控制材料高温下内部液相的形成从而有利于改善其高温性能,并由于熔盐的溶解去除还有助于进一步提高材料的孔隙率(开口孔隙率可高达87%);更为重要的是,通过高温反应将碳化硅表面由于氧化而生成的SiO2转变为莫来石晶相,进一步改善了材料的高温力学性能和抗氧化性能,因此所得碳化硅多孔陶瓷具有良好的机械强度、高温稳定性、抗氧化和抗热冲击等性能。
由技术常识可知,本发明可以通过其他的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明所包含。

Claims (5)

1.一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法,其特征在于,所述步骤如下:
(1)将Al2(SO4)3、Na2SO4和B2O3原料按1:4:1/6的摩尔比例进行配料,经混合球磨后过120目筛得到混合料A;
(2)将混合料A、SiC粉料和造孔剂按(2~10):100:(0~100)的质量比例进行配料,经混合球磨后过120目筛得到混合料B;
(3)采用干压法将步骤(2)得到的混合料B压制成形得到生坯;
(4)将步骤(3)得到的生坯干燥后置于电炉中,并以2~10℃/min的升温速率升温至800~1200℃进行煅烧,达到煅烧温度后保温1~5h,之后随炉冷却;
(5)将步骤(4)得到的样品在超声波清洗器中反复清洗,清洗结束后将样品烘干即得。
2.根据权利要求1所述的一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法,其特征在于,所述造孔剂可采用石墨粉、碳粉、淀粉或聚苯乙烯中的一种或几种的混合物。
3.根据权利要求1所述的一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法,其特征在于,所述压制成形的压制条件为:压力100~200Mpa,保压时间30~120s。
4.根据权利要求1所述的一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法,其特征在于,所述步骤(5)中超声波清洗器的清洗环境为自来水,清洗温度为80℃。
5.根据权利要求4所述的一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法,其特征在于,所述步骤(5)中对清洗后液体中Na+浓度进行测定;当Na+浓度不超过自来水中Na+浓度的105%时即认为清洗结束。
CN201510907747.XA 2015-12-10 2015-12-10 一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法 Active CN105541333B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510907747.XA CN105541333B (zh) 2015-12-10 2015-12-10 一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510907747.XA CN105541333B (zh) 2015-12-10 2015-12-10 一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN105541333A CN105541333A (zh) 2016-05-04
CN105541333B true CN105541333B (zh) 2018-05-01

Family

ID=55820956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510907747.XA Active CN105541333B (zh) 2015-12-10 2015-12-10 一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN105541333B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106167411B (zh) * 2016-08-05 2018-11-13 武汉科技大学 一种莫来石碳化硅复相耐火材料及其制备方法
CN113999046B (zh) * 2021-12-02 2023-03-10 浙江理工大学 一种低温反应烧结碳化硅陶瓷膜的制备方法
CN115093232A (zh) * 2022-07-08 2022-09-23 滁州学院 一种分子筛膜支撑体及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553583A (zh) * 2013-10-11 2014-02-05 武汉科技大学 一种多孔莫来石-碳化硅复合陶瓷材料及其制备方法
CN103787648A (zh) * 2014-01-27 2014-05-14 江西理工大学 一种氧化铝/莫来石复合超疏水粉体的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013026168A1 (en) * 2011-08-24 2013-02-28 Polyvalor, Société En Commandite Porous sic ceramic and method for the fabrication thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103553583A (zh) * 2013-10-11 2014-02-05 武汉科技大学 一种多孔莫来石-碳化硅复合陶瓷材料及其制备方法
CN103787648A (zh) * 2014-01-27 2014-05-14 江西理工大学 一种氧化铝/莫来石复合超疏水粉体的制备方法

Also Published As

Publication number Publication date
CN105541333A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
Liang et al. Fabrication of SiC reticulated porous ceramics with multi-layered struts for porous media combustion
CN107324809B (zh) 多孔碳化硅陶瓷及其制备方法和应用
CN103819219B (zh) 一种耐酸碱腐蚀的碳化硅多孔支撑体
CN108610050A (zh) 一种多孔碳化硅陶瓷及其制备方法
CN105884394B (zh) 一种低温制备多孔碳化硅支撑体的方法
CN105541333B (zh) 一种低温烧结的莫来石原位增强碳化硅多孔陶瓷的制备方法
CN109928756B (zh) 一种碳化硅增强碳基复合材料及制备方法
RU2456056C2 (ru) Керамический фильтр, содержащий углеродное покрытие, и способ его изготовления
CN110317062A (zh) 碳化硅质多孔体及其制造方法
CN101117295A (zh) 一种制备泡沫陶瓷过滤器的方法及用该方法制备的过滤器
CN109279909A (zh) 一种高强度碳化硼多孔陶瓷的制备方法
CN107337453A (zh) 一种结合气固反应法制备重结晶碳化硅多孔陶瓷的方法
US8808614B2 (en) Method of manufacturing porous sintered reaction-bonded silicon nitride ceramics from granular Si mixture powder and porous sintered reaction-bonded silicon nitride ceramics manufactured thereby
CN108546093B (zh) 一种氧化铝短纤增强氧化镁基坩埚及其制备方法
CN104529524A (zh) 一种碳化硅多孔陶瓷及其制备方法
Dong et al. Preparation of porcelain building tiles using “K2O–Na2O” feldspar flux as a modifier agent of low-temperature firing
CN103140455B (zh) 碳化硅质陶瓷以及蜂窝构造体
CN110092650B (zh) 轻质高强针状莫来石多孔陶瓷及其制备方法以及过滤器
JP5709007B2 (ja) 蓄熱式バーナ用蓄熱体及び蓄熱式バーナ用蓄熱体の製造方法
CN101747078B (zh) 纳米碳化硅助剂烧结高纯碳化硅蜂窝陶瓷体的制造方法
CN105481347A (zh) 一种新型特种陶瓷材料及其制备方法
CN104418608B (zh) 碳化硅多孔陶瓷的低温烧成方法
CN110451943A (zh) 一种以废弃莫来石匣钵为原料的陶瓷及其制备方法
CN109160814A (zh) 一种原位碳化硅-铁硅复合材料及其制备方法
CN112521177A (zh) 一种低熔点多孔陶瓷材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant