CN105531714A - 多管芯芯片封装的解封装的检测 - Google Patents
多管芯芯片封装的解封装的检测 Download PDFInfo
- Publication number
- CN105531714A CN105531714A CN201480050295.1A CN201480050295A CN105531714A CN 105531714 A CN105531714 A CN 105531714A CN 201480050295 A CN201480050295 A CN 201480050295A CN 105531714 A CN105531714 A CN 105531714A
- Authority
- CN
- China
- Prior art keywords
- reference circuit
- core
- chip package
- local reference
- core chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/26—Testing of individual semiconductor devices
- G01R31/2644—Adaptations of individual semiconductor devices to facilitate the testing thereof
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/70—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
- G06F21/86—Secure or tamper-resistant housings
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09C—CIPHERING OR DECIPHERING APPARATUS FOR CRYPTOGRAPHIC OR OTHER PURPOSES INVOLVING THE NEED FOR SECRECY
- G09C1/00—Apparatus or methods whereby a given sequence of signs, e.g. an intelligible text, is transformed into an unintelligible sequence of signs by transposing the signs or groups of signs or by replacing them by others according to a predetermined system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/14—Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/57—Protection from inspection, reverse engineering or tampering
- H01L23/576—Protection from inspection, reverse engineering or tampering using active circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L25/0652—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Security & Cryptography (AREA)
- Semiconductor Integrated Circuits (AREA)
- Storage Device Security (AREA)
Abstract
描述了一种多管芯芯片封装,该多管芯芯片封装包括检测多管芯芯片封装的操作的至少一个检测装置,该检测装置包括:分布式电路,该分布式电路包括元件被分布在包括本地参考电路的元件的那些管芯之间的电路,该分布式电路包括自激时钟;至少一个本地参考电路,该至少一个本地参考电路被布置在多管芯芯片封装的至少一个管芯中,该本地参考电路中的每个本地参考电路包括自激时钟;以及至少一个非易失性存储器,在所述多管芯芯片封装的制造期间在该至少一个非易失性存储器中存储针对每个参考电路的具有以下至少两个自变量的函数的结果的许可范围:本地参考电路在被制造时的频率的值;以及分布式电路在被制造时的频率的值,多个存储器的至少一个元件被布置在包括本地参考电路的元件的每个管芯中。还描述了相关方法、装置和系统。
Description
相关申请
本申请要求2013年9月12日递交的、序列号为14/025,237的美国申请的优先权权益。
技术领域
本公开涉及三维及多管芯芯片封装,并且更具体地,涉及三维及多管芯芯片封装中的安全特征。
背景技术
下列文件被认为反应了本领域的状态:
Amkor技术3D穿透硅通孔(TSV)晶圆抛光和覆晶堆叠解决方案(AmkorTechnologies-3DThroughSiliconVia(TSV)WaferFinishingandFlipChipStackingSolutions)在万维网www.amkor.com/go/TSV处可获得的文件上进行了描述。
3-D集成的硬件信任含义(HardwareTrustImplicationsof3-DIntegration),WESS’10(关于嵌入式系统安全的研讨会),Huffmire等人,2010年10月24日。
利用可配置的环形振荡器提升物理不可克隆功能(ImprovingtheQualityofaPhysicalUnclonableFunctionUsingConfigurableRingOscillators),A.Maiti和P.Schaumont,关于现场可编程的逻辑和应用的国际会议,2009,EPL2009。
用于设备认证和密匙生成的物理不可克隆功能(PhysicalUnclonableFunctionsforDeviceAuthenticationandSecretKeyGeneration),E.Suh和S.Devadas,DAC2007,2007年6月4-8日。
Kumamoto的US2007083767,用于检测外部数据的篡改的装置和方法(ApparatusandMethodforDetectingFalsificationofExtemalData),描述了外部数据篡改检测系统,该系统包括被配置为在系统开启时以及在系统操作期间获取外部数据的数据获取部分。外部数据的常规哈希值先前被存储在存储单元中。比较器部分计算获取的外部数据的哈希值、将常规哈希值与经计算的哈希值进行比较、并且确定外部数据被篡改以使得预定的操作限制在常规哈希值和经计算的哈希值不相互一致时被执行。
巴黎电信技术研究所的WO2011086051,包括物理不可复制功能的集成硅电路、以及用于测试此类电路的方法和系统(IntegratedSiliconCircuitComprisingAPhysicallyNon-ReproducibleFunction,AndMethodAndSystemForTestingSuchACircuit),描述了包括物理上不可复制的LPUF功能的集成硅电路,该功能使得能够生成针对所述电路的签名。所述功能包括环形振荡器,该环形振荡器包括信号所经过的回路,该回路由互相串联连接的N个拓扑结构相同的延迟通道和反相门形成,其中,该延迟通道包括互相串联连接的M个滞后元件。该功能还包括控制模块,该控制模块生成N个控制字(C1,C2),所述控制字被用于配置由延迟通道在流经延迟通道的信号上所引入的滞后的值;测量模块,该测量模块在更新控制字之后在最后一个延迟通道的输出处测量信号频率;以及用于导出形成电路签名的位的频率测量的装置。
麻省理工学院的EP2320344,密匙生成(KeyGeneration),描述了被提供来操作芯片以生成和使用密匙对存储器的内容解密的方法和芯片,其中,该方法包括:在芯片中的PUF处接收在芯片上存储的挑战(challenge);从PUF电路输出k位的响应;在芯片中将k位响应和引信(fuse)的内容相结合以生成密匙;以及在解密器处接收该密匙并且对芯片中的存储器的内容进行解密。
发明内容
本发明在其某些实施例中试图提供一种改进的多管芯芯片封装,该多管芯芯片封装具有检测该多管芯芯片封装的操作(manipulation)的至少一个检测装置。
因此,根据本发明的实施例提出了包括检测多管芯芯片封装的操作的至少一个检测装置的多管芯芯片封装,该检测装置包括:分布式电路,该分布式电路包括元件被分布在包括本地参考电路的元件的那些管芯之间的电路,该分布式电路包括自激时钟;至少一个本地参考电路,该至少一个本地参考电路被布置在多管芯芯片封装的至少一个管芯中,本地参考电路中的每个本地参考电路包括自激时钟;以及至少一个非易失性存储器,在多管芯芯片封装的制造期间在至少一个非易失性存储器中存储针对每个参考电路的具有以下至少两个自变量的函数的结果的许可范围:本地参考电路在被制造时的频率的值;以及分布式电路在被制造时的频率的值,多个存储器的至少一个元件被布置在包括本地参考电路的元件的每个管芯中。
进一步根据本发明的实施例,多管芯芯片封装包括三维芯片封装。
又进一步根据本发明的实施例,包括触发器,该触发器在函数的值的计算的结果超出所存储的函数的结果的许可范围时在多管芯芯片封装内触发动作,针对每个参考电路的函数的计算具有以下至少两个自变量:分布式电路的频率的当前值;以及本地参考电路的频率的当前值,其中,该计算得出的值是利用与上述函数相同的函数进行计算的。
此外,根据本发明的实施例,被触发的动作包括惩罚性动作。
此外,根据本发明的实施例,惩罚性动作包括擦除至少一个RAM或闪速存储器中的存储器位置。
此外,根据本发明的实施例,惩罚性动作包括停止由多管芯芯片封装正在执行的至少一个活动。
此外,根据本发明的实施例,惩罚性动作包括向以下各项中的至少一者通知可疑活动当前正在进行:操作系统;软件;用户。
此外,根据本发明的实施例,分布式电路和本地参考电路包括环形振荡器电路。
此外,根据本发明的实施例,分布式电路和本地参考电路包括延迟线。
此外,根据本发明的实施例,分布式电路包括变化数量的元件,并且所述分布式电路中的元件的数量是由嵌入在每个管芯中的控制电路控制的,从而迫使分布式电路的频率相应地改变。
此外,根据本发明的实施例,元件的每个可能的变化数量具有相应的阈值,该阈值在确定函数的计算的结果是否超出许可容限时被使用。
此外,根据本发明的实施例,存储有函数的结果的至少一个非易失性存储器中的每个存储器包括一次性可编程存储器。
此外,根据本发明的实施例,函数按以下任一项被计算:常规间隔;随机间隔;以及当发生访问秘密信息的尝试时。
此外,根据本发明的实施例,许可的阈值被确定为在可接受的容限内。
此外,根据本发明的实施例,可接受的容限是根据多管芯芯片的设计分析被确定的。
此外,根据本发明的实施例,可接受的容限是关于分量值。
此外,根据本发明的实施例,可接受的容限是关于管芯内温度敏感度。
此外,根据本发明的实施例,在多管芯芯片封装内被触发的动作包括每个管芯内的单独动作。
因此根据本发明的另一实施例提出了一种用于装配包括至少一个检测装置的多管芯芯片封装的方法,该检测装置检测所述多管芯芯片封装的篡改,该方法包括:将分布式电路的元件布置在包括本地参考电路的元件的管芯之间,该分布式电路包括自激时钟;将至少一个本地参考电路布置在多管芯芯片封装中的至少一个管芯中,该本地参考电路中的每个本地参考电路包括自激时钟;以及在多管芯芯片封装的制造期间,在至少一个非易失性存储器中存储针对每个参考电路的具有以下至少两个自变量的函数的结果的许可范围:本地参考电路在被制造时的频率的值;以及分布式电路在被制造时的频率的值,多个存储器的至少一个元件被布置在包括本地参考电路的元件的每个管芯中。
附图说明
通过下文结合附图的详细描述,本发明将会被更充分地理解和领会,其中:
图1A是对根据本发明的实施例构建和操作的多管芯芯片的封装的描绘;
图1B是对在堆叠配置中的图1A的多管芯芯片的封装中的多个管芯的描绘;
图2A是描绘包含图1A的分布式电路和至少一个本地参考电路、以及决定和控制元件的电路的操作的框图;
图2B是描绘用于建立图1A的分布式电路和至少一个本地参考电路之间的关系的方法的框图;
图3是用于图1A的系统的替换实施例中的可变长度的自激振荡器的实施例的图示;以及
图4是用于装配图1A的多管芯芯片封装的一个方法的流程图。
具体实施方式
参考图1A,图1A是对根据本发明的实施例构建和操作的多管芯芯片封装100的描绘。应该理解的是,虽然术语“多管芯芯片封装(multi-diechipassembly)”被用于当前描述中,但是本发明可以在“三维芯片封装(threedimensionalchipassembly)”中实施。
图1A的多管芯芯片封装100包括多个管芯100A、100B、100C、100D、100E、100F,多个管芯100A、100B、100C、100D、100E、100F中的每个管芯包括给定电路在其上被制造的小块的半导体材料。在多管芯芯片组装/封装技术中,两个或多个管芯(例如,多个管芯100A、100B、100C、100D、100E、100F)被封装在一起并且被组装以形成针对一些系统封装的单个集成电路。在这样的集成电路中,安全模块(例如,在许多机顶盒(STB)和个人录像机(PVR)中存在的安全模块)可以被嵌入多个管芯100A、100B、100C、100D、100E、100F中的至少一个管芯中。
为便于描绘,本领域已知的、在典型多管芯芯片封装(例如,多管芯芯片封装100)中的其它标准元件未在图1A中进行描绘。
由于安全测量,在安全模块被嵌入多个管芯100A、100B、100C、100D、100E、100F中的一个管芯中的情况下,安全模块通常被嵌入“内部管芯”中的一个中(即,不在多管芯芯片封装100的外层上的管芯中的一个管芯),从而使得探测(接触探测或非接触探测)不可行。
此外,现在参考图1B,图1B示出堆叠配置中的多个管芯100A、100B、100C、100D、100E、100F。虽然没有进行详尽的描述,但是分布式电路130被示出为穿过管芯100A、100B、100C、100D、100E、100F的堆叠。为便于描绘,在图1A中描绘的其它元件在图1B中没有出现。本领域的技术人员应该理解对多个管芯100A、100B、100C、100D、100E、100F的描绘只打算进行示例说明,而不以任意方式进行限制。在图1B中,对分布式电路130的描绘打算传达分布式电路130非常可能不遵循直线路径(与图1A中所描绘的相反)。伴随着图1B中的分布式电路130而示出的110B、110E、110D和110C的显示打算表明分布式电路130的不同部分在图中的任意给定点通过管芯100A、100B、100C、100D、100E、100F的堆叠中的各种管芯中的110B、110E、110D和110C。
然而,当前调试程序流(即,故障分析)的方法包括:管芯堆叠的解封装,以及以允许接人多个管芯100A、100B、100C、100D、100E、100F中的各个管芯的形式对管芯进行重新封装。本领域的相关技术人员应该理解具有这种封装形式的三维芯片封装需要利用插入器以二维或三维形式重新封装该多个管芯100A、100B、100C、100D、100E、100F。
为了对包括多个管芯100A、100B、100C、100D、100E、100F的多管芯芯片封装100进行解封装并且然后获得对安全模块的接入,攻击者能够使用相同的程序。
因此,检测装置120被包含在多管芯芯片封装100中。检测装置100包括分布式电路130和下文将参考图2描述的多个本地参考电路(LRC)140A、140B、140C、140D、140E、140F,以及下文将参考图2描述的一个或多个决定元件。虽然多管芯芯片封装100在图1A中被描绘为在多个管芯中包括六个管芯100A、100B、100C、100D、100E、100F,其中所有管芯被描绘为包括决定装置120的元件(即,分布式电路130和多个LRC140A、140B、140C、140D、140E、140F的元件),但是应该理解的是在实践中,不是所有多管芯芯片封装100的管芯都需要具有检测装置120的元件。通常,只有在其中包括秘密信息的管芯中包括检测装置120的元件。
分布式电路130被布置为使得如果多个管芯100A、100B、100C、100D、100E、100F(即,多管芯芯片封装100)将要被解封装并且然后以本质上与多管芯芯片封装100的初始配置不完全相同的形式被重新构建时,那么可以是环形振荡器、延迟线等的分布式电路130的性能将与它在多管芯芯片封装100的解封装之前所具有的那些电路性能不同。此类电路性能的示例是:自激振荡器的频率、延迟线的延迟(通过举例的方式,环形振荡器将被用于该描述)。
分布式电路130包括自激振荡器,被布置为使得如果管芯100A、100B、100C、100D、100E、100F是其中布置了本地参考电路140A、140B、140C、140D、140E、140F中的一个本地参考电路的管芯,那么多个管芯100A、100B、100C、100D、100E、100F中的每个管芯还包括分布式电路130的至少一个元件。
然而,分布式电路130不只对解封装的副作用敏感,而且还对被称为PVT(工艺、电压和温度)的硅特性的变化敏感。因此,检测装置120被构建为使得此类效应通过包括以与分布式电路130相同或非常相似的方式受相同的电压和温度影响的“参考”元件而被抵消。然而,参考元件对电路元件电容和互连电阻等不敏感,电路元件电容和互连电阻等由于使管芯分开或不正确地重新组装管芯而影响分布式电路130。因此,除了分布式电路130的元件被布置在多个管芯100A、100B、100C、100D、100E、100F中之外,包括检测装置120的元件(描绘为由虚线框出)的多个管芯100A、100B、100C、100D、100E、100F中的每个管芯还相应地包括本地参考电路140A、140B、140C、140D、140E、140F中的至少一个。本地参考电路140A、140B、140C、140D、140E、140F被设计为使得它们与分布式电路130的元件具有相同的PVT。分布式电路130和本地参考电路140A、140B、140C、140D、140E、140F之间的关系可以在设计时被建立或者在芯片生产期间被测量,并且-由于生产变化必要时-指示该关系的数据可以被安全地存储于片上非易失性存储器(NVM)以用于检测篡改(tampering)是否在多管芯芯片封装100中出现的处理过程中。用于建立分布式电路130和本地参考电路140A、140B、140C、140D、140E、140F之间的关系的方法在下文参考图2B进行描述。
本地参考电路140A、140B、140C、140D、140E、140F中的每个本地参考电路还包括自激振荡器(例如,在多个管芯100A、100B、100C、100D、100E、100F中的每个管芯内实现的延迟线或环形振荡器)。每个本地参考电路140A、140B、140C、140D、140E、140F构成参考自激振荡器,参考自激振荡器的频率取决于本地参考电路140A、140B、140C、140D、140E、140F在其中被实现的多个管芯100A、100B、100C、100D、100E、100F中的管芯内的PVT。
通常,每个本地参考电路140A、140B、140C、140D、140E、140F将被设计为与分布式电路130相类似。也就是说,因为存在若干不同类型的逆变器(或者,就此而言,任意其它类型的门),一种可以针对低功率/低扇出进行优化,另一种可以允许更高的功率,又一种类型的逆变器可以针对更快速的响应进行优化。因为每个本地振荡器140A、140B、140C、140D、140E、140F被布置在多个管芯100A、100B、100C、100D、100E、100F中的不同管芯上并且不同的管芯中的每个管芯可以具有不同的PVT特性,所以在分布式电路130的设计中和本地参考电路140A、140B、140C、140D、140E、140F的设计中更喜欢使用相同或非常相似的电路元件选择。
例如,管芯110B被描绘为包括是分布式电路130的元件的两个逆变器130B。管芯110B还包括本地参考电路(LRC)(140B)。同样地,管芯110A包括本地参考电路140A。管芯110A被描绘为包括是分布式电路130的元件的NAND门130A。应该理解的是,在实践中,被布置在每个管芯中的分布式电路130和本地参考电路140A、140B、140C、140D、140E、140F中的元件的数量可以非常大并且可以包括NAND门或任意其它适合的电路元件,例如,并且不限于上文的概述,非反相放大器。
分布式电路130被设计并且被实现为使得它包括生成自激时钟信号的环形结构。因此,分布式电路130的频率取决于:
源自多管芯芯片封装100和多管芯芯片封装100的部分之间的互连的实际物理电气特性;以及
与执行本地参考电路140A、140B、140C、140D、140E、140F相同的操作条件(即,PVT);以及
在生产变化影响分布式电路130和本地参考电路140A、140B、140C、140D、140E、140F的特性之间的关系的情况下,相比作为多管芯芯片封装100被制造的过程的最后步骤中的一步,针对包括本地参考电路140A、140B、140C、140D、140E、140F中的一个的多个管芯100A、100B、100C、100D、100E、100F中的每个管芯,作为以下各项的函数的结果:
被包含在该管芯中的、在制造时本地参考电路140A、140B、140C、140D、140E、140F的频率的初始值;以及
分布式电路130的频率的值被存储在例如NVM中。在操作期间NVM应该是本地的或者数据可以被安全地分发(加密、有符号的等)。可替换地,一个管芯包括NVM,该NVM存储来自同一经安装的芯片上的所有管芯的所有分布式电路130的频率的初始值。
这样的函数的一个示例是得到140A、140B、140C、140D、140E、140F的初始值和分布式电路130的频率的初始值之间的比值。可替代地,其它函数可以被使用,例如,针对跨过环境的规范范围内外的PVT变化被预先校准的相关性表/矩阵可以被存储在存储器中并且根据需要查阅。
现在另外参考图2A,图2A是描绘包含图1A中的分布式电路130、本地参考电路的电路140A、140B、140C、140D、140E、140F中的至少一个本地参考电路、以及决定和控制元件的电路的操作的框图。本领域的相关技术人员应该理解图2A描绘了按上文所述实现本发明的实施例的许多可能电路中的一种电路。图2A中的分布式振荡器230与图1A中的分布式电路130相对应。同样地,本地振荡器240与图1A中的本地参考电路140A、140B、140C、140D、140E、140F中的至少一个本地参考电路相对应。
控制单元250生成对计数器260A和260B两者的“开始”命令,计数器260A和260B对分布式振荡器230和本地振荡器240的时钟周期的数量进行计数,直到来自控制单元250的“停止”命令到达为止。在这个具体示例中,函数是利用两个计数器260A和260B的值进行计算的(270)。应该理解的是为了提供足够的精度(并且避免混淆),频率的选择是依赖于技术的。
将函数270的结果与函数的被存储的参考值285进行比较(280)。函数的被存储的参考值285在设计期间,或者更通常地,在生产期间被确定并且被存储。如果比较280的结果在函数的被存储的参考值285的可接受容限内,那么多管芯芯片封装100的操作可以继续(290)。然而,如果比较280的结果不在函数的被存储的参考值285的可接受容限内,那么惩罚292被触发,如下文所讨论的,并且多管芯芯片封装100的操作可能受到影响,如下文所述。
一般而言,图2A中描述的电路被描绘为包括决定元件(随后被比较和评估的比值的计算)。应该理解的是,决定元件可以包括可选的分布式决定元件(即,包括决定元件的不同元件可以被布置在多个管芯100A、100B、100C、100D、100E、100F中的不同管芯上)。还应该进一步理解的是,决定元件可以包括将在下文进行描述的触发元件。决定元件读取分布式电路130的至少一个性能的值以及至少一个本地参考电路140A、140B、140C、140D、140E、140F的相应的至少一个性能的值、并且计算两个值的函数的结果。然后将两个值的函数的结果与以下各项中的一项进行比较:
固定的许可范围;
所存储的分布式电路130和至少一个本地参考电路140A、140B、140C、140D、140E、140F之间的关系加上或者减去固定容差(应该注意的是在这种情况下被存储在NVM中的值是额定的并且包括许可的容差,容差未必是对称的);以及
基于所存储的分布式电路130和至少一个本地参考电路140A、140B、140C、140D、140E、140F之间的关系附近的范围的下限或上限。
如下文所讨论的,如果两个值的函数的结果与上文直接描述的选项中的一个不一致,那么决定元件可以使惩罚性动作在多管芯芯片组装100中生效。
一旦多管芯芯片组装100被合并入操作系统中,那么函数的结果可以按以下任意或所有项被计算和评估:常规间隔;随机间隔;以及当试图访问被存储在多管芯芯片封装100的秘密信息发生时。
如果使用本地参考电路的频率的当前值以及分布式电路的频率的当前值的函数的结果在可接受容限之外,那么惩罚动作在多管芯芯片封装100内被触发。例如,并且不限于上文的概述,多管芯芯片封装100可能被重置或者其适当的操作以其他方式被禁用。可替换地,RAM或闪存中的存储器位置可以被擦除,所有活动的或只是敏感活动的执行可以被停止,或者操作系统/软件/用户可以被警告当前有可疑活动在进行中。
本领域的技术人员应该理解虽然本地参考电路140A、140B、140C、140D、140E、140F和分布式电路130被描绘为包括逆变器和NAND门的具体组合,但是在实践中,如通常在集成电路中被实现的其它适当的有源或无源设备、任意适当构建的自激振荡器可以被使用。
现在参考图2B,图2B是描述用于建立分布式电路130和本地参考电路140A、140B、140C、140D、140E、140F中的至少一个本地参考电路之间的关系的方法的框图。如上文提及的,分布式电路130和本地参考电路140A、140B、140C、140D、140E、140F之间的关系可以在设计时被建立或者在芯片生产期间被测量,并且-由于生产变化而必要时-指示该关系的数据可以被安全地存储在片上非易失性存储器(NVM)中以在检测篡改是否在多管芯芯片封装100中出现的处理过程中被使用。图2B示出这样的方法。应该注意到图2B与图2A相同,然而,一旦利用两个计数器260A和260B的值来计算(270)函数,那么参考数据被输入至处理模块295。处理模块295从本地计数器260A和分布式计数器160B的函数的计算270中接收单个数据片。然而,如上文所讨论的,计算270的结果通常被存储:作为许可范围;具有容限;或作为上限或下限。因此,一旦计算270产生结果就需要进一步的处理。处理模块295(可以在芯片内部、芯片外部、或两者,并且可以接收其它输入)的(一个或多个)输出被存储在NVM299中。当执行图2A的方法时,被存储在NVM299中的参考数据成为NVM中的参考数据。
可替换地,图2B所述的处理可以被运行两次-一次在高温处并且一次在低温处,并且两个结果都可以被存储。进一步可替换地,作为计算270的结果的值可以被传送至芯片外、被处理以达到所需容限、并且然后被存储在NVM299中。应该理解的是外部输入/输出可以被选择性地加入处理模块295来促成该处理。
在本发明的另一方面,本地参考电路140A、140B、140C、140D、140E、140F和分布式电路130中的振荡器的长度(例如,逆变器/NAND门的数量)是变化的。现在参考图3,图3是用于图1A的系统的替换实施例中的可变长度自激振荡器的实施例的图示。诸如自激振荡器之类的电路可以在分布式电路130中以及可选择地在本地参考电路140A、140B、140C、140D、140E、140F中被实现,从而使得用于生成振荡的逆变器的环具有可变数量的元件,并且因此分布式振荡器(以及可选择地,本地参考电路140A、140B、140C、140D、140E、140F)的频率的值可变。
应该理解的是主要的可变性是在分布式电路130中,从而进行“强迫频率”攻击更加困难。在这种情况下,函数的值的许可范围可以以以下三种方式中的一种来进行处理:
a)在MVM中存储额外的值的集合;
b))利用选择器复用器改变函数参数;
c)与改变分布式电路130一致地改变本地振荡器的频率。
当这样的变化被使用时,必须注意防止由于分布式电路130和本地参考电路140A、140B、140C、140D、140E、140F元件的特征之间的不匹配而引起的“假警报”。假警报预防可以通过在分布式电路130和本地参考电路140A、140B、140C、140D、140E、140F中进行协同变化、或者通过同时改变针对决定元件(一个或多个)的“比较范围”的值来实现。
改变可以是周期性的、以随机或伪随机方式定时的、或者甚至是事件触发的。控制策略的选择和实现会被本领域技术人员理解。
现在参考图4,图4是用于封装图1A的多管芯芯片封装的方法的流程图。包括自激时钟的分布式电路的元件被布置在包括本地参考电路的元件的多管芯芯片封装的那些管芯之间(步骤410)。至少一个本地参考电路被布置在多管芯芯片封装的至少一个管芯中,每个本地参考电路包括自激时钟(步骤420)。在制造多管芯芯片封装期间,针对每个参考电路的具有至少两个参数的函数的结果的许可范围被存储,两个自变量是:
本地参考电路在制造时的频率的值;以及
分布式电路在制造时的频率的值。
多个存储器的至少一个元件被布置在包括本地参考电路的每个管芯中(步骤430)。
应该理解的是,为清楚起见,在各个实施例的上下文中描述的本发明的各种特征还可以在单独实施例中以组合方式提供。相反地,为简洁起见,在单个实施例中描述的本发明的各种特征还可以被分别提供或者以任意适合的子组合被提供。
本领域的技术人员应该理解本发明不限于上文具体示出和描述的内容。本发明的范围由所附权利要求及其等同物限定。
Claims (19)
1.一种多管芯芯片封装,包括:
检测所述多管芯芯片封装的操作的至少一个检测装置,所述检测装置包括:
分布式电路,所述分布式电路包括元件被分布在管芯之间的电路,所述管芯包括本地参考电路的元件,所述分布式电路包括自激时钟;
至少一个本地参考电路,所述至少一个本地参考电路被布置在所述多管芯芯片封装的至少一个管芯中,所述本地参考电路中的每个本地参考电路包括自激时钟;以及
至少一个非易失性存储器,在所述多管芯芯片封装的制造期间,在所述至少一个非易失性存储器中存储针对每个参考电路的具有以下至少两个自变量的函数的结果的许可范围:
所述本地参考电路在被制造时的频率的值;以及
所述分布式电路在被制造时的频率的值,所述多个存储器的至少一个元件被布置在包括所述本地参考电路的元件的每个管芯中。
2.根据权利要求1所述的多管芯芯片封装,其中,所述多管芯芯片封装包括三维芯片封装。
3.根据权利要求1所述的多管芯芯片封装,还包括触发器,所述触发器在函数的值的计算的结果超出所存储的所述函数的结果所述的许可范围时在所述多管芯芯片封装内触发动作,针对每个参考电路的所述函数的计算具有以下至少两个自变量:
所述分布式电路的频率的当前值;以及
所述本地参考电路的频率的当前值,
其中,该计算得出的值是利用与权利要求1所述的函数相同的函数进行计算的。
4.根据权利要求3所述的多管芯芯片,其中,在所述多管芯芯片封装内被触发的所述动作包括每个管芯内的单独动作。
5.根据权利要求3所述的多管芯芯片,其中,被触发的所述动作包括惩罚性动作。
6.根据权利要求5所述的多管芯芯片封装,其中,所述惩罚性动作包括擦除至少一个RAM或闪速存储器中的存储器位置。
7.根据权利要求5所述得多管芯芯片封装,其中,所述惩罚性动作包括停止由所述多管芯芯片封装正在执行的至少一个活动。
8.根据权利要求5所述的多管芯芯片封装,其中,所述惩罚性动作包括向以下各项中的至少一者通知可疑活动当前正在进行:
操作系统;
软件;
用户。
9.根据权利要求1所述的多管芯芯片封装,其中,所述分布式电路和所述至少一个本地参考电路包括环形振荡器电路。
10.根据权利要求1所述的多管芯芯片封装,其中,所述分布式电路和所述至少一个本地参考电路包括延迟线。
11.根据权利要求1所述的多管芯芯片封装,其中:
所述分布式电路包括变化数量的元件,以及
所述分布式电路中的元件的数量是由嵌入在每个管芯中的控制电路控制的,从而迫使所述分布式电路的频率相应地改变。
12.根据权利要求11所述的多管芯芯片封装,其中,元件的每个可能的变化数量具有相应的阈值,所述阈值在确定所述函数的计算的结果是否超出许可容限时被使用。
13.根据权利要求1所述的多管芯芯片,其中,存储有所述函数的结果的所述至少一个非易失性存储器中的每个存储器包括一次性可编程存储器。
14.根据权利要求1所述的多管芯芯片,其中,所述函数按以下任一项被计算:
常规间隔;
随机间隔;以及
当发生访问秘密信息的尝试时。
15.根据权利要求1所述的多管芯芯片,其中,所述许可范围被确定为在可接受的容限内。
16.根据权利要求15所述的多管芯芯片,其中,所述可接受的容限是根据所述多管芯芯片的设计分析被确定的。
17.根据权利要求15所述得多管芯芯片,其中,所述可接受的容限是关于分量值。
18.根据权利要求15所述的多管芯芯片,其中,所述可接受的容限是关于管芯内温度敏感度。
19.一种用于装配包括至少一个检测装置的多管芯芯片封装的方法,所述检测装置检测所述多管芯芯片封装的操作,所述方法包括:
将所述分布式电路的元件布置在包括本地参考电路的元件的管芯之间,所述分布式电路包括自激时钟;
将所述至少一个本地参考电路布置在所述多管芯芯片封装中的至少一个管芯中,所述本地参考电路中的每个本地参考电路包括自激时钟;以及
在所述多管芯芯片封装的制造期间,在所述至少一个非易失性存储器中存储针对每个参考电路的具有以下至少两个自变量的函数的结果的许可范围:
所述本地参考电路在被制造时的频率的值;以及
所述分布式电路在被制造时的频率的值,所述多个存储器的至少一个元件被布置在包括所述本地参考电路的元件的每个管芯中。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/025,237 | 2013-09-12 | ||
US14/025,237 US9366718B2 (en) | 2013-09-12 | 2013-09-12 | Detection of disassembly of multi-die chip assemblies |
PCT/IB2014/063921 WO2015036881A1 (en) | 2013-09-12 | 2014-08-14 | Detection of disassembly of multi-die chip assemblies |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105531714A true CN105531714A (zh) | 2016-04-27 |
CN105531714B CN105531714B (zh) | 2018-12-07 |
Family
ID=51830550
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480050295.1A Active CN105531714B (zh) | 2013-09-12 | 2014-08-14 | 多管芯芯片封装的解封装的检测 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9366718B2 (zh) |
EP (1) | EP3044722B1 (zh) |
CN (1) | CN105531714B (zh) |
WO (1) | WO2015036881A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111801735A (zh) * | 2018-02-08 | 2020-10-20 | 美光科技公司 | 存储备份存储器封装保存触发器 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10880085B1 (en) * | 2017-08-03 | 2020-12-29 | The University Of Tulsa | Device, system, and method to facilitate secure data transmission, storage and key management |
EP3483772A1 (en) * | 2017-11-14 | 2019-05-15 | Nagravision S.A. | Integrated circuit personalisation with data encrypted with the output of a physically unclonable function |
US10778451B2 (en) * | 2018-07-30 | 2020-09-15 | United States Of America As Represented By The Secretary Of The Navy | Device and method for hardware timestamping with inherent security |
EP3690867A1 (en) * | 2019-01-30 | 2020-08-05 | Siemens Aktiengesellschaft | Fingerprinting of semiconductor die arrangements |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5933102A (en) * | 1997-09-24 | 1999-08-03 | Tanisys Technology, Inc. | Capacitive sensitive switch method and system |
CN1929117A (zh) * | 2005-09-06 | 2007-03-14 | 马维尔国际贸易有限公司 | 带有玻璃层和振荡器的集成电路封装 |
US20100213951A1 (en) * | 2009-02-23 | 2010-08-26 | Lewis James M | Method and system for detection of tampering related to reverse engineering |
CN102160054A (zh) * | 2008-08-14 | 2011-08-17 | Lsi公司 | 用于设计使用自适应电压和调节优化的集成电路的系统和方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4514647A (en) * | 1983-08-01 | 1985-04-30 | At&T Bell Laboratories | Chipset synchronization arrangement |
US6355501B1 (en) | 2000-09-21 | 2002-03-12 | International Business Machines Corporation | Three-dimensional chip stacking assembly |
US7840803B2 (en) | 2002-04-16 | 2010-11-23 | Massachusetts Institute Of Technology | Authentication of integrated circuits |
JP2007066021A (ja) | 2005-08-31 | 2007-03-15 | Nec Electronics Corp | 外部データ改ざん検出装置、および外部データ改ざん検出方法 |
JP5113074B2 (ja) * | 2006-11-06 | 2013-01-09 | パナソニック株式会社 | 情報セキュリティ装置 |
US8564336B2 (en) * | 2008-10-29 | 2013-10-22 | Nec Corporation | Clock frequency divider circuit and clock frequency division method |
US8370787B2 (en) * | 2009-08-25 | 2013-02-05 | Empire Technology Development Llc | Testing security of mapping functions |
FR2955394B1 (fr) | 2010-01-18 | 2012-01-06 | Inst Telecom Telecom Paristech | Circuit integre en silicium comportant une fonction physiquement non copiable, procede et systeme de test d'un tel circuit |
WO2012045627A1 (en) * | 2010-10-04 | 2012-04-12 | Intrinsic Id B.V. | Physical unclonable function with improved start-up behavior |
US8850608B2 (en) * | 2011-03-07 | 2014-09-30 | University Of Connecticut | Embedded ring oscillator network for integrated circuit security and threat detection |
WO2012122994A1 (en) * | 2011-03-11 | 2012-09-20 | Kreft Heinz | Off-line transfer of electronic tokens between peer-devices |
US20130141137A1 (en) * | 2011-06-01 | 2013-06-06 | ISC8 Inc. | Stacked Physically Uncloneable Function Sense and Respond Module |
US8415969B1 (en) * | 2011-10-28 | 2013-04-09 | International Business Machines Corporation | Implementing screening for single FET compare of physically unclonable function (PUF) |
-
2013
- 2013-09-12 US US14/025,237 patent/US9366718B2/en active Active
-
2014
- 2014-08-14 WO PCT/IB2014/063921 patent/WO2015036881A1/en active Application Filing
- 2014-08-14 EP EP14790299.3A patent/EP3044722B1/en active Active
- 2014-08-14 CN CN201480050295.1A patent/CN105531714B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5933102A (en) * | 1997-09-24 | 1999-08-03 | Tanisys Technology, Inc. | Capacitive sensitive switch method and system |
CN1929117A (zh) * | 2005-09-06 | 2007-03-14 | 马维尔国际贸易有限公司 | 带有玻璃层和振荡器的集成电路封装 |
CN102160054A (zh) * | 2008-08-14 | 2011-08-17 | Lsi公司 | 用于设计使用自适应电压和调节优化的集成电路的系统和方法 |
US20100213951A1 (en) * | 2009-02-23 | 2010-08-26 | Lewis James M | Method and system for detection of tampering related to reverse engineering |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111801735A (zh) * | 2018-02-08 | 2020-10-20 | 美光科技公司 | 存储备份存储器封装保存触发器 |
US11074131B2 (en) | 2018-02-08 | 2021-07-27 | Micron Technology, Inc. | Storage backed memory package save trigger |
CN111801735B (zh) * | 2018-02-08 | 2021-11-05 | 美光科技公司 | 存储备份存储器封装保存触发器 |
US11579979B2 (en) | 2018-02-08 | 2023-02-14 | Micron Technology, Inc. | Storage backed memory package save trigger |
Also Published As
Publication number | Publication date |
---|---|
EP3044722B1 (en) | 2017-06-28 |
EP3044722A1 (en) | 2016-07-20 |
WO2015036881A1 (en) | 2015-03-19 |
CN105531714B (zh) | 2018-12-07 |
US9366718B2 (en) | 2016-06-14 |
US20150072447A1 (en) | 2015-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105531714A (zh) | 多管芯芯片封装的解封装的检测 | |
JP6377865B2 (ja) | リング発振器ベースの物理的複製不可関数および年齢検知回路を使用した集積回路識別およびディペンダビリティ検証 | |
CN100437634C (zh) | 用于检测伪造的和/或修改的智能卡的方法和终端 | |
Yin et al. | Temperature-aware cooperative ring oscillator PUF | |
CN104425411B (zh) | 半导体器件和半导体器件的操作方法 | |
US7761714B2 (en) | Integrated circuit and method for preventing an unauthorized access to a digital value | |
CN105978694B (zh) | 抗建模攻击的强物理不可克隆函数装置及其实现方法 | |
US9270463B2 (en) | Unauthorized connection detecting device, unauthorized connection detecting system, and unauthorized connection detecting method | |
US20170310688A1 (en) | System and method for securing an electronic circuit | |
CN104471583A (zh) | (数字)puf用于实现数字ic的物理退化/篡改识别的应用 | |
Marinissen et al. | IoT: Source of test challenges | |
US20170288885A1 (en) | System, Apparatus And Method For Providing A Physically Unclonable Function (PUF) Based On A Memory Technology | |
CN101971183B (zh) | 用于测试密码电路的方法、能够被测试的保密密码电路和该电路的接线方法 | |
CN103198347A (zh) | 安全设备防篡改电路 | |
US20140111234A1 (en) | Die, Chip, Method for Driving a Die or a Chip and Method for Manufacturing a Die or a Chip | |
TW201211562A (en) | Apparatus and method for detecting an approaching error condition | |
CN104321824A (zh) | 存储器i/o接口的非接触应力测试 | |
CN105891651A (zh) | 低功率开路检测系统 | |
CN113383376A (zh) | 半导体管芯布置的指纹识别 | |
CN106782671B (zh) | 一种安全芯片进入测试模式的方法和装置 | |
CN104375079B (zh) | 芯片 | |
TW200308074A (en) | Integrated circuit | |
CN206003100U (zh) | 计量安全装置 | |
TW202401027A (zh) | 感知竄改的老化感測器 | |
CN110392838B (zh) | 用于集成电路的设备、系统和方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |