CN105505989A - 启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法 - Google Patents

启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法 Download PDF

Info

Publication number
CN105505989A
CN105505989A CN201610025955.1A CN201610025955A CN105505989A CN 105505989 A CN105505989 A CN 105505989A CN 201610025955 A CN201610025955 A CN 201610025955A CN 105505989 A CN105505989 A CN 105505989A
Authority
CN
China
Prior art keywords
ahress
ntr12
pbi121
resveratrol
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610025955.1A
Other languages
English (en)
Inventor
陈华
庄伟建
马世伟
张冲
蔡铁城
邓烨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Agriculture and Forestry University
Original Assignee
Fujian Agriculture and Forestry University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Agriculture and Forestry University filed Critical Fujian Agriculture and Forestry University
Priority to CN201610025955.1A priority Critical patent/CN105505989A/zh
Publication of CN105505989A publication Critical patent/CN105505989A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法,属于植物基因工程领域。利用发根农杆菌介导将烟草根特异启动子NtR12驱动花生白藜芦醇合酶基因AhRESS载体pBI121-NtR12-AhRESS遗传转化本生烟草,获得特异表达AhRESS的转基因本生烟草发状根。通过转基因本生烟草发状根的液体悬浮培养技术,建立了转基因本生烟草发状根的快速繁殖体系。利用有机溶剂浸提法提取转基因本生烟草发状根中白藜芦醇,经高效液相色谱(HPLC)测定,其白藜芦醇含量最高为2.12μg/g(FW),是未转基因发状根中白藜芦醇含量的4倍。

Description

启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法
技术领域
本发明涉及启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法,属于植物基因工程领域。
技术背景
白藜芦醇(Resveratrol,简称Res),是一种重要的植物抗毒素,存在于虎杖、葡萄、花生等植物中,在葡萄果皮和花生根中含量尤为丰富。它具有多种生物活性,是一种天然的抗氧化剂,可以降低血脂,抑制血小板凝结,抗癌,抗炎,抗辐射,抗衰老,防治心血管疾病等。它与紫杉醇都被誉为绿色抗癌药物。但自然界中存在的白藜芦醇的含量较少,利用植物基因工程技术高效生产白藜芦醇是大量获得白藜芦醇的重要途径。
白藜芦醇广泛存在于种子植物中,作为芪类次生代谢物,主要通过苯丙氨酸代谢途径合成的。刘蕾等克隆了白藜芦醇合酶cDNA,并将其转化花生的下胚轴、胡萝卜的下胚轴;同时,也把花生RESS转化酵母。许玉芬等成功构建了花生白藜芦醇合酶基因的酵母表达载体,并通过电穿孔法将其整合到毕赤酵母的染色体上;成功构建了由Ubi启动子驱动的花生白藜芦醇合酶基因单子叶植物表达载体,分别利用农杆菌介导和基因枪转化法转导甘蔗。黄国强等研究了白藜芦醇合酶基因在花生根中的特异表达,研究结果表明:该基因的转录表达在根的韧皮部,其他组织中未见表达;酵母浸提液处理可使该基因的转录表达明显增强。林荣华等以花生中的白藜芦醇合酶基因为目的基因,构建了含目的基因的植物重组表达载体pB6RS,利用电穿孔法将pB6RS质粒直接导入根癌农杆菌LBA4404中,通过农杆菌介导将pB6RS转化烟草(云烟85),得到了阳性植株。
由于白藜芦醇的重要生理功能,近几年,人们开始研究利用生物技术提高植物材料中白藜芦醇的含量。Giovinazzo等研究者以35S启动子调控白藜芦醇合酶基因进行番茄遗传转化,测定转基因番茄中的抗坏血酸盐与谷胱甘肽还原酶的总体水平,结果表明:转基因植物的抗氧化性较之野生型植物的抗氧化性有了显著的提高。Hüsken等利用油菜种子特异表达启动子驱动白藜芦醇合酶基因表达,转化油菜,同时,阻断消耗白藜芦醇合酶底物的另一条支路,检测T0代油菜种籽中的Res含量,发现以鲜重计其最高含量为361μg/g,同时还获得了品质改善且保健性提高的油菜种籽。但目前,通过根特异启动子驱动白藜芦醇合酶基因表达生产白藜芦醇的研究未见报道。
发根农杆菌(Agrobacteriumrhizogenes)是一种革兰氏阴性土壤细菌,它能够侵染大多数双子叶植物和少数单子叶植物及裸子植物,诱导植物产生发状根(毛状根)。发状根相对于正常的根,有很多优点。理论上,发状根来源于一个植物细胞,不是嵌合体,所以其遗传性状稳定,继代多次仍然具有原始发状根的遗传特性;发状根能够在无外源激素的培养基中自主生长,且生长速度快,易操作和调控,不受季节和地域限制;某些次生代谢产物在发状根中含量比正常根高。因此,利用发状根生产次生代谢产物是一条可靠和有效的途径。
本发明针对以上研究背景,利用发根农杆菌介导pBI121-NtR12-AhRESS遗传转化本生烟草,获得根特异启动子NtR12驱动AhRESS表达的转基因本生烟草发状根,通过发状根液体悬浮培养技术,快速获得大量发状根,进而用于白藜芦醇的生产。该发明为利用烟草根特异启动子NtR12驱动花生白藜芦醇合酶基因AhRESS在本生烟草发状根中特异表达,进而生产白藜芦醇提供了良好的基础。
发明内容
本发明利用烟草根特异表达启动子,驱动花生白藜芦醇基因,构建了pBI121-NtR12-AhRESS根特异表达载体,通过冻融法把pBI121-NtR12-AhRESS导入发根农杆菌;通过发根农杆菌介导把NtR12:AhRESS融合基因整合到本生烟草基因组,获得根特异启动子NtR12驱动AhRESS表达的转基因本生烟草发状根,建立了发状根液体悬浮培养技术,快速获得大量发状根,进而用于白藜芦醇的生产。实现了本生烟草发状根生产白藜芦醇。
本发明提供了启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法。目的在于提供烟草根特异启动子NtR12驱动花生白藜芦醇合酶基因AhRESS在本生烟草发状根中特异表达,进而生产白藜芦醇的技术,以便利用植物基因工程手段高效生产白藜芦醇。
为实现上述目的,本发明采用如下技术方案:
启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法,包括以下步骤:
(1)克隆烟草根特异启动子NtR12和花生AhRESS基因;
(2)烟草根特异启动子NtR12驱动花生AhRESS基因表达载体pBI121-NtR12-AhRESS的构建;
(3)pBI121-NtR12-AhRESS经发根农杆菌介导转化本生烟草;
(4)转pBI121-NtR12-AhRESS本生烟草发状根液体悬浮培养;
(5)转pBI121-NtR12-AhRESS本生烟草发状根白藜芦醇含量的检测。
所述步骤(1)中所述烟草根特异启动子NtR12的序列为SEQIDNo:1,花生AhRESS基因的序列为SEQIDNo:2。
所述步骤(2)中所述的根特异启动子驱动花生白藜芦醇合酶基因AhRESS表达载体出发载体为本实验室保存的pBI121质粒载体,所述的启动子是烟草根特异性启动子NtR12,所述的烟草根特异性启动子基因NtR2下游包含花生白藜芦醇合酶基因AhRESS。
所述步骤(3)中发根农杆菌为印度国际半干旱热带作物研究所赠送的发根农杆菌,其介导的本生烟草遗传转化采用叶盘法。
所述步骤(4)中转pBI121-NtR12-AhRESS本生烟草发状根液体悬浮培养所用培养基为MS培养基+500mg/LCef,第一次继代培养基为MS培养基+300mg/LCef,第二次继代培养基为MS培养基+100mg/LCef,第三次继代培养基为MS培养基,三次继代后头孢霉素浓度降至0。
所述步骤(5)中转pBI121-NtR12-AhRESS本生烟草发状根白藜芦醇含量的检测方法为HPLC,色谱条件为:色谱柱ODS(250mm×4.6mm×5μm),流动相乙腈:水(25:75),流速1.0mL/min,检测波长306nm,柱温25℃,进样量10μL。
具体方法为:
1.烟草根特异启动子NtR12驱动花生白藜芦醇合酶基因AhRESS表达载体pBI121-NtR12-AhRESS的构建。
(1)克隆烟草根特异启动子NtR12,并连接至pMD18-T载体中,得到pMD18-NtR12载体;
(2)pBI121-NtR12-GUSA载体构建:将pBI121载体进行酶切,切除该载体上的GUSA基因,从pCAMBIA-1301载体中克隆GUSA基因连接至pBI121载体上,构建pBI121-GUSA;将pBI121-GUSA载体进行酶切反应,切除35S启动子,将pMD18-NtR12载体进行酶切反应,将NtR12启动子连接至pBI121-GUSA载体中,得到pBI121-NtR12-GUSA载体;
(3)pBI121-NtR12-AhRESS载体的构建:克隆花生白藜芦醇合酶基因AhRESS基因,并连接到pBI121-NtR12-GUSA载体中,得到pBI121-NtR12-AhRESS载体。
2.烟草根特异启动子NtR12驱动花生白藜芦醇合酶基因AhRESS表达载体pBI121-NtR12-AhRESS经发根农杆菌介导转化本生烟草。
在发根农杆菌诱导植物产生发状根的基础上,利用pBI121-NtR12-AhRESS载体转化发根农杆菌,通过其介导遗传转化本生烟草,获得转基因本生烟草发状根。以CTAB法提取转基因本生烟草及对照的发状根的DNA,分别以AhRESS基因特异引物(AhRESS-F:5’ATGGTGTCTGTGAGTGGAATTC3’和AhRESS-R:5’TTATATGGCCACACTGCGGAGAAC3’)和rolB基因的上、下游引物(rolB-F:5’GTCCTTGCAGTGCTAGATTT3’和rolB-R:5’GAAGGTGCAAGCTACCTCTC3’)进行PCR,PCR反应条件为94℃5min→(94℃30s→56℃30s→72℃30s)35cycles→72℃10min→4℃保存;以CTAB法提取转基因本生烟草及对照的发状根的RNA,按照PrimeScript逆转录酶说明书逆转录后,以AhRESS基因特异引物(AhRESS-F:5’ATGGTGTCTGTGAGTGGAATTC3’和AhRESS-R:5’TTATATGGCCACACTGCGGAGAAC3’)进行RT-PCR,PCR反应条件为:94℃5min→(94℃30s→57℃30s→72℃1.5min)35cycles→72℃10min→4℃保存。筛选阳性发状根进行下一步实验。
3.转pBI121-NtR12-AhRESS本生烟草发状根液体悬浮培养。
通过液体MS培养基的培养,继代时逐渐降低Cef的浓度,直至最后Cef降至0而发状根在纯液体MS培养基中可以快速生长又不受污染。需要注意的是,外植体不同位点长出的根为不同的发状根系,除菌时要以1条根起始。发状根快速扩繁即将一条发状根接种于新鲜MS培养基中,28℃振荡暗培养2周,发状根产量是接种量的100倍以上。筛选所得的能够快速生长的转基因本生烟草发状根液体培养后,收获发状根。
3.转pBI121-NtR12-AhRESS本生烟草发状根白藜芦醇含量的检测。
以甲醇为浸提液提取发状根中白藜芦醇,浸提液经旋转蒸发浓缩得HPLC待检测样品,通过HPLC测定发状根中白藜芦醇含量。
有益效果
本发明利用烟草根特异启动子NtR12驱动AhRESS基因在烟草根中特异表达,将植物表达载体经发根农杆菌转化至本生烟草中,使AhRESS基因在发状根中特异表达,通过液体悬浮培养短期内大量扩繁发状根,实现白藜芦醇的大量表达。本发明的转基因本生烟草发状根培养简单、生长快速、遗传性状稳定,可为利用植物基因工程手段高效生产白藜芦醇提供基础。利用有机溶剂浸提法提取转基因本生烟草发状根中白藜芦醇,经高效液相色谱(HPLC)测定,其白藜芦醇含量最高为2.12μg/g(FW),是未转基因发状根中白藜芦醇含量的4倍。
附图说明
图1pBI121-35S-GUSA遗传转化本生烟草发状根的GUS染色图.Bar=1cm。
图2pBI121-35S-GUSA遗传转化本生烟草发状根的GUS染色压片图.A:CK,B:pBI121-35S-GUSA转化本生烟草发状根系。
图3发根农杆菌介导的pBI121-NtR12-AhRESS遗传转化本生烟草外植体诱导发状根的变化图.A:诱导1周,B:诱导2周,C:诱导3周。
图4转基因本生烟草发状根系中AhRESS基因RT-PCR检测电泳图.M:Marker2000,1-9:转pBI121-NtR12-AhRESS发状根系,10:阳性对照,11:阴性对照。
图5转基因本生烟草发状根系液体悬浮培养图.A:接种,B:培养1周,C:培养2周。
图6转基因本生烟草发状根系白藜芦醇HPLC分析结果。
具体实施方式
【实施例1】pBI121-NtR12-AhRESS载体的构建
1.烟草根特异启动子NtR12的克隆
称取约0.1g烟草叶片,置于研钵中用液氮冻融,迅速将其研磨成粉末;利用CTAB法提取烟草中的DNA,用40μL、10ng/μL的RNase无菌水溶解,置于37℃溶解1h左右。取1μL提取好的烟草DNA点样,进行电泳检测,电泳条件:电泳缓冲液1×TAE,1.0%的琼脂糖凝胶,电压120V,电泳时间约20min;同时取1μL用紫外分光光度计测定其浓度。结果显示所提取的烟草叶片DNAOD260/OD280为1.73,表明DNA纯度较高,浓度达到2μg/μL,可用于后续启动子克隆。
根据本实验室前期克隆获得的NtR12启动子的拼接序列,设计引物NtR12-XhoⅠ-primer-F(5’GCGCCGCTCGAGTAATACTACAATAATAATTAAG3’),NtR12-XbaⅠ-primer-R(5’CGCTCTAGAGTTGTTGATATGTTTATGTTACTC3’),按照下列的PCR体系进行扩增。该体系包括32.5μLddH2O,10μL10×PrimeSTARPCRBuffer(Mg2+plus),4μLdNTPMixture(各2.5mmol),1μLNtR12-XhoⅠ-primer-F(10μmol),1μLNtR12-XbaⅠ-primer-R(10μmol),1μL烟草cDNA,0.5μLPrimeSTARHSDNApolymerase(2.5U/μL),体系总体积为50μL。
将50μL的PCR反应体系混匀,均分为2管,每管各25μL。PCR反应条件为:98℃5min→(98℃10s→53℃15s→72℃2min)5cycles→(98℃10s→60℃15s→72℃2min)23cycles→72℃10min→4℃保存。
PCR产物经琼脂糖凝胶电泳回收纯化后,连接至pMD18-TVector中,体系如下:5μLSolutionI,4.5μLDNA回收产物,0.5μLpMD18-TVector(50ng/μL),该体系总体积10μL。将各成分分别加入200μL的PCR管中,混匀,16℃过夜连接,约16-24h。将连接产物转化大肠杆菌感受态细胞DH5α中,摇菌后涂于含抗生素Amp的LB平板上,于37℃恒温培养箱中培养12-16h。挑取单克隆经PCR检测后送往华大基因进行测序,测序结果如SEQIDNO.1。测序结果正确的重组质粒即为pMD18-NtR12。
2.花生白藜芦醇合酶基因AhRESS的克隆
利用CTAB法提取花生叶片基因组DNA,以花生白藜芦醇合酶基因特异引物AhRESS-BamHⅠ-primer-F(5’TCGTGGATCCGCCACCATGGTGTCTGTGAGTGGAATTC3’),AhRESS-SacⅠ-primer-R(5’TCCTGAGCTCTTATATGGCCACACTGCGGAGAACG3’)进行PCR检测。其回收产物即为花生AhRESS基因编码框DNA序列。通过连接酶构建在pMD18-T载体中,转入大肠杆菌感受态细胞DH5α中,挑选阳性克隆进行测序鉴定,测序结果如SEQIDNO.2。
3.pBI121-NtR12-AhRESS载体的构建
以pCAMBIA-1301载体质粒为模板,用带有限制性酶切位点的特异引物(GUSAF-BamHⅠ-SpeⅠ:5’aggaGGATCCACTAGTaccatggtagatctgagggtaaatttc3’和GUSAR-SacⅠ-AscⅠ-SwaⅠ:5’aggagagctcGGCGCGCCTAAATTTAGAAATTCGAGCTGGTCACCTGT3’)进行PCR,其回收产物即为克隆得到的GUSA基因。将pBI121载体利用BamHⅠ和SacⅠ进行酶切,切除该载体上的GUSA基因,回收酶切后的载体条带;将GUSA基因连接至酶切后的pBI121载体上,得到pBI121-GUSA载体。
将pMD18-NtR12载体利用限制性内切酶SacⅠ和BamHⅠ进行酶切,酶切体系如下:2.0μg质粒DNA,5.0μL10×Kbuffer,2.0μLSacⅠ,2.0μLBamHⅠ,ddH2O补至50μL,混匀,于37℃消化酶切10-12h,反应结束后用琼脂糖凝胶电泳检测酶切效果,回收目的条带,获得NtR12启动子。
利用限制性内切酶SacⅠ和BamHⅠ将pBI121-GUSA载体进行酶切,切除35S启动子,酶切体系如下:2.0μg质粒DNA,5.0μL10×Kbuffer,2.0μLSacⅠ,2.0μLBamHⅠ,ddH2O补至50μL,混匀,于37℃消化酶切11h,反应结束后用琼脂糖凝胶电泳检测酶切效果。
将NtR12启动子连接至切除35S启动子的pBI121-GUSA载体中,连接反应体系如下:1.0μL10×T4ligasebuffer,4.0μL基因DNA片段,4.0μL载体DNA片段,1.0μLT4DNAligase,混匀,于16℃过夜连接。将连接产物转化大肠杆菌DH5α感受态细胞,菌液涂布于含抗生素Kan的LB平板上,于37℃恒温培养箱中培养14h。
挑取单克隆进行菌液PCR检测,PCR反应体系如下:1.0μL模板,2.0μL10×PCRbuffer,1.5μL2.5mMdNTP,0.1μL普通Taq酶,0.5μLNtR12-XhoⅠ-primer-F,0.5μLNtR12-XbaⅠ-primer-R,14.4μLddH2O。PCR反应条件为:94℃5min→(94℃30s→53℃30s→72℃2min)5cycles→(94℃30s→60℃30s→72℃2min)30cycles→72℃10min→4℃保存。对菌液PCR呈阳性的部分菌液进行扩繁,用碱裂解法提取质粒,然后进行酶切单、双检测,37℃酶切消化4h,反应结束后用琼脂糖凝胶电泳检测酶切效果。检测结果正确的,送往华大基因进行测序。测序结果正确的重组质粒即为pBI121-NtR12-GUSA载体。
将花生白藜芦醇合酶基因AhRESS连接至pMD18-T载体中,体系如下:5μLSolutionI,4.5μLDNA回收产物,0.5μLpMD18-TVector(50ng/μL),该体系总体积10μL。将各成分分别加入200μL的PCR管中,混匀,16℃过夜连接,约24h。将连接产物转化大肠杆菌感受态细胞DH5α中,摇菌后涂于含抗生素Amp的LB平板上,于37℃恒温培养箱中培养14h。挑取单克隆经PCR检测后送往华大基因进行测序。测序结果正确的重组质粒即为pMD18-AhRESS.
利用限制性内切酶SacⅠ和BamHⅠ将pMD18-AhRESS载体进行酶切,酶切体系如下:2.0μg质粒DNA,5.0μL10×Kbuffer,2.0μLSacⅠ,2.0μLBamHⅠ,ddH2O补至50μL,混匀,于37℃消化酶切11h,反应结束后用琼脂糖凝胶电泳检测酶切效果,回收目的条带,获得带有SacⅠ和BamHⅠ位点的AhRESS基因。
用限制性内切酶SacⅠ和BamHⅠ对pBI121-NtR12-GUSA载体进行酶切,酶切体系如下:2.0μg质粒DNA,5.0μL10×Kbuffer,2.0μLSacⅠ,2.0μLBamHⅠ,ddH2O补至50μL,混匀,于37℃消化酶切11h,反应结束后用琼脂糖凝胶电泳检测酶切效果。
将AhRESS基因连接至pBI121-NtR12-GUSA载体中,连接反应体系如下:1.0μL10×T4ligasebuffer,4.0μL基因DNA片段,4.0μL载体DNA片段,1.0μLT4DNAligase,混匀,于16℃过夜连接。将连接产物转化大肠杆菌DH5α感受态细胞,菌液涂布于含抗生素Kan的LB平板上,于37℃恒温培养箱中培养14h。
挑取单克隆进行菌液PCR检测,PCR反应体系如下:1.0μL模板,2.0μL10×PCRbuffer,1.5μL2.5mMdNTP,0.1μL普通Taq酶,0.5μLAhRESS-BamHⅠ-primer-F(5’TCGTGGATCCGCCACCATGGTGTCTGTGAGTGGAATTC3’),0.5μLAhRESS--SacⅠ-primer-R(5’TCCTGAGCTCTTATATGGCCACACTGCGGAGAACG3’),14.4μLddH2O。PCR反应条件为:94℃5min→(94℃30s→69℃30s→72℃1.5min)35cycles→72℃10min→4℃保存。对菌液PCR呈阳性的部分菌液进行扩繁,用碱裂解法提取质粒,然后进行酶切单、双检测,37℃酶切消化4h,反应结束后用琼脂糖凝胶电泳检测酶切效果。检测结果正确的,送往华大基因进行测序。测序结果正确的重组质粒即为pBI121-NtR12-AhRESS载体。
【实施例2】pBI121-NtR12-AhRESS和pBI121-35S-GUSA载体转化发根农杆菌
分别取2μg左右(体积小于20μl)的pBI121-NtR12-AhRESS和pBI121-35S-GUSA质粒DNA(本实验室所保存)加入到200μL发根农杆菌感受态细胞中,用移液枪轻轻吹打混匀;冰浴30min,而后于液氮中放置5min,再在42℃恒温水浴锅中水浴1min,重复3次;接着于冰上放置5min,加入800μLYEB液体培养基,于28℃恒温振荡器中振荡培养,175rpm,8h后,3000rpm离心3min,弃800μl上清,将剩余菌液混匀,涂布于含50mg/lKan的YEB平板上,于28℃恒温培养箱中培养到形成单菌落,约48-72h;挑取单克隆于400μlYEB+50mg/l的培养基中,220rpm28℃振荡培养12-16h;,菌液PCR验证,经验证为阳性克隆的,取600μl菌液与600μl50%甘油(已灭菌)于无菌Eppendorf管中混匀,液氮中速冻后保存于-70℃冰箱。菌液PCR验证体系如下:
PCR反应体系:
pBI121-NtR12-AhRESS所用引物为:AhRESS-F(5’ATGGTGTCTGTGAGTGGAATTC3)和AhRESS-R(5’TTATATGGCCACACTGCGGAGAAC3’);pBI121-35S-GUSA所用引物为GUS-F(5’GATGTGATATCTCCACTGACGTAAG3’)和GUS-R(5’GTAGAGCATTACGCTGCGATGGATTC3’)
pBI121-NtR12-AhRESSPCR反应条件为:94℃5min→(94℃30s→57℃30s→72℃1.5min)35cycles→72℃10min→4℃保存;pBI121-35S-GUSAPCR反应条件为:94℃5min→(94℃30s→60℃30s→72℃1min)35cycles→72℃10min→4℃保存。
结果表明,表达载体质粒DNA的PCR产物为特异目的条带,质粒已成功转化至发根农杆菌中,该方法可以实现携带外源基因的质粒载体转入发根农杆菌。
【实施例3】本生烟草发状根的诱导
(1)本生烟草无菌苗的制备:取本生烟草种子100粒于离心管中,用适量的纯水在25℃浸泡24h;10%双氧水消毒种子10min,无菌水清洗3次,然后用75%的酒精浸泡45s,再用无菌水清洗5次;将消毒后的种子平铺于MS培养基上,28℃,14h的日光周期下培养至种子萌发约3cm左右,而后将其移栽至纯的固体MS培养基中,28℃,16h的光周期条件下培养至长出小苗。
(2)工程菌的制备:从-80℃超低温冰箱中取出先前保存的相应重组质粒的菌液,进行划板(含50mg/Lkan的YEB平板),挑取单克隆,摇菌,菌液PCR验证,经验证为阳性克隆的菌液,取部分菌液进行大量摇菌,一般摇50mL菌液,250rpm,28℃过夜培养至OD600=0.5(注意不能有结块产生,或者用时涡旋使呈单细胞状态);取45mL菌液于50mL离心管中离心,4100rpm离心10min;倒掉上清液,沉淀重悬于50mL1/2MS基本培养基中,加100mM的乙酰丁香酮(AS)50μL;将制备好的工程菌液于4℃贮藏2h,以供共培养(外植体的侵染)。
(3)发根农杆菌遗传转化本生烟草(图1-3):无菌本生烟草叶盘(0.5cm×0.5cm)于MS培养基预培养2d后,用工程菌侵染5-10min,不要超过10min,吸干菌液,于MS培养基共培养2-3d;然后用500mg/L的头孢霉素(Cef)洗菌,将洗过菌的本生烟草叶片分别转入发状根诱导培养基(MS+500mg/LCef+Kan)中进行发状根诱导,每一工程菌30片外植体,每瓶5片;每隔14d继代一次,先继代对照组(未侵染叶片),再继代处理组,每次继代用的发状根诱导培养基与继代前的培养基应一致,同时观察各组外植体的变化情况。结果显示,外植体第一周无明显变化,第二周开始长出发状根,三周后发状根长至2-5cm,且外植体基本褪绿,周围还产生大量愈伤组织(图3)。
【实施例4】转pBI121-NtR12-AhRESS本生烟草发状根液体悬浮培养
本生烟草外植体诱导产生的发状根经除菌后,可用于液体悬浮培养以及发状根样品的制备。
除菌步骤:本生烟草外植体诱导3周后,取不同部位的长约3-5cm发状根于液体培养培养基(MS+500mg/LCef)中,每瓶一条根,120rpm,28℃,暗培养1周后,取生长良好的发状根于液体培养基继代,继代培养基为MS+300mg/LCef,培养1周后,继代于MS+100mg/LCef,再培养1周后,继代于MS培养基。三次继代后头孢霉素浓度降至0。
液体悬浮培养:分别取经过除菌后遗传鉴定发状根系的3-5条根,接种于液体MS培养基(图5),28℃,120rpm,暗培养;每周继代一次,接种剩余的发状根用滤纸尽量吸干,液氮速冻后,冻存于-80℃冰箱。
【实施例5】转基因本生烟草发状根基因组PCR鉴定
1.转基因本生烟草发状根DNA的提取
取转基因本生烟草发状根100mg,在液氮中研磨植物组织成粉末,并转移到在65℃预热的盛有抽提液的离心管中。在65℃温育45min,其间不时混匀。用等体积的24:1的氯仿/异戊醇抽提匀浆,颠倒混匀(温和)。4℃,10000rpm离心5min,回收上清液。在上清液中加入1/10体积的65℃的CTAB/NaCl的溶液,颠倒混匀(温和)。用等体积的24:1的氯仿/异戊醇抽提匀浆,颠倒混匀(温和)。4℃,10000rpm离心5min,回收上清液。加入1倍体积的CTAB沉淀液,翻转混匀,见到沉淀后进行下一步;否则于65℃温育30min。于4℃,10000rpm离心5min。移出上清,但不要丢弃,用0.5ml高盐的TE缓冲液重悬沉淀,如果沉淀难于重悬,于65℃温育30min,重复至所有的或大部分沉淀溶解。加入0.6倍体积的异丙醇沉淀核酸,充分混匀(温和),4℃,10000rpm离心15min。用80%乙醇洗沉淀,晾干,并用0.1ml的缓冲液溶解沉淀。最后加入1/20体积的RNA酶在37℃放1h。最后放在-20℃保存备用。结果显示所提取的转基因本生烟草发状根DNA纯度较好,可用于PCR检测。
2.基因组DNA的PCR检测
将本生烟草发状根提取的DNA稀释至100ng/μl,取1μl作为模板,依次加入灭菌蒸馏水14.4μl,10×PCRBufferII(Mg2+plus)2μl,Taq0.1μl,dNTPMixture(2.5m)1.50μl,上下游引物各0.5μl,引物序列为:AhRESS-primer-F:5’ATGGTGTCTGTGAGTGGAATTC3’和AhRESS-primer-R:5’TTATATGGCCACACTGCGGAGAAC3’。PCR反应条件为:94℃5min→(94℃30s→57℃30s→72℃1.5min)35cycles→72℃10min→4℃保存。结果表明,PCR产物为约为1200bp的特异条带,表明AhRESS基因已经整合到本生烟草发状根基因组中。
【实施例6】转基因本生烟草发状根AhRESS基因RT-PCR鉴定
1.转基因本生烟草发状根总RNA的提取
取1g发状根置于研钵中加液氮研磨,取0.1g倒入预冷的0.5ml异硫氰酸胍变性匀浆液中,充分混匀1min。加入0.1ml2mol/LNaAc(pH4.0)混匀1min;加入0.5ml水饱和酚,振荡30秒,冰浴5min。加入0.2ml氯仿:异戊醇(24:1),剧烈振荡2次3min,冰上放置10min。4℃,12000g离心15min。小心移取上层水相,弃去中间和下层有机相。加入等体积酚:氯仿:异戊醇(25:24:1),振荡2次3min,冰上放置5min。4℃,12000g离心10-15min,移取上层水相,弃去中间和下层有机相。加入等体积异丙醇,放置-20℃30分种以沉淀RNA。4℃,12000g离心15min收集RNA沉淀,用75%乙醇洗涤沉淀;将RNA沉淀在空气中干燥。用30ulRNase-freeddH2O或去离子甲酰胺溶解RNA沉淀。经1%琼脂糖凝胶电泳检测,结果表明RNA完整性较好,经Nanodrop2000检测其浓度及纯度,结果显示OD260/OD280约为1.85,浓度约为1.05μg/μl,表明所提取的RNA纯度较高,可用于RT-PCR分析。
2.转基因本生烟草发状根RT-PCR
取转基因本生烟草发状根总RNA1μg,按照逆转录试剂盒中的反应体系,进行逆转录。以1μl稀释3倍的逆转录产物为模板,依次加入灭菌蒸馏水14.4μl,10×PCRBufferII(Mg2+plus)2μl,Taq0.1μl,dNTPMixture(2.5m)1.50μl,AhRESS-primer-F(5’ATGGTGTCTGTGAGTGGAATTC3’)和AhRESS-primer-R(5’TTATATGGCCACACTGCGGAGAAC3’)各0.5μl。PCR反应条件为:94℃5min→(94℃30s→57℃30s→72℃1.5min)35cycles→72℃10min→4℃保存,凝胶电泳检测PCR结果(图4)。结果显示,阳性转基因本生烟草发状根中有约为1200bp的花生白藜芦醇合酶基因AhRESS的特异条带。
【实施例7】转基因本生烟草发状根白藜芦醇的提取
取-80℃保藏的发状根,准确称重0.5g,于液氮中研磨充分,分别置于离心管中,加入5mL甲醇,于60℃水浴中提取1h,6000rpm离心10min,收集上清,重复三次,合并上清液,过滤后于45℃旋转蒸发至近干,用甲醇定容至2mL,用0.22μm滤膜过滤,得到预处理的样品溶液,备用。
【实施例8】转基因本生烟草发状根白藜芦醇含量的HPLC测定
1.白藜芦醇HPLC检测色谱条件:色谱柱ODS(250mm×4.6mm×5μm),流动相乙腈:水(25:75),流速1.0mL/min,检测波长306nm,柱温25℃,进样量10μL。
2.白藜芦醇标准品储备液的制备:精确称取白藜芦醇标准品5.0mg,用甲醇(色谱纯)溶解并定容至50mL,得到100mg/L的白藜芦醇标准品储备液,置于4℃冰箱中避光保存,备用。
3.白藜芦醇标准工作液的制备:分别准确移取白藜芦醇标准品储备液2mL、4mL、6mL、8mL、10mL用甲醇(色谱纯)稀释并定容至1000mL,得到一系列的白藜芦醇标准品工作液,其质量浓度分别为0.20mg/L、0.40mg/L、0.60mg/L、0.80mg/L、1.00mg/L。
4.标准曲线的绘制:以质量浓度分别为0.20mg/L、0.40mg/L、0.60mg/L、0.80mg/L、1.00mg/L的白藜芦醇标准品溶液各10μL分别进样,测得峰面积与白藜芦醇含量之间的关系,绘制标准曲线。
5.发状根中白藜芦醇含量的测定:取预处理样品溶液各10μL进样,每样品各做三个重复,根据标准曲线算出各株系发状根中白藜芦醇的含量,取平均值作为实验结果。结果表明,利用有机溶剂浸提法提取转基因本生烟草发状根中白藜芦醇,经高效液相色谱(HPLC)测定,其白藜芦醇含量最高为2.12μg/g(FW),是未转基因发状根中白藜芦醇含量的4倍(图6)。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
SEQUENCELISTING
<110>福建农林大学
<120>启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法
<130>12
<160>12
<170>PatentInversion3.3
<210>1
<211>1503
<212>DNA
<213>烟草NTR12特异启动子序列
<400>1
taatactacaataataattaagtttacggttagatatttataaatattttgtaaagttta60
taatagtatatataaatatatatatacagagtctaagcgtaagcaaccctctaaattcat120
ccctgcttggaactcataatagagcatgttggcaaaggctagctctatgggatttgatta180
ctgtgattggtgtcgccagagttcagtcatcaaaaatggaaacgcaaaaaccataaaaat240
cgtggtcaattgattagtacttatagtattatattttgaatatgcaatgattgaaaatga300
gataaaaaggaagaaactaagaaaagagggagtagctactcgtataaaggagtccaagcc360
aaaataggacgttgtcgagggccatgcatgggctgtccatattaaaaaaaaaaaagaaga420
agaaaaaaacgggagtaattcaaaaatagccatacttataagtgatcattaaaaaatatc480
cacaattttaaaagtaattgaaatttagtcacttttcatgtaaagataaatctgaacgaa540
aacaccgttcaaaatccgaaaaaatactccagtataatatactggaattccagtataata600
taccggtccagcataaaatactgtccaatctccagtatattgtactgaaactttccgcgt660
gttggagttccagcataatatgctggaagttcttacgcatgtgcaccgatctccagtata720
ttatgttggaactttccgtgttgcagcaaaatagtggctatttttcaatgacttcgcaaa780
cgctgactatttttgataaatccgaaaactgattagcccgtgctatttttaagaaacaaa840
agtgaattaaattggaattataggtgctggcccaatggtctaagctctccccacacccgc900
ttgctgcatttttagagtgatatcaaacacaaatcgtaagatgaggatatgttttgcctt960
tgggtatcctatgtcaggactcaggaccaacaccaataatttatttctccgtacgaccaa1020
gataaatataaataattttaaggaggaaagcacgccggacacctctcaatatgcgaacct1080
attgttttttggtccgttctaaaaagaataattcctttttaaatttgataacaatttaac1140
ttcaacttacaatttcatccttaacgagaaacttttataaccacacaaatactctgcact1200
tctttttgacttgtttaggaccacaaattccaaaagtgtttattttattttttcttaaac1260
tccgtgcacagtcaaacatgttcacataaattgaaaccggagggattactacttattagg1320
aatattaaaaaaaataaaaaaaatacagagagatggcacgagaaaaaaactgcatgtaat1380
ttcactgatttatcatgagatgataagatgataagggtcatttcaaactctatataaagg1440
accaaaaaacacatcaaagttacgtaccaaaaaaaaatagagtaacataaacatatcaac1500
aac1503
<210>2
<211>1170
<212>DNA
<213>花生白藜芦醇合酶基因AhRESS
<400>2
atggtgtctgtgagtggaattcgcaaagttcaaagggcagaaggccctgcaactgtattg60
gcgataggcacagcaaatccaccaaattgtattgatcagagcacatatgctgattattat120
tttagagtaactaacagtgaacacatgactgatctcaagaagaagtttcagcgcatttgt180
gagagaacacaaatcaagaacagacatatgtacttaacagaagagatactgaaagagaat240
cctaacatgtgcgcatataaagcaccgtcgttggatgcaagggaagacatgatgatcagg300
gaggtaccaagggttggaaaagaggctgcaaccaaggccatcaaggaatggggtcagcca360
atgtctaagatcacacatttgatcttctgcaccaccagcggtgttgcattgcctggcgtt420
gattacgaactcatcatactcttaggactcgacccatccgtcaagaggtacatgatgtac480
caccaaggctgcttcgccggtggcactgtccttcgtttggctaaggacttggctgaaaac540
aacaaggatgctcgtgtgcttatcgtttgttctgagaataccgcagtcactttccgtggt600
cctagtgagacagacatggatagtcttgtagggcaagccttgtttgctgatggagctgct660
gcgattatcattggttctgatcctgtgccagaggttgaaaagcctatctttgaaattgtt720
tcgactgatcaaaaacttgtccctaacagccatggagccatcggtggtctccttcgtgaa780
gttgggcttacattctatcttaataagagtgttcctgatattatttcacaaaacatcaat840
gatgcgctcagtaaagcttttgatccattgggtatatctgattataactcaatattttgg900
attgcacatcctggtggacgtgcaattttagaccaggttgaacagaaagtgaacttgaaa960
ccagaaaagatgaaagccactagagacgtgcttagcaattatggtaacatgtcaagtgca1020
tgtgtgtttttcattatggatttgatgaggaagaagtctcttgaagaaggacttaaaacc1080
actggtgaaggacttgattggggtgtgcttcttggctttggtcctggtcttactattgaa1140
accgttgttctccgcagtgtggccatataa1170
<210>3
<211>22
<212>DNA
<213>人工序列
<400>3
atggtgtctgtgagtggaattc22
<210>4
<211>24
<212>DNA
<213>人工序列
<400>4
ttatatggccacactgcggagaac24
<210>5
<211>20
<212>DNA
<213>人工序列
<400>5
gtccttgcagtgctagattt20
<210>6
<211>20
<212>DNA
<213>人工序列
<400>6
gaaggtgcaagctacctctc20
<210>7
<211>34
<212>DNA
<213>人工序列
<400>7
gcgccgctcgagtaatactacaataataattaag34
<210>8
<211>33
<212>DNA
<213>人工序列
<400>8
cgctctagagttgttgatatgtttatgttactc33
<210>9
<211>38
<212>DNA
<213>人工序列
<400>9
tcgtggatccgccaccatggtgtctgtgagtggaattc38
<210>10
<211>35
<212>DNA
<213>人工序列
<400>10
tcctgagctcttatatggccacactgcggagaacg35
<210>11
<211>43
<212>DNA
<213>人工序列
<400>11
aggaggatccactagtaccatggtagatctgagggtaaatttc43
<210>12
<211>48
<212>DNA
<213>人工序列
<400>12
aggagagctcggcgcgcctaaatttagaaattcgagctggtcacctgt48

Claims (6)

1.启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法,其特征在于:包括以下步骤:
(1)克隆烟草根特异启动子NtR12和花生AhRESS基因;
(2)烟草根特异启动子NtR12驱动花生AhRESS基因表达载体pBI121-NtR12-AhRESS的构建;
(3)pBI121-NtR12-AhRESS经发根农杆菌介导转化本生烟草;
(4)转pBI121-NtR12-AhRESS本生烟草发状根液体悬浮培养;
(5)转pBI121-NtR12-AhRESS本生烟草发状根白藜芦醇含量的检测。
2.根据权利要求1所述的启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法,其特征在于:所述步骤(1)中所述烟草根特异启动子NtR12的序列为SEQIDNo:1,花生AhRESS基因的序列为SEQIDNo:2。
3.根据权利要求1所述的启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法,其特征在于:步骤(2)具体方法为:
1)将烟草根特异启动子NtR12连接至pMD18-T载体中,得到pMD18-NtR12载体;
2)pBI121-NtR12-GUSA载体构建:将pBI121载体进行酶切,切除该载体上的GUSA基因,从pCAMBIA-1301载体中克隆GUSA基因连接至pBI121载体上,构建pBI121-GUSA;将pBI121-GUSA载体进行酶切反应,切除35S启动子,将pMD18-NtR12载体进行酶切反应,将NtR12启动子连接至pBI121-GUSA载体中,得到pBI121-NtR12-GUSA载体;
3)pBI121-NtR12-AhRESS载体的构建:将花生AhRESS基因连接到pBI121-NtR12-GUSA载体中,得到pBI121-NtR12-AhRESS载体。
4.根据权利要求1所述的启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法,其特征在于:所述步骤(3)中发根农杆菌其介导的本生烟草遗传转化采用叶盘法。
5.根据权利要求1所述的启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法,其特征在于:所述步骤(4)中转pBI121-NtR12-AhRESS本生烟草发状根液体悬浮培养所用培养基为MS培养基+500mg/LCef,第一次继代培养基为MS培养基+300mg/LCef,第二次继代培养基为MS培养基+100mg/LCef,第三次继代培养基为MS培养基,三次继代后头孢霉素浓度降至0。
6.根据权利要求1所述的启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法,其特征在于:所述步骤(5)中转pBI121-NtR12-AhRESS本生烟草发状根白藜芦醇含量的检测方法为HPLC,色谱条件为:色谱柱ODS(250mm×4.6mm×5μm),流动相乙腈:水=25:75,流速1.0mL/min,检测波长306nm,柱温25℃,进样量10μL。
CN201610025955.1A 2016-01-15 2016-01-15 启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法 Pending CN105505989A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610025955.1A CN105505989A (zh) 2016-01-15 2016-01-15 启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610025955.1A CN105505989A (zh) 2016-01-15 2016-01-15 启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法

Publications (1)

Publication Number Publication Date
CN105505989A true CN105505989A (zh) 2016-04-20

Family

ID=55714282

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610025955.1A Pending CN105505989A (zh) 2016-01-15 2016-01-15 启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法

Country Status (1)

Country Link
CN (1) CN105505989A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11299700B1 (en) 2021-02-19 2022-04-12 Acequia Biotechnology, Llc Bioreactor containers and methods of growing hairy roots using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101160393A (zh) * 2005-02-22 2008-04-09 弗卢克索姆科学公司 用于生产白藜芦醇或者其寡聚或糖苷结合衍生物的代谢改造细胞
CN101824404A (zh) * 2009-03-03 2010-09-08 中国科学院植物研究所 白藜芦醇合酶及其编码基因与应用
CN101875937A (zh) * 2010-07-15 2010-11-03 福建农林大学 烟草根特异启动子的克隆及其在转基因植物上的应用
CN102605006A (zh) * 2012-02-17 2012-07-25 天津大学 一种白藜芦醇的生物生产方法
CN105039370A (zh) * 2015-07-09 2015-11-11 国际竹藤中心 用于生物合成白藜芦醇的融合基因、表达载体及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101160393A (zh) * 2005-02-22 2008-04-09 弗卢克索姆科学公司 用于生产白藜芦醇或者其寡聚或糖苷结合衍生物的代谢改造细胞
CN101824404A (zh) * 2009-03-03 2010-09-08 中国科学院植物研究所 白藜芦醇合酶及其编码基因与应用
CN101875937A (zh) * 2010-07-15 2010-11-03 福建农林大学 烟草根特异启动子的克隆及其在转基因植物上的应用
CN102605006A (zh) * 2012-02-17 2012-07-25 天津大学 一种白藜芦醇的生物生产方法
CN105039370A (zh) * 2015-07-09 2015-11-11 国际竹藤中心 用于生物合成白藜芦醇的融合基因、表达载体及制备方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHENEY,Y ET AL.: ""Arachis hypogaea trihydroxystilbene synthase mRNA,complete cds"Accession number:AY170347.1", 《GENBANK》 *
RUDIGER HAIN ET AL.: ""Expression of a stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol"", 《PLANT MOLECULAR BIOLOGY》 *
元英进: "《植物细胞培养工程》", 31 May 2004 *
卢圣栋: "《现代分子生物学实验技术(第2版)》", 31 December 1999 *
林荣华: ""花生白藜芦醇合酶基因转化烟草与番茄的初步研究"", 《中国学位论文全文数据库》 *
毕琮 等: ""紫外分光光度法测定转基因烟草叶片中白藜芦醇的含量"", 《山东农业科学》 *
许玉芬 等: ""花生白藜芦醇合酶基因转化单子叶植物表达载体的构建"", 《福建师范大学学报(自然科学版)》 *
郑世刚 等: ""白藜芦醇合成酶基因在基因工程中的应用及功能研究进展"", 《生物工程学报》 *
郭仰东: "《植物生物技术实验教程》", 30 June 2015 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11299700B1 (en) 2021-02-19 2022-04-12 Acequia Biotechnology, Llc Bioreactor containers and methods of growing hairy roots using the same

Similar Documents

Publication Publication Date Title
CN105505990A (zh) 特异启动子NtR2驱动AhRESS在花生发状根系产白藜芦醇的方法
CN104152475A (zh) 烟草ε-番茄红素环化酶基因及其应用
CN104086637B (zh) 烟草独脚金内酯转运蛋白NtPDR6及其干扰表达载体和应用
CN104357456A (zh) 葡萄特异抗白粉病基因VpR8H-1cDNA序列及其应用
CN107881172B (zh) 一种逆境诱导型启动子、逆境诱导型启动子植物表达载体及诱导目标基因表达方法
CN105755020A (zh) 三七丝裂原活化蛋白激酶激酶基因PnMAPKK1及其应用
CN105177007A (zh) 一种调控基因在非分泌型腺毛中表达的启动子及其应用
CN108486149A (zh) 一种黄瓜CsWRKY50基因在增强黄瓜霜霉病抗性中的应用
CN105505989A (zh) 启动子NtR12驱动AhRESS基因在本生烟草发状根产白藜芦醇的方法
CN105505983A (zh) NtR2根启动子驱动AhRESS在本生烟草发状根产白藜芦醇方法
CN110592100A (zh) 一种木薯camta基因及其抑制表达载体的构建和抗病应用
CN102618561B (zh) 与抗逆性相关基因及在提高植物对环境胁迫抗性中的应用
CN105543277A (zh) 特异启动子NtR12驱动AhRESS提高花生发状根系产白藜芦醇的方法
CN103103193B (zh) 一种人参pdr跨膜转运蛋白基因启动子及其应用
CN105274109A (zh) 一种调控基因在非分泌型腺毛中表达的启动子及其应用
CN102499037B (zh) 采用水培技术快速繁殖转基因青蒿的方法
CN102533804B (zh) 白沙蒿Δ12脂肪酸脱氢酶(As FAD2)基因及用途
CN105695471B (zh) 根特异性表达AhOda启动子及其应用
CN104263753A (zh) 一种提高农杆菌介导法转化小麦的转化率的方法
CN104628840B (zh) 植物耐逆性相关蛋白VrDREB2A及其编码基因与应用
CN107354161A (zh) 西瓜Cla005622基因在提高喜温作物低温胁迫抗性中的应用
CN103695422B (zh) 水稻根尖特异表达启动子Pro-Os04g24469及其应用
CN105463016A (zh) 一种诱导转基因花生发状根生物反应器产白藜芦醇的方法
CN106191059A (zh) 荠菜过氧化物酶基因启动子及其改良植物抗寒性中的应用
CN105779476A (zh) 一种茶树耐寒基因CsSPMS及其植物表达载体构建与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160420

RJ01 Rejection of invention patent application after publication