CN105490295A - 一种桥臂换流模块化多电平换流器电容电压控制方法 - Google Patents

一种桥臂换流模块化多电平换流器电容电压控制方法 Download PDF

Info

Publication number
CN105490295A
CN105490295A CN201510945328.5A CN201510945328A CN105490295A CN 105490295 A CN105490295 A CN 105490295A CN 201510945328 A CN201510945328 A CN 201510945328A CN 105490295 A CN105490295 A CN 105490295A
Authority
CN
China
Prior art keywords
change
voltage
converter
current
current angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510945328.5A
Other languages
English (en)
Other versions
CN105490295B (zh
Inventor
冯亚东
汪楠楠
卢宇
陈勇
汪涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NR Electric Co Ltd
NR Engineering Co Ltd
Changzhou NR Electric Power Electronics Co Ltd
Original Assignee
NR Electric Co Ltd
NR Engineering Co Ltd
Changzhou NR Electric Power Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NR Electric Co Ltd, NR Engineering Co Ltd, Changzhou NR Electric Power Electronics Co Ltd filed Critical NR Electric Co Ltd
Priority to CN201510945328.5A priority Critical patent/CN105490295B/zh
Publication of CN105490295A publication Critical patent/CN105490295A/zh
Application granted granted Critical
Publication of CN105490295B publication Critical patent/CN105490295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • H02J2003/365Reducing harmonics or oscillations in HVDC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Abstract

本发明公开了一种桥臂换流模块化多电平换流器电容电压控制方法,通过改变换流器触发控制环节中换流变压器连接换流电抗器处的相电压正向过零点的换流角α,切换相应相的上下桥臂的导通,维持桥臂子模块电容电压平衡,解决了桥臂子模块电容电压稳定性的问题,而且,换流角α控制满足桥臂交替导通多电平换流器阀组运行时的功率电压特性和阀组桥臂子模块耐压要求,并通过增加前馈与反馈环节,提高桥臂子模块电容电压调节的快速性,又解决了桥臂子模块电容电压稳定性的问题,操作过程简单可靠,易于实现,具有良好的应用前景。

Description

一种桥臂换流模块化多电平换流器电容电压控制方法
技术领域
本发明涉及直流输电技术系统,具体涉及一种桥臂换流模块化多电平换流器的电容电压控制方法。
背景技术
柔性直流输电采用电压源换流器,可以独立调节有功和无功的传输、提高交流系统的输电能力,易于构成多端直流输电系统,在可再生能源的发电并网、孤岛城市供电以及交流系统互联等应用领域,具有明显的竞争力。
目前,柔性直流输电电压源换流器拓扑多采用模块化多电平(modularmulti‐levelconverter)技术,该技术采用全桥子模块或者半桥子模块构成MMC换流器,但是其的缺点就是成本高、损耗大;桥臂交替导通多电平换流器(Alternate‐ArmMultilevelConverter),简称AAMC是电压源换流器的另外一种选择,与MMC换流器相比,AAMC上、下桥臂轮流导通,每个桥臂只导通半个周期,以此产生输出交流电压和直流电压,但是其的缺点就是电压和电流波形不对称,因此,无法实现桥臂子模块电容的自然充放电。
现有技术中还存在上、下桥臂短暂重叠导通创造直通电流方法和注入三次谐波电流方法来控制电容的充放电,以此实现电容电压的平衡控制。以上方法存在重叠导通法控制不稳定问题,同时缺乏针对阀组运行参数和运行特性进行定量化分析,没有提出针对换流器稳定运行工况和模块耐受电压要求的电容电压平衡控制方法。我们知道,电容电压平衡控制是多电平换流器一个基本控制要求,是保证交直流侧稳定交换功率和模块正常运行的基本要求,桥臂交替导通多电平换流器的电容电压平衡控制策略要求在对换流器稳定运行工况和模块耐受电压要求基础上,设计出正确的电容电压平衡控制方法,是当前急需解决的问题。
发明内容
本发明的目的是为了克服现有技术中没有针对换流器稳定运行工况和模块耐受电压要求的电容电压平衡控制方法的问题。本发明的桥臂换流模块化多电平换流器电容电压控制方法,通过改变换流器触发控制环节中换流变压器连接换流电抗器处的相电压正向过零点的换流角α,切换相应相的上下桥臂的导通,维持桥臂子模块电容电压平衡,解决了桥臂子模块电容电压稳定性的问题,具有良好的应用前景。
为了达到上述的目的,本发明所采用的技术方案是:
一种桥臂换流模块化多电平换流器的电容电压控制方法,其特征在于:包括以下步骤,
步骤(1),根据公式(1),计算得到前馈环节输出的前馈换流角α1
α 1 = ± a r c c o s ( U S ′ c o s φ U D C ′ ) + φ - - - ( 1 )
其中,U′S为换流器系统侧电压相对的标幺值,U′DC为直流电压相对换流器额定直流电压UDCN的标幺值,φ为换流器系统侧功率因素角,USN为换流器系统侧的额定电压;
步骤(2),根据公式(2),计算得到反馈环节输出的反馈换流角α2
α 2 = s i g n ( - φ ) × P I ( U C 2 - U 2 N ) - - - ( 2 )
其中,sign为符号函数,PI为比例积分函数,U2 C为桥臂子模块电容电压的平方,U2 N为桥臂子模块电容额定电压的平方;
步骤(3),根据公式(1)可知前馈换流角α1有两个值选择,当φ小于0时,当φ大于0时,前馈换流角α1的选择依据换流时阀侧相电压绝对值大小确定,优先选择换流时电压阀侧相电压较小的前馈换流角α1
步骤(4),根据公式(2)中的符号函数sign可知,反馈换流角α2有两个值选择,当φ小于0时,sign(-φ)=1.0,当φ大于0时,sign(-φ)=-1.0,
步骤(5),将步骤(3)选择的前馈换流角α1和步骤(4)选择的反馈换流角α2相加,得到换流变压器与换流电抗器之间连接点处的相电压过零点的换流角α;
步骤(6),根据换流角α,切换换流器相应相的上、下桥臂的导通,维持换流器桥臂子模块电容电压平衡。
本发明的有益效果是:本发明的桥臂换流模块化多电平换流器电容电压控制方法,通过改变换流器触发控制环节中换流变压器连接换流电抗器处的相电压正向过零点的换流角α,切换相应相的上下桥臂的导通,维持桥臂子模块电容电压平衡,解决了桥臂子模块电容电压稳定性的问题,具有良好的应用前景。
附图说明
图1是本发明的桥臂换流模块化多电平换流器的拓扑结构。
图2是本发明的桥臂换流模块化多电平换流器电容电压控制方法的系统框图。
具体实施方式
下面将结合说明书附图,对本发明作进一步的说明。
本发明的桥臂换流模块化多电平换流器电容电压控制方法,该方法用于如图1所示拓扑结构的上、下桥臂触发导通控制,通过改变换流器触发控制环节中换流变压器连接换流电抗器处的相电压正向过零点的换流角α,切换相应相的上、下桥臂的导通,达到维持桥臂子模块电容电压平衡的控制效果,控制满足桥臂交替导通多电平换流器阀组运行时的功率电压特性和阀组桥臂子模块耐压要求,并通过增加前馈与反馈环节,提高了桥臂子模块电容电压调节的快速性,解决了桥臂子模块电容电压稳定性的问题。本发明的桥臂换流模块化多电平换流器电容电压控制方法的系统框图,如图2所示,具体包括以下步骤,
步骤(1),根据公式(1),计算得到前馈环节输出的前馈换流角α1
α 1 = ± a r c c o s ( U S ′ c o s φ U D C ′ ) + φ - - - ( 1 )
其中,U′S为换流器系统侧电压相对的标幺值,U′DC为直流电压相对换流器额定直流电压UDCN的标幺值,φ为换流器系统侧功率因素角,USN为换流器系统侧的额定电压;
步骤(2),根据公式(2),计算得到反馈环节输出的反馈换流角α2
α 2 = s i g n ( - φ ) × P I ( U C 2 - U 2 N ) - - - ( 2 )
其中,sign为符号函数,PI为比例积分函数,U2 C为桥臂子模块电容电压的平方,U2 N为桥臂子模块电容额定电压的平方;
步骤(3),根据公式(1)可知前馈换流角α1有两个值选择,当φ小于0时,当φ大于0时,前馈换流角α1的选择依据换流时阀侧相电压(换流电抗器与桥臂连接处的相电压)绝对值大小确定,优先选择换流时电压阀侧相电压较小的前馈换流角α1
步骤(4),根据公式(2)中的符号函数sign可知,反馈换流角α2有两个值选择,当φ小于0时,sign(-φ)=1.0,当φ大于0时,sign(-φ)=-1.0,
步骤(5),将步骤(3)选择的前馈换流角α1和步骤(4)选择的反馈换流角α2相加,得到换流变压器与换流电抗器之间连接点处的相电压过零点的换流角α;
步骤(6),根据换流角α,切换换流器相应相的上、下桥臂的导通,维持换流器桥臂子模块电容电压平衡。
综上所述,本发明的桥臂换流模块化多电平换流器电容电压控制方法,通过对桥臂交替导通多电平换流器电容充放电过程分析基础上,提出在特定换流角α方式下通过切换上、下桥臂的导通来保持桥臂电容电压的平衡,能够实现桥臂子模块电容电压稳定控制,操作过程简单可靠,易于实现,具有良好的应用前景。
以上显示和描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (1)

1.一种桥臂换流模块化多电平换流器的电容电压控制方法,其特征在于:
步骤(1),根据公式(1),计算得到前馈环节输出的前馈换流角α1
α 1 = ± a r c c o s ( U S ′ c o s φ U D C ′ ) + φ - - - ( 1 )
其中,U′S为换流器系统侧电压相对的标幺值,U′DC为直流电压相对换流器额定直流电压UDCN的标幺值,φ为换流器系统侧功率因素角,USN为换流器系统侧的额定电压;
步骤(2),根据公式(2),计算得到反馈环节输出的反馈换流角α2
α 2 = s i g n ( - φ ) × P I ( U C 2 - U 2 N ) - - - ( 2 )
其中,sign为符号函数,PI为比例积分函数,U2 C为桥臂子模块电容电压的平方,U2 N为桥臂子模块电容额定电压的平方;
步骤(3),根据公式(1)可知前馈换流角α1有两个值选择,当φ小于0时,当φ大于0时,前馈换流角α1的选择依据换流时阀侧相电压绝对值大小确定,优先选择换流时电压阀侧相电压较小的前馈换流角α1
步骤(4),根据公式(2)中的符号函数sign可知,反馈换流角α2有两个值选择,当φ小于0时,sign(-φ)=1.0,当φ大于0时,sign(-φ)=-1.0,
步骤(5),将步骤(3)选择的前馈换流角α1和步骤(4)选择的反馈换流角α2相加,得到换流变压器与换流电抗器之间连接点处的相电压过零点的换流角α;
步骤(6),根据换流角α,切换换流器相应相的上、下桥臂的导通,维持换流器桥臂子模块电容电压平衡。
CN201510945328.5A 2015-12-16 2015-12-16 一种桥臂换流模块化多电平换流器电容电压控制方法 Active CN105490295B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510945328.5A CN105490295B (zh) 2015-12-16 2015-12-16 一种桥臂换流模块化多电平换流器电容电压控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510945328.5A CN105490295B (zh) 2015-12-16 2015-12-16 一种桥臂换流模块化多电平换流器电容电压控制方法

Publications (2)

Publication Number Publication Date
CN105490295A true CN105490295A (zh) 2016-04-13
CN105490295B CN105490295B (zh) 2018-03-13

Family

ID=55677112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510945328.5A Active CN105490295B (zh) 2015-12-16 2015-12-16 一种桥臂换流模块化多电平换流器电容电压控制方法

Country Status (1)

Country Link
CN (1) CN105490295B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208788A (zh) * 2016-08-29 2016-12-07 东北电力大学 一种基于aac的多模块电压源型逆变器
CN109597298A (zh) * 2018-11-15 2019-04-09 许继集团有限公司 柔性直流换流阀暂态电流试验系统的电流控制方法及系统
CN110350798A (zh) * 2019-06-27 2019-10-18 浙江大学 模块化多电平谐振变换器的桥臂间均压控制方法
CN114019272A (zh) * 2021-10-18 2022-02-08 清华大学 一种换流器测试电路和测试方法
CN114826000A (zh) * 2022-05-09 2022-07-29 北京易菲盛景科技有限责任公司 三桥臂多电平变换器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580521A (zh) * 2013-11-18 2014-02-12 南京南瑞继保电气有限公司 一种多电平电压源换流器及其控制方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580521A (zh) * 2013-11-18 2014-02-12 南京南瑞继保电气有限公司 一种多电平电压源换流器及其控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MICHAËL M. C. MERLIN等: ""The Alternate Arm Converter :A New Hybrid Multilevel Converter With DC-Fault Blocking Capability"", 《IEEE TRANSACTIONS ON POWER DELIVERY》 *
薛英林等: ""桥臂交替导通多电平换流器电容电压平衡控制"", 《电力自动化设备》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208788A (zh) * 2016-08-29 2016-12-07 东北电力大学 一种基于aac的多模块电压源型逆变器
CN109597298A (zh) * 2018-11-15 2019-04-09 许继集团有限公司 柔性直流换流阀暂态电流试验系统的电流控制方法及系统
CN110350798A (zh) * 2019-06-27 2019-10-18 浙江大学 模块化多电平谐振变换器的桥臂间均压控制方法
CN114019272A (zh) * 2021-10-18 2022-02-08 清华大学 一种换流器测试电路和测试方法
CN114826000A (zh) * 2022-05-09 2022-07-29 北京易菲盛景科技有限责任公司 三桥臂多电平变换器

Also Published As

Publication number Publication date
CN105490295B (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
EP3082212B1 (en) Tripolar flexible direct-current power transmission system and method
CN105490295A (zh) 一种桥臂换流模块化多电平换流器电容电压控制方法
CN102420533B (zh) 一种混合多电平换流电路拓扑结构及其控制方法
CN103595274B (zh) 一种双向功率流高频隔离有源钳位整流器的控制方法
CN102223090B (zh) 大功率简化型电解电镀高频开关电源及其控制方法
CN107294392A (zh) 一种双向dcdc变换器
CN102377324A (zh) 适合于高压应用的变流桥臂及其应用系统
CN104079002A (zh) 光伏储能系统并网模式下的双闭环控制方法
CN104201910A (zh) 适用于vsc-hvdc的三相模块化多电平换流器的子模块电容电压平衡控制方法
CN102255550B (zh) 基于三相桥式逆变电路的电源裂相装置及其控制方法
CN108418455B (zh) 一种多电平逆变器的控制方法、装置以及逆变器
CN102611345A (zh) 基于循环嵌套机理的模块化多电平换流器结构的拓扑方法
CN104201909A (zh) 一种用于vsc-hvdc的三相模块化多电平换流器及其载波移相调制方法
CN107888096B (zh) 一种三相两桥臂三电平混合整流器
CN109728731A (zh) 一种具有模块化整流结构的谐振变换器
CN106787859A (zh) 基于全桥结构的组合式三相单级apfc变换器及其控制装置
CN102437575B (zh) 一种中高压无变压器结构统一电能质量控制器
CN105763086A (zh) 一种mmc变流器的五级子模块电容电压平衡控制方法
CN105656336A (zh) 一种降低直流侧谐波的换流器结构
CN114421802A (zh) 一种桥臂飞跨型模块化多电平换流器拓扑及其控制方法
EP3157120B1 (en) Modular multi-level flexible direct-current topology circuit suitable for fault ride-through
CN107769216A (zh) 一种用于弱交流电网接入的电压调制方法
CN103280955A (zh) 双反星形晶闸管整流系统的直流侧谐波抑制系统与方法
CN102983730A (zh) 双反星形整流系统的直流侧谐波抑制系统与方法
CN104993510A (zh) 基于模块化多电平换流器的柔性直流输电系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant