CN105490016A - Broadband directional antenna based on resonant reflector - Google Patents
Broadband directional antenna based on resonant reflector Download PDFInfo
- Publication number
- CN105490016A CN105490016A CN201610039770.6A CN201610039770A CN105490016A CN 105490016 A CN105490016 A CN 105490016A CN 201610039770 A CN201610039770 A CN 201610039770A CN 105490016 A CN105490016 A CN 105490016A
- Authority
- CN
- China
- Prior art keywords
- ring
- metal
- layer
- resonant
- antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002184 metal Substances 0.000 claims abstract description 107
- 230000005855 radiation Effects 0.000 claims abstract description 60
- 239000000758 substrate Substances 0.000 claims abstract description 55
- 230000008859 change Effects 0.000 claims description 5
- 230000008901 benefit Effects 0.000 abstract description 4
- 230000009977 dual effect Effects 0.000 abstract description 2
- 239000004020 conductor Substances 0.000 description 10
- 238000004891 communication Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/14—Reflecting surfaces; Equivalent structures
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
本发明公开一种基于谐振式反射器的宽带定向天线,主要由宽带天线本体层、谐振式反射器层和引向器层组成;谐振式反射器层位于宽带天线本体层的正下方;引向器层位于宽带天线本体层的正上方。宽带天线本体层包括本体介质基板、以及覆贴于本体介质基板的上的主辐射贴片和金属加载环。谐振式反射器层包括谐振介质基板和覆贴于谐振介质基板的金属谐振环。引向器层包括引向介质基板和覆贴于引向介质基板金属引向环。由于本发明既克服了天线加载传统金属反射板所需的较高的剖面,又克服了天线加载AMC结构所需要的较大的面积以及较窄的频带,因此本发明具有双重优势。
The invention discloses a broadband directional antenna based on a resonant reflector, which is mainly composed of a broadband antenna body layer, a resonant reflector layer and a director layer; the resonant reflector layer is located directly below the broadband antenna body layer; The sensor layer is located directly above the broadband antenna body layer. The broadband antenna body layer includes a body dielectric substrate, a main radiation patch and a metal loading ring attached to the body dielectric substrate. The resonant reflector layer includes a resonant medium substrate and a metal resonant ring attached to the resonant medium substrate. The director layer includes a guide medium substrate and a metal guide ring attached to the guide medium substrate. The present invention has dual advantages because it not only overcomes the high section required for the antenna to load the traditional metal reflector, but also overcomes the large area and narrow frequency band required for the antenna to load the AMC structure.
Description
技术领域technical field
本发明涉及宽带天线以及定向天线领域,具体涉及一种基于谐振式反射器的宽带定向天线。The invention relates to the field of broadband antennas and directional antennas, in particular to a broadband directional antenna based on a resonant reflector.
背景技术Background technique
随着社会与科技的进步,无线通信技术得到了迅速的发展,信号的带宽也在不断的提高。超宽带(Ultra-Wideband)天线作为宽带通信系统中的核心器件也得到了长足的发展。然而,超宽带天线有一些普遍的缺点,比如为了提高带宽而不得不做出增益的牺牲;以及高频的方向图会恶化,等等。这些缺点严重影响通信质量。而且超宽带天线通常是全向辐射或者双向辐射的,而随着现代载体系统上的天线越来越多,电磁兼容是一个很大的问题;在需要高保密性以及高抗扰性的领域上应用价值也不大。解决这些不足之处的一个简单经济的办法是使用定向辐射的超宽带天线。With the progress of society and technology, wireless communication technology has been developed rapidly, and the bandwidth of signals is also continuously improved. Ultra-Wideband (Ultra-Wideband) antennas, as the core components in broadband communication systems, have also been greatly developed. However, UWB antennas have some general disadvantages, such as having to sacrifice gain in order to increase bandwidth; and the pattern will deteriorate at high frequencies, and so on. These shortcomings seriously affect the communication quality. Moreover, ultra-wideband antennas usually radiate omnidirectionally or bidirectionally. With more and more antennas on modern carrier systems, electromagnetic compatibility is a big problem; in fields that require high confidentiality and high immunity The application value is not great. A simple and economical solution to these deficiencies is to use ultra-wideband antennas with directional radiation.
定向天线一般分为微带天线、对数周期天线、八木天线、抛物面天线、喇叭天线、Vivaldi天线和使用金属反射面的天线等。上述天线都具有较高的定向性,但是遗憾的是,它们都有自身的不足:微带天线由于在介质基板的另一面覆盖了金属层作为地板,可以取得很好的定向性,但是金属层的存在导致微带天线的阻抗带宽非常窄,通常只有5%左右;八木天线通常具有10dBi以上的前向增益,但是其固有的窄频带和端射的特性限制了它的应用范围;对数周期天线和Vivaldi天线属于非频变天线,它们具有很宽的阻抗带宽,同时在整个通频带内也可以保持比较稳定的方向性,但是其较大的尺寸及端射特性使其在便携式应用领域内毫无优势可言;而抛物面天线和喇叭天线同样由于相对较大的尺寸而被限制了应用范围。使用金属反射面的定向天线是在宽带天线上使用金属导体(可等效为理想导体,PerfectElectricConductor,PEC)作为反射面。根据PEC表面的边界条件,电场的切向分量为零,所以反射波会产生180°的相位差。因此必须保证天线与金属反射板的间距为四分之一波长,使得反射波与直射波在远场能够同相叠加。天线与金属反射板的间距为四分之一波长的要求使得在低频应用中天线将变得非常厚,而且天线的带宽也不宽;另外,为取得较好的定向性反射板的尺寸也需要较大,不利于小型化。而且,除微带天线外,上述其他天线都不属于低剖面结构。Directional antennas are generally divided into microstrip antennas, log-periodic antennas, Yagi antennas, parabolic antennas, horn antennas, Vivaldi antennas, and antennas using metal reflectors. The above antennas all have high directivity, but unfortunately, they all have their own shortcomings: the microstrip antenna can achieve good directivity because the metal layer is covered on the other side of the dielectric substrate as the floor, but the metal layer The existence of the microstrip antenna leads to a very narrow impedance bandwidth, usually only about 5%; the Yagi antenna usually has a forward gain of more than 10dBi, but its inherent narrow frequency band and end-fire characteristics limit its application range; logarithmic period Antennas and Vivaldi antennas are frequency-invariant antennas. They have a wide impedance bandwidth and can maintain relatively stable directivity throughout the passband. However, their large size and end-fire characteristics make them suitable for portable applications. There is no advantage at all; parabolic and horn antennas are also limited in application due to their relatively large size. The directional antenna using the metal reflector uses a metal conductor (which can be equivalent to an ideal conductor, Perfect Electric Conductor, PEC) as the reflector on the broadband antenna. According to the boundary conditions of the PEC surface, the tangential component of the electric field is zero, so the reflected wave will produce a phase difference of 180°. Therefore, it is necessary to ensure that the distance between the antenna and the metal reflector is a quarter wavelength, so that the reflected wave and the direct wave can be superimposed in the same phase in the far field. The requirement that the distance between the antenna and the metal reflector is a quarter wavelength makes the antenna very thick in low-frequency applications, and the bandwidth of the antenna is not wide; in addition, in order to obtain a better size of the directional reflector also requires Larger, not conducive to miniaturization. Moreover, except for the microstrip antenna, none of the other antennas mentioned above belong to the low-profile structure.
近年随着电磁超材料(metamaterial)的发展,出现了一类使用人工磁导体(ArtificialMagneticConductor,AMC)作为反射面的定向天线。AMC是将强谐振结构周期排列的人工电磁材料,以模拟理想磁导体(PerfectMagneticConductor,PMC)的的特性,使得在特定频率实现零相位反射。由于AMC的零相位反射特性,将金属导体反射面换成AMC,理论上天线与AMC的距离可以无限靠近,因此可以实现低剖面的定向天线。而且,有些结构的AMC,如1999年美国学者D.Sievenpiper提出了的蘑菇型电磁带隙(Electromagneticband-gap,EBG)结构,零反射相位频段与高阻特性的带隙频段相同,因此使用其作为反射面还同时具有抑制表面波,改善旁瓣和后瓣的特性。但是AMC表面也有其缺点,首先这种表面的频带特别窄,难以得到宽带特性,更别说超宽带了;其次,AMC表面为周期性结构,需要多个周期才能实现良好功能,其平面尺寸较大;第三,AMC结构与天线的距离很近,二者间的耦合很强,因而使得天线的设计和优化效率低。In recent years, with the development of electromagnetic metamaterials, a class of directional antennas using artificial magnetic conductors (Artificial Magnetic Conductor, AMC) as reflective surfaces has emerged. AMC is an artificial electromagnetic material that periodically arranges strong resonant structures to simulate the characteristics of an ideal magnetic conductor (Perfect Magnetic Conductor, PMC), so that zero-phase reflection can be achieved at a specific frequency. Due to the zero-phase reflection characteristic of AMC, if the metal conductor reflective surface is replaced with AMC, the distance between the antenna and AMC can be infinitely close in theory, so a directional antenna with a low profile can be realized. Moreover, some AMC structures, such as the mushroom-shaped electromagnetic band-gap (EBG) structure proposed by American scholar D. Sievenpiper in 1999, have the same zero-reflection phase frequency band as the high-impedance band-gap frequency band, so it is used as The reflective surface also has the characteristics of suppressing surface waves and improving side lobes and back lobes. However, the AMC surface also has its disadvantages. First, the frequency band of this surface is very narrow, and it is difficult to obtain broadband characteristics, let alone ultra-wideband; second, the AMC surface is a periodic structure, which requires multiple cycles to achieve good functions. Third, the distance between the AMC structure and the antenna is very close, and the coupling between the two is very strong, which makes the design and optimization efficiency of the antenna low.
目前国内对于宽带定向天线的研究多为八木天线、抛物面天线、喇叭天线、采用金属反射板的天线等。如公告号为CN103825091A的中国发明专利申请公开的“超宽带定向天线”;公告号为CN102544721A的中国发明专利申请公开的“一种平面印刷宽带定向天线”;公告号为CN102738572A的中国发明专利申请公开的“宽带定向微带贴片天线”和公告号为CN101752669A的中国发明专利申请公开的“宽带高效率室内定向天线”。上述研究虽然通过一定的方法产生了一定的定向性,但是它们的前后比并不是特别高,而且所有的这些方法在设计上稍显复杂。这样增加了设计成本且在某些场合并不适用。还有,这些专利不能满足天线低剖面、小型化的要求。At present, domestic research on broadband directional antennas is mostly Yagi antennas, parabolic antennas, horn antennas, and antennas using metal reflectors. For example, the Chinese invention patent application with the notification number CN103825091A discloses "ultra-wideband directional antenna"; the Chinese invention patent application with the notification number CN102544721A discloses "a flat-printed broadband directional antenna"; the Chinese invention patent application with the notification number CN102738572A discloses The "Broadband Directional Microstrip Patch Antenna" and the "Broadband High Efficiency Indoor Directional Antenna" disclosed in the Chinese invention patent application with the notification number CN101752669A. Although the above-mentioned studies have produced a certain degree of orientation through certain methods, their front-to-back ratios are not particularly high, and all these methods are slightly complicated in design. This increases the design cost and is not applicable in some occasions. Also, these patents cannot meet the requirements of low-profile and miniaturized antennas.
发明内容Contents of the invention
本发明所要解决的是天线加载传统金属反射板需要较高的剖面和天线加载AMC结构需要较大的面积以及较窄的频带的不足,提供一种基于谐振式反射器的宽带定向天线。What the present invention aims to solve is that the traditional metal reflector for antenna loading requires a higher section and the AMC structure for antenna loading requires a larger area and narrower frequency band, and provides a broadband directional antenna based on a resonant reflector.
为解决上述问题,本发明是通过以下技术方案实现的:In order to solve the above problems, the present invention is achieved through the following technical solutions:
一种基于谐振式反射器的宽带定向天线,主要由宽带天线本体层、谐振式反射器层和引向器层组成;谐振式反射器层位于宽带天线本体层的正下方;引向器层位于宽带天线本体层的正上方。上述宽带天线本体层包括本体介质基板、主辐射贴片和金属加载环;主辐射贴片和金属加载环同时覆贴于本体介质基板的同一侧表面,且金属加载环呈环状,并环绕在主辐射贴片的相对外侧;主辐射贴片的中心设有馈电点。上述谐振式反射器层包括谐振介质基板和金属谐振环;金属谐振环环状,并覆贴于谐振介质基板的一侧表面。上述引向器层包括引向介质基板和金属引向环;金属引向环环状,并覆贴于引向介质基板的一侧表面。A broadband directional antenna based on a resonant reflector, mainly composed of a broadband antenna body layer, a resonant reflector layer and a director layer; the resonant reflector layer is located directly below the broadband antenna body layer; the director layer is located Just above the broadband antenna body layer. The above-mentioned broadband antenna body layer includes a body dielectric substrate, a main radiation patch and a metal loading ring; the main radiation patch and the metal loading ring are simultaneously attached to the same side surface of the body dielectric substrate, and the metal loading ring is ring-shaped and surrounds the The relative outer side of the main radiation patch; the center of the main radiation patch is provided with a feeding point. The above-mentioned resonant reflector layer includes a resonant medium substrate and a metal resonant ring; the metal resonant ring is ring-shaped and attached to one side surface of the resonant medium substrate. The above-mentioned director layer includes a guide medium substrate and a metal guide ring; the metal guide ring is ring-shaped and covered on one side surface of the guide medium substrate.
上述方案中,主辐射贴片和金属加载环同时覆贴于本体介质基板的上表面,金属谐振环覆贴于谐振介质基板的下表面,金属引向环覆贴于引向介质基板的上表面。In the above scheme, the main radiation patch and the metal loading ring are simultaneously attached to the upper surface of the body dielectric substrate, the metal resonant ring is attached to the lower surface of the resonant dielectric substrate, and the metal guide ring is attached to the upper surface of the leading dielectric substrate. .
上述方案中,所述宽带天线本体层还进一步包括一微带渐变阻抗变换器,该微带渐变阻抗变换器垂直置于本体介质基板的下方,且微带渐变阻抗变换器的上端与主辐射贴片的馈电点相连。In the above scheme, the broadband antenna body layer further includes a microstrip tapered impedance transformer, which is placed vertically below the body dielectric substrate, and the upper end of the microstrip tapered impedance transformer is connected to the main radiation. The feed point of the chip is connected.
上述方案中,谐振式反射器层与宽带天线本体层之间的距离大于引向器层与宽带天线本体层之间的距离。In the above solution, the distance between the resonant reflector layer and the broadband antenna body layer is greater than the distance between the director layer and the broadband antenna body layer.
上述方案中,谐振式反射器层与宽带天线本体层之间的距离为0.07λ~0.11λ,引向器层与宽带天线本体层的距离为0.03λ~0.05λ,其中λ为主辐射贴片的工作频带起始频率对应波长。In the above scheme, the distance between the resonant reflector layer and the broadband antenna body layer is 0.07λ~0.11λ, and the distance between the director layer and the broadband antenna body layer is 0.03λ~0.05λ, where λ is the main radiation patch The starting frequency of the working frequency band corresponds to the wavelength.
上述方案中,所述主辐射贴片、金属加载环、金属谐振环和金属引向环的中心均在同一条垂直直线上。In the above solution, the centers of the main radiation patch, the metal loading ring, the metal resonating ring and the metal guiding ring are all on the same vertical straight line.
上述方案中,所述金属加载环、金属谐振环和金属引向环均为圆环状。In the above solution, the metal loading ring, the metal resonating ring and the metal guiding ring are all circular.
上述方案中,所述主辐射贴片为扇状蝴蝶结形。In the above solution, the main radiation patch is in the shape of a fan-shaped bow tie.
上述方案中,金属谐振环的尺寸与金属加载环的尺寸相匹配,金属引向环的尺寸与主辐射贴片的尺寸相匹配。In the above solution, the size of the metal resonant ring matches the size of the metal loading ring, and the size of the metal guide ring matches the size of the main radiation patch.
与现有技术相比,本发明具有如下特点:Compared with prior art, the present invention has following characteristics:
1、通过在宽带天线本体层下方放置谐振式反射器层,使得较宽频段的电磁波被反射回去,与天线本体的直射波在天线上方同相叠加,从而得到宽频带的定向辐射波。1. By placing a resonant reflector layer under the broadband antenna body layer, the electromagnetic waves of a wider frequency band are reflected back, and superimposed in phase with the direct wave of the antenna body above the antenna, thereby obtaining broadband directional radiation waves.
2、反射器为谐振式结构,尺寸较小,且仅使用一个反射器就能在宽频带上取得良好的定向性,因此天线结构紧凑;2. The reflector is a resonant structure with a small size, and only one reflector can achieve good directivity over a wide frequency band, so the antenna structure is compact;
3、谐振式反射器层处的反射相位小于金属地板反射器的180°,天线本体与反射器间的距离可远小于四分之一波长,因此天线又具有低剖面的特点。3. The reflection phase at the resonant reflector layer is smaller than 180° of the metal floor reflector, and the distance between the antenna body and the reflector can be much smaller than a quarter wavelength, so the antenna has the characteristics of low profile.
4、天线优化效率高,节约了系统资源;适用于宽频带、小型化和低剖面的定向辐射系统中。4. The antenna optimization efficiency is high, which saves system resources; it is suitable for broadband, miniaturization and low-profile directional radiation systems.
附图说明Description of drawings
图1为一种基于谐振式反射器的宽带定向天线的辐射层的正视图;Fig. 1 is a front view of a radiation layer of a broadband directional antenna based on a resonant reflector;
图2为一种基于谐振式反射器的宽带定向天线的引向器层层的正视图;Fig. 2 is a kind of front view of the director layer-by-layer of the broadband directional antenna based on the resonant reflector;
图3为一种基于谐振式反射器的宽带定向天线的反射器层的正视图;Fig. 3 is a front view of a reflector layer of a broadband directional antenna based on a resonant reflector;
图4为一种基于谐振式反射器的宽带定向天线的整体侧视图;4 is an overall side view of a broadband directional antenna based on a resonant reflector;
图5为天线的S11曲线;Fig. 5 is the S11 curve of the antenna;
图6为天线的谐振式反射器层在天线本体处的反射相位;Fig. 6 is the reflection phase of the resonant reflector layer of the antenna at the antenna body;
图7为天线在2.0GHz处的辐射方向图;Figure 7 is the radiation pattern of the antenna at 2.0GHz;
图8为天线在3.0GHz处的辐射方向图;Figure 8 is the radiation pattern of the antenna at 3.0GHz;
图9为天线在4.2GHz处的辐射方向图;Figure 9 is the radiation pattern of the antenna at 4.2GHz;
图10为天线前瓣和后瓣随频率的变化情况;Figure 10 shows the variation of antenna front lobe and back lobe with frequency;
图11为天线前后比随频率的变化情况;Figure 11 shows the variation of the front-to-back ratio of the antenna with frequency;
图中标号:1、宽带天线本体层;1-1本体介质基板;1-2、主辐射贴片;1-3、金属加载环;1-4、微带渐变阻抗变换器;2、谐振式反射器层;2-1、谐振介质基板;2-2、金属谐振环;3、引向器层;3-1引向介质基板;3-2、金属引向环。Labels in the figure: 1, broadband antenna body layer; 1-1 body dielectric substrate; 1-2, main radiation patch; 1-3, metal loading ring; 1-4, microstrip gradient impedance converter; 2, resonant type Reflector layer; 2-1, resonant medium substrate; 2-2, metal resonant ring; 3, director layer; 3-1 guide medium substrate; 3-2, metal guide ring.
具体实施方式detailed description
一种基于谐振式反射器的宽带定向天线,如图1-4所示,该天线有3层,从上到下分别为引向器层3、宽带天线本体层1和谐振式反射器层2,即谐振式反射器层2位于宽带天线本体层1的正下方;引向器层3位于宽带天线本体层1的正上方。在本发明优选实施例中,引向器层3,宽带天线本体层1以及谐振式反射器层2是通过塑料棒进行支撑的。谐振式反射器层2与宽带天线本体层1之间的距离大于引向器层3与宽带天线本体层1之间的距离。谐振式反射器层2的反射相位小于传统金属反射板(PEC)所具有的180°,且约在90°到150°之间。因此,谐振式反射器层2与天线之间的距离可以小于金属反射板(PEC)所要求的0.25λ,以获得低的天线剖面;但是,谐振式反射器层2与天线之间的距离大于AMC的所要求的零距离,因此减弱了天线本体与反射器之间的耦合,提高设计效率,且可获得较宽的频带;适当选取谐振式反射器层2与宽带天线本体层1之间的距离就可以使直射波与反射波同相叠加。本实施例中,引向器层3在本发明中仅仅起到聚束作用,与天线本体之间的距离不对天线的带宽造成太大的影响。在本发明优选实施例中,谐振式反射器层2与宽带天线本体层1之间的距离为0.07λ~0.11λ,引向器层3与宽带天线本体层1的距离为0.03λ~0.05λ,其中λ为主辐射贴片1-2的工作频带起始频率对应波长。A broadband directional antenna based on a resonant reflector, as shown in Figure 1-4, the antenna has three layers, from top to bottom are director layer 3, broadband antenna body layer 1 and resonant reflector layer 2 , that is, the resonant reflector layer 2 is located directly below the broadband antenna body layer 1 ; the director layer 3 is located directly above the broadband antenna body layer 1 . In a preferred embodiment of the present invention, the director layer 3, the broadband antenna body layer 1 and the resonant reflector layer 2 are supported by plastic rods. The distance between the resonant reflector layer 2 and the broadband antenna body layer 1 is greater than the distance between the director layer 3 and the broadband antenna body layer 1 . The reflection phase of the resonant reflector layer 2 is less than 180° of the traditional metal reflector (PEC), and is approximately between 90° and 150°. Therefore, the distance between the resonant reflector layer 2 and the antenna can be less than 0.25λ required by the metal reflector (PEC) to obtain a low antenna profile; however, the distance between the resonant reflector layer 2 and the antenna is greater than The required zero distance of AMC thus weakens the coupling between the antenna body and the reflector, improves the design efficiency, and can obtain a wider frequency band; properly select the distance between the resonant reflector layer 2 and the broadband antenna body layer 1 The distance can make the direct wave and the reflected wave superimpose in phase. In this embodiment, the director layer 3 only plays the role of focusing in the present invention, and the distance from the antenna body does not have a great influence on the bandwidth of the antenna. In a preferred embodiment of the present invention, the distance between the resonant reflector layer 2 and the broadband antenna body layer 1 is 0.07λ~0.11λ, and the distance between the director layer 3 and the broadband antenna body layer 1 is 0.03λ~0.05λ , where λ corresponds to the wavelength corresponding to the starting frequency of the operating frequency band of the main radiation patch 1-2.
上述宽带天线本体层1包括本体介质基板1-1、主辐射贴片1-2、金属加载环1-3和微带渐变阻抗变换器1-4。主辐射贴片1-2采用宽带贴片形式,以获得宽频带特性。金属加载环1-3用以进一步改善阻抗特性的同时使天线的辐射特性也大大改观。主辐射贴片1-2和金属加载环1-3均覆贴于本体介质基板1-1的上表面,且金属加载环1-3呈环状,并环绕在主辐射贴片1-2的相对外侧。主辐射贴片1-2的中心设有馈电点。微带渐变阻抗变换器1-4垂直置于本体介质基板1-1的下方,且微带渐变阻抗变换器1-4的上端与主辐射贴片1-2的馈电点相连,微带渐变阻抗变换器1-4的下端可以垂直悬于宽带天线本体层1和谐振式反射器层2之间,也可以从谐振式反射器层2上开设的通孔垂直穿过。在本发明优选实施例中,主辐射贴片1-2位于本体介质基板1-1的正中,金属加载环1-3的外边界与本体介质基板1-1的边缘重合,主辐射贴片1-2、金属加载环1-3和本体介质基板1-1三者共中心。本发明对于主辐射贴片1-2的结构并未有严格限定,其可以是现有技术中已有的馈电点在其中心的辐射天线结构,如可以是阿基米德螺旋天线、圆形贴片、椭圆形贴片、三角形贴片、梯形贴片、或它们的变形,但必须是对称结构。在本发明优选实施例中,主辐射贴片1-2采用扇形蝴蝶结的形式,以使天线具有更好的阻抗特性。该主辐射贴片1-2由2个相对设置的扇形金属贴片所组成,2个扇形金属贴片的中心相对并形成馈电点。主辐射贴片1-2采用扇状蝴蝶结形,其扇形半径r0决定了该宽带天线低频截止频率。但是,一般的扇状蝴蝶结形的天线有一个致命的缺点,即在高频时贴片上的反向电流会使得方向图分裂。本发明中,金属加载环1-3的形状可以是为方形、花朵形、或其他关于中心对称的环形结构,但在本发明优选实施例中,金属加载环1-3为圆环形。通过在主辐射贴片1-2的外部加载了一圈金属加载环1-3,该金属加载环1-3等效为2个半波振子,金属加载环1-3对应于低频的辐射,而主辐射贴片1-2辐射较高的频率,以在整个频段获得较一致的电流,从而改善整个天线的辐射特性,同时可以很明显的改善其阻抗特性。微带渐变阻抗变换器1-4用于为宽带天线本体层1馈电。微带渐变阻抗变换器1-4为75Ω—50Ω的微带线渐变平衡-不平衡转换器即微带渐变巴伦,以将天线阻抗从75Ω变换到50Ω。微带渐变阻抗变换器1-4采用现有技术已有的结构,由于用于阻抗变换以及平衡到不平衡变换的微带渐变阻抗变换器1-4的技术成熟,在此不做过多讨论。The broadband antenna body layer 1 includes a body dielectric substrate 1-1, a main radiation patch 1-2, a metal loading ring 1-3 and a microstrip tapered impedance transformer 1-4. The main radiation patch 1-2 is in the form of a broadband patch to obtain broadband characteristics. The metal loading rings 1-3 are used to further improve the impedance characteristics and at the same time greatly improve the radiation characteristics of the antenna. Both the main radiation patch 1-2 and the metal loading ring 1-3 are attached to the upper surface of the body dielectric substrate 1-1, and the metal loading ring 1-3 is ring-shaped and surrounds the main radiation patch 1-2. Relatively outside. The center of the main radiation patch 1-2 is provided with a feeding point. The microstrip gradually changing impedance converter 1-4 is placed vertically below the body dielectric substrate 1-1, and the upper end of the microstrip gradually changing impedance converter 1-4 is connected to the feed point of the main radiation patch 1-2, and the microstrip gradually changing The lower ends of the impedance converters 1-4 can be vertically suspended between the broadband antenna body layer 1 and the resonant reflector layer 2, or can pass through holes opened on the resonant reflector layer 2 vertically. In a preferred embodiment of the present invention, the main radiation patch 1-2 is located in the middle of the body dielectric substrate 1-1, the outer boundary of the metal loading ring 1-3 coincides with the edge of the body dielectric substrate 1-1, and the main radiation patch 1 -2. The metal loading ring 1-3 and the body dielectric substrate 1-1 are in the same center. The present invention is not strictly limited to the structure of the main radiation patch 1-2, which can be the existing radiation antenna structure in the prior art with the feed point at its center, such as an Archimedes spiral antenna, a circular Shaped patches, elliptical patches, triangular patches, trapezoidal patches, or their deformations, but must be symmetrical structures. In a preferred embodiment of the present invention, the main radiation patch 1-2 is in the form of a fan-shaped bow tie, so that the antenna has better impedance characteristics. The main radiation patch 1-2 is composed of two fan-shaped metal patches arranged oppositely, and the centers of the two fan-shaped metal patches are opposite to form a feed point. The main radiation patch 1-2 adopts a fan-like bow-tie shape, and its fan-shaped radius r 0 determines the low-frequency cutoff frequency of the broadband antenna. However, the general fan-shaped bow-tie antenna has a fatal shortcoming, that is, the reverse current on the patch will split the pattern at high frequencies. In the present invention, the shape of the metal loading ring 1-3 can be square, flower-shaped, or other ring structures symmetrical about the center, but in the preferred embodiment of the present invention, the metal loading ring 1-3 is circular. By loading a circle of metal loading ring 1-3 on the outside of the main radiation patch 1-2, the metal loading ring 1-3 is equivalent to two half-wave oscillators, and the metal loading ring 1-3 corresponds to low-frequency radiation, The main radiation patch 1-2 radiates a higher frequency to obtain a more consistent current in the entire frequency band, thereby improving the radiation characteristics of the entire antenna, and at the same time significantly improving its impedance characteristics. The microstrip tapered impedance transformers 1-4 are used to feed power to the broadband antenna body layer 1 . The microstrip tapered impedance converters 1-4 are 75Ω-50Ω microstrip line tapered balanced-unbalanced converters, namely microstrip tapered baluns, to transform the antenna impedance from 75Ω to 50Ω. The microstrip gradually changing impedance transformer 1-4 adopts the existing structure of the prior art. Since the technology of the microstrip gradually changing impedance transformer 1-4 used for impedance transformation and balanced to unbalanced transformation is mature, it will not be discussed too much here. .
上述谐振式反射器层2包括谐振介质基板2-1和金属谐振环2-2。金属谐振环2-2呈环状,并覆贴于谐振介质基板2-1的下表面。在本发明优选实施例中,谐振介质基板2-1和金属谐振环2-2共中心,金属谐振环2-2的外边界与谐振介质基板2-1的边缘重合。本发明中,金属谐振环2-2的形状可以是为方形、花朵形、或其他关于中心对称的环形结构,但在本发明优选实施例中,金属谐振环2-2为圆环形。金属谐振环2-2的作用为将低频截止波长近似等于其周长的一段较宽频谱的电磁波以一定的反射相位反射回去,加以谐振式反射器层2与宽带天线本体层1之间的一定距离较小,引入的空间相位补偿,使得反射波与天线本体的直射波在上半空间的远场同相叠加,形成较强辐射;以此将宽带天线本体层1的双向或全向辐射电磁波转变为定向辐射波。此外,本发明的谐振式反射器层2仅需要一个谐振器,其尺寸远远小于需要周期结构才能实现的人工磁导体(ArtificialMagneticConductor,AMC),因此具有双重优势。The above-mentioned resonant reflector layer 2 includes a resonant medium substrate 2-1 and a metal resonant ring 2-2. The metal resonant ring 2-2 is annular and attached to the lower surface of the resonant medium substrate 2-1. In a preferred embodiment of the present invention, the resonant medium substrate 2-1 and the metal resonant ring 2-2 have the same center, and the outer boundary of the metal resonant ring 2-2 coincides with the edge of the resonant medium substrate 2-1. In the present invention, the shape of the metal resonant ring 2-2 can be square, flower-shaped, or other ring structures symmetrical about the center, but in a preferred embodiment of the present invention, the metal resonant ring 2-2 is circular. The role of the metal resonant ring 2-2 is to reflect back a section of wide-spectrum electromagnetic waves with a low-frequency cut-off wavelength approximately equal to its circumference with a certain reflection phase, and add a certain distance between the resonant reflector layer 2 and the broadband antenna body layer 1. The distance is small, and the space phase compensation introduced makes the reflected wave and the direct wave of the antenna body superimposed in the same phase in the far field of the upper half space, forming stronger radiation; in this way, the bidirectional or omnidirectional radiation electromagnetic wave of the broadband antenna body layer 1 is transformed into is a directional radiation wave. In addition, the resonant reflector layer 2 of the present invention only needs one resonator, and its size is much smaller than the artificial magnetic conductor (Artificial Magnetic Conductor, AMC) that needs a periodic structure, so it has double advantages.
上述引向器层3包括引向介质基板3-1和金属引向环3-2。金属引向环3-2呈环状,并覆贴于引向介质基板3-1的上表面。在本发明优选实施例中,引向介质基板3-1和金属引向环3-2共中心,金属引向环3-2的外边界小于引向介质基板3-1的边缘。金属引向环3-2的形状可以是为方形、花朵形、或其他关于中心对称的环形结构,但在本发明优选实施例中,金属引向环3-2为圆环形。金属引向环3-2可以对高频时的电磁波起到聚束的作用,即将通频带频率高端的电磁波引导到天线主辐射方向上以提高高频时的前后比,以增加天线的定向性,并让前向波瓣角有一定的下降,提高了增益,The director layer 3 includes a guide dielectric substrate 3-1 and a metal guide ring 3-2. The metal guide ring 3-2 is ring-shaped, and is attached to the upper surface of the guide dielectric substrate 3-1. In a preferred embodiment of the present invention, the guide dielectric substrate 3-1 and the metal guide ring 3-2 are concentric, and the outer boundary of the metal guide ring 3-2 is smaller than the edge of the guide dielectric substrate 3-1. The shape of the metal guide ring 3-2 can be square, flower-shaped, or other ring structures symmetrical about the center, but in a preferred embodiment of the present invention, the metal guide ring 3-2 is circular. The metal guide ring 3-2 can be used to focus the electromagnetic wave at high frequency, that is, to guide the electromagnetic wave at the high end of the passband frequency to the main radiation direction of the antenna to improve the front-to-back ratio at high frequency, and to increase the directivity of the antenna , and let the forward lobe angle decrease to a certain extent, which improves the gain,
本发明对于主辐射贴片1-2、金属加载环1-3、金属谐振环2-2和金属引向环3-2印制在各介质基板的哪一侧表面对天线的影响不大。本发明优选实施例仅仅是给出一种优选的方案。在本发明中,主辐射贴片1-2、金属加载环1-3、金属谐振环2-2和金属引向环3-2的中心在垂直方向上相对或允许有一定的偏离,但为了能够获得最好的性能,所述主辐射贴片1-2、金属加载环1-3、金属谐振环2-2和金属引向环3-2的中心均在同一条垂直直线上,该垂直直线同时垂直于本体介质基板1-1、谐振介质基板2-1和引向介质基板3-1。金属谐振环2-2的尺寸与金属加载环1-3的尺寸相匹配,即金属谐振环2-2的中心环径与金属加载环1-3的中心环径相等。金属引向环3-2的尺寸与主辐射贴片1-2的尺寸相匹配,即金属引向环3-2的中心环径小于等于主辐射贴片1-2的外轮廓直径。The present invention has little effect on the antenna on which side of each dielectric substrate the main radiation patch 1-2, the metal loading ring 1-3, the metal resonator ring 2-2 and the metal guide ring 3-2 are printed on. The preferred embodiment of the present invention is only a preferred solution. In the present invention, the centers of the main radiation patch 1-2, the metal loading ring 1-3, the metal resonant ring 2-2, and the metal guide ring 3-2 are relative or allowed to have a certain deviation in the vertical direction, but in order to To obtain the best performance, the centers of the main radiation patch 1-2, the metal loading ring 1-3, the metal resonant ring 2-2 and the metal guide ring 3-2 are all on the same vertical line, and the vertical The straight line is perpendicular to the body dielectric substrate 1-1, the resonant dielectric substrate 2-1 and the leading dielectric substrate 3-1 at the same time. The size of the metal resonant ring 2-2 matches the size of the metal loading ring 1-3, that is, the central ring diameter of the metal resonant ring 2-2 is equal to the central ring diameter of the metal loading ring 1-3. The size of the metal guide ring 3-2 matches the size of the main radiation patch 1-2, that is, the central ring diameter of the metal guide ring 3-2 is smaller than or equal to the outer diameter of the main radiation patch 1-2.
结合附图,现给出一个基于谐振式反射器的宽带定向天线的具体数据,主辐射贴片1-2为扇形蝴蝶形,其2个扇形金属贴片扇形张角为120°,扇形半径r0为20mm,2个扇形金属贴片之间的间隙为1mm,该主辐射贴片1-2的输入阻抗近似为75Ω。金属加载环1-3为圆环形,其中心环径r1为25mm,环宽w1为2mm。金属谐振环2-2为圆环形,其与金属加载环1-3的尺寸一致,其中心环径r2为25mm,环宽w2为2mm。谐振式反射器层2与宽带天线本体层1的距离hr以及引向器层3与宽带天线本体层1的距离hd分别为12mm和5mm,其中hr仅为0.08λ(λ天线低频截止波长),大大小于传统金属反射板实现同向反射所需要的0.25λ。本体介质基板1-1、谐振介质基板2-1和引向介质基板3-1所用材料相同且尺寸一致,介质基板的相对介电常数为2.65。Combined with the accompanying drawings, the specific data of a broadband directional antenna based on a resonant reflector is now given. The main radiation patch 1-2 is a fan-shaped butterfly shape, and the fan-shaped angle of its two fan-shaped metal patches is 120°, and the fan-shaped radius r 0 is 20mm, the gap between the two fan-shaped metal patches is 1mm, and the input impedance of the main radiation patch 1-2 is approximately 75Ω. The metal loading ring 1-3 is circular, with a central ring diameter r1 of 25 mm and a ring width w1 of 2 mm. The metal resonant ring 2-2 is circular, and its size is consistent with that of the metal loading ring 1-3. Its central ring diameter r2 is 25 mm, and its ring width w2 is 2 mm. The distance hr between the resonant reflector layer 2 and the broadband antenna body layer 1 and the distance hd between the director layer 3 and the broadband antenna body layer 1 are 12mm and 5mm respectively, where hr is only 0.08λ (λ antenna low-frequency cut-off wavelength), It is much smaller than the 0.25λ required by traditional metal reflectors to achieve isotropic reflection. The body dielectric substrate 1-1, the resonant dielectric substrate 2-1 and the leading dielectric substrate 3-1 are made of the same material and have the same size, and the relative dielectric constant of the dielectric substrate is 2.65.
图5为天线的S11曲线,由图可见,天线在2.0GHz--4.2GHz内S11小于-10dB,阻抗匹配特性良好。图6为天线的谐振式反射器层2在天线本体处的反射相位,由图可见,在整个天线频带内反射相位都在-90°到+90°之间,符合在远场反射波与直射波同相叠加的要求,可实现远场良好的同相叠加,同时天线增益有明显提高。图7,图8,图9分别为天线在2.0GHz,3.0GHz以及4.2GHz处的方向图,由图可见,三个频点处的E面和H面方向图均表现出了明显的定向辐射特性,且方向图非常稳定,在高频并未出现裂瓣以及主波束的偏移。图10为天线的前瓣和后瓣随频率的变化曲线,图11为天线的前后比随频率变化的情况,由图可见,在整个天线工作频带内,天线的前后比均大于4dB,最高能达到10dB,整个工作频带内前后比非常稳定,符合某些特定环境要求下的通信。本宽带定向天线克服了天线加载传统金属反射板所需的较高的剖面,又克服了天线加载AMC结构所需要的较大的面积以及较窄的频带的不足,因此,该宽带定向天线具有双重优势。Figure 5 is the S11 curve of the antenna. It can be seen from the figure that the S11 of the antenna is less than -10dB within 2.0GHz -- 4.2GHz, and the impedance matching characteristic is good. Figure 6 shows the reflection phase of the resonant reflector layer 2 of the antenna at the antenna body. It can be seen from the figure that the reflection phase is between -90° and +90° in the entire antenna frequency band, which is consistent with the far-field reflected wave and the direct wave. The requirement of in-phase superposition of waves can achieve good in-phase superposition in the far field, and at the same time, the antenna gain is significantly improved. Figure 7, Figure 8, and Figure 9 are the antenna pattern at 2.0GHz, 3.0GHz and 4.2GHz respectively. It can be seen from the figure that the E-plane and H-plane pattern at the three frequency points all show obvious directional radiation characteristics, and the pattern is very stable, and there is no split lobe and main beam deviation at high frequencies. Figure 10 is the change curve of the front lobe and back lobe of the antenna with frequency, and Figure 11 is the change of the front-to-back ratio of the antenna with frequency. It can be seen from the figure that in the entire antenna working frequency band, the front-to-back ratio of the antenna is greater than 4dB, and the highest energy Reaching 10dB, the front-to-back ratio is very stable in the entire working frequency band, which meets the communication requirements in certain specific environments. This broadband directional antenna overcomes the high profile required for the antenna to load the traditional metal reflector, and overcomes the shortcomings of the larger area and narrower frequency band required for the antenna to load the AMC structure. Therefore, the broadband directional antenna has dual Advantage.
最后应说明的是,所述实施例中的具体参数仅是为了清楚的表述发明人的发明验证过程,并非用于限制本发明的专利保护范围;尽管参照前述各实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the specific parameters in the embodiments are only for clearly expressing the inventor's invention verification process, and are not used to limit the scope of patent protection of the present invention; although the present invention has been described in detail with reference to the foregoing embodiments Those of ordinary skill in the art should understand that: they can still modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the corresponding technical solutions The essence deviates from the scope of the technical solutions of the various embodiments of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610039770.6A CN105490016B (en) | 2016-01-21 | 2016-01-21 | Broadband beam antenna based on resonant mode reflector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610039770.6A CN105490016B (en) | 2016-01-21 | 2016-01-21 | Broadband beam antenna based on resonant mode reflector |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105490016A true CN105490016A (en) | 2016-04-13 |
CN105490016B CN105490016B (en) | 2018-01-09 |
Family
ID=55676854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610039770.6A Expired - Fee Related CN105490016B (en) | 2016-01-21 | 2016-01-21 | Broadband beam antenna based on resonant mode reflector |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105490016B (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105870605A (en) * | 2016-04-20 | 2016-08-17 | 电子科技大学 | Ultra-wideband low-profile circularly-polarized two-arm spiral antenna |
CN106299628A (en) * | 2016-10-26 | 2017-01-04 | 深圳鲲鹏无限科技有限公司 | A kind of antenna and wireless router |
CN106549211A (en) * | 2016-08-24 | 2017-03-29 | 湖南智龙物联网技术有限公司 | A kind of low section dual polarization laminated micro band antenna towards arrowband Internet of Things |
CN107706515A (en) * | 2017-09-01 | 2018-02-16 | 哈尔滨工业大学 | A kind of low section ultra wide band directional radiation antenna |
CN108539405A (en) * | 2018-05-18 | 2018-09-14 | 北京声迅电子股份有限公司 | Butterfly microwave antenna, liquid safety check instrument |
CN108808261A (en) * | 2018-06-26 | 2018-11-13 | 电子科技大学 | A kind of miniaturization partially reflecting surface with normal reflection phase gradient |
CN108879107A (en) * | 2018-06-26 | 2018-11-23 | 电子科技大学 | A kind of miniaturization partially reflecting surface with positive reflection phase gradient |
CN109155467A (en) * | 2016-09-22 | 2019-01-04 | 株式会社友华 | Antenna assembly |
CN110828996A (en) * | 2019-11-19 | 2020-02-21 | 中国地质大学(北京) | Butterfly Antenna Assembly |
CN111082212A (en) * | 2020-01-03 | 2020-04-28 | 广东通宇通讯股份有限公司 | Double-layer guiding space coupling ultra-wideband radiation unit |
CN111082214A (en) * | 2018-10-22 | 2020-04-28 | 杭州海康威视数字技术股份有限公司 | UHF directional antenna |
CN112055915A (en) * | 2018-03-16 | 2020-12-08 | Agc株式会社 | Antenna unit, window glass with antenna unit, and matching body |
CN112421236A (en) * | 2020-10-14 | 2021-02-26 | 西安电子科技大学 | Coplanar antenna capable of directionally radiating along surface of carrier |
CN112886974A (en) * | 2021-01-27 | 2021-06-01 | 四川荣川通用航空有限责任公司 | Multifunctional airborne navigation equipment |
CN113097702A (en) * | 2019-12-23 | 2021-07-09 | 北京华航无线电测量研究所 | Frequency/polarization hybrid reconfigurable antenna |
CN113497343A (en) * | 2020-03-20 | 2021-10-12 | 北京小米移动软件有限公司 | Antenna structure and electronic device |
CN114186657A (en) * | 2021-12-22 | 2022-03-15 | 永道射频技术股份有限公司 | Device and method for improving sensitivity of electronic label |
CN115173047A (en) * | 2022-07-21 | 2022-10-11 | 南京邮电大学 | Broadband elliptical microstrip antenna suitable for indoor communication |
CN116169468A (en) * | 2023-04-24 | 2023-05-26 | 吉林大学 | A Ground Penetrating Radar Ultra-Wideband Directional Radiation Antenna |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101702469A (en) * | 2009-11-20 | 2010-05-05 | 北京航空航天大学 | Design method of frequency selective surface with X, Ku band transmission and Ka band reflection four frequency points |
CN101916911A (en) * | 2010-07-16 | 2010-12-15 | 江苏安特耐科技有限公司 | Broadband directional antenna for mobile communication |
US8558748B2 (en) * | 2009-10-19 | 2013-10-15 | Ralink Technology Corp. | Printed dual-band Yagi-Uda antenna and circular polarization antenna |
CN104577323A (en) * | 2015-02-06 | 2015-04-29 | 西安电子科技大学 | Dual-frequency and dual-polarization antenna used for mobile communication base station |
CN205355251U (en) * | 2016-01-21 | 2016-06-29 | 桂林电子科技大学 | Broadband directional aerial based on resonant mode reflector |
-
2016
- 2016-01-21 CN CN201610039770.6A patent/CN105490016B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8558748B2 (en) * | 2009-10-19 | 2013-10-15 | Ralink Technology Corp. | Printed dual-band Yagi-Uda antenna and circular polarization antenna |
CN101702469A (en) * | 2009-11-20 | 2010-05-05 | 北京航空航天大学 | Design method of frequency selective surface with X, Ku band transmission and Ka band reflection four frequency points |
CN101916911A (en) * | 2010-07-16 | 2010-12-15 | 江苏安特耐科技有限公司 | Broadband directional antenna for mobile communication |
CN104577323A (en) * | 2015-02-06 | 2015-04-29 | 西安电子科技大学 | Dual-frequency and dual-polarization antenna used for mobile communication base station |
CN205355251U (en) * | 2016-01-21 | 2016-06-29 | 桂林电子科技大学 | Broadband directional aerial based on resonant mode reflector |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105870605A (en) * | 2016-04-20 | 2016-08-17 | 电子科技大学 | Ultra-wideband low-profile circularly-polarized two-arm spiral antenna |
CN105870605B (en) * | 2016-04-20 | 2019-04-05 | 电子科技大学 | A kind of ultra wide band low section circular polarisation bifilar helical antenna |
CN106549211A (en) * | 2016-08-24 | 2017-03-29 | 湖南智龙物联网技术有限公司 | A kind of low section dual polarization laminated micro band antenna towards arrowband Internet of Things |
CN109155467A (en) * | 2016-09-22 | 2019-01-04 | 株式会社友华 | Antenna assembly |
CN106299628A (en) * | 2016-10-26 | 2017-01-04 | 深圳鲲鹏无限科技有限公司 | A kind of antenna and wireless router |
CN107706515B (en) * | 2017-09-01 | 2019-12-03 | 哈尔滨工业大学 | A kind of low section ultra wide band directional radiation antenna |
CN107706515A (en) * | 2017-09-01 | 2018-02-16 | 哈尔滨工业大学 | A kind of low section ultra wide band directional radiation antenna |
CN112055915B (en) * | 2018-03-16 | 2022-04-08 | Agc株式会社 | Antenna unit, window glass with antenna unit, and matching body |
US12051848B2 (en) | 2018-03-16 | 2024-07-30 | AGC Inc. | Antenna unit, antenna unit-attached window glass, and matching body |
CN112055915A (en) * | 2018-03-16 | 2020-12-08 | Agc株式会社 | Antenna unit, window glass with antenna unit, and matching body |
CN108539405A (en) * | 2018-05-18 | 2018-09-14 | 北京声迅电子股份有限公司 | Butterfly microwave antenna, liquid safety check instrument |
CN108539405B (en) * | 2018-05-18 | 2022-10-14 | 北京声迅电子股份有限公司 | Butterfly microwave antenna and liquid security check instrument |
CN108879107A (en) * | 2018-06-26 | 2018-11-23 | 电子科技大学 | A kind of miniaturization partially reflecting surface with positive reflection phase gradient |
CN108808261A (en) * | 2018-06-26 | 2018-11-13 | 电子科技大学 | A kind of miniaturization partially reflecting surface with normal reflection phase gradient |
CN111082214A (en) * | 2018-10-22 | 2020-04-28 | 杭州海康威视数字技术股份有限公司 | UHF directional antenna |
CN111082214B (en) * | 2018-10-22 | 2022-04-19 | 杭州海康威视数字技术股份有限公司 | UHF directional antenna |
CN110828996A (en) * | 2019-11-19 | 2020-02-21 | 中国地质大学(北京) | Butterfly Antenna Assembly |
CN113097702A (en) * | 2019-12-23 | 2021-07-09 | 北京华航无线电测量研究所 | Frequency/polarization hybrid reconfigurable antenna |
CN111082212A (en) * | 2020-01-03 | 2020-04-28 | 广东通宇通讯股份有限公司 | Double-layer guiding space coupling ultra-wideband radiation unit |
CN113497343A (en) * | 2020-03-20 | 2021-10-12 | 北京小米移动软件有限公司 | Antenna structure and electronic device |
CN112421236A (en) * | 2020-10-14 | 2021-02-26 | 西安电子科技大学 | Coplanar antenna capable of directionally radiating along surface of carrier |
CN112886974A (en) * | 2021-01-27 | 2021-06-01 | 四川荣川通用航空有限责任公司 | Multifunctional airborne navigation equipment |
CN112886974B (en) * | 2021-01-27 | 2022-03-11 | 四川荣川通用航空有限责任公司 | Multifunctional airborne navigation equipment |
CN114186657A (en) * | 2021-12-22 | 2022-03-15 | 永道射频技术股份有限公司 | Device and method for improving sensitivity of electronic label |
CN115173047A (en) * | 2022-07-21 | 2022-10-11 | 南京邮电大学 | Broadband elliptical microstrip antenna suitable for indoor communication |
CN115173047B (en) * | 2022-07-21 | 2025-06-27 | 南京邮电大学 | Wideband elliptical microstrip antenna for indoor communications |
CN116169468A (en) * | 2023-04-24 | 2023-05-26 | 吉林大学 | A Ground Penetrating Radar Ultra-Wideband Directional Radiation Antenna |
Also Published As
Publication number | Publication date |
---|---|
CN105490016B (en) | 2018-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105490016B (en) | Broadband beam antenna based on resonant mode reflector | |
CN109888480B (en) | Broadband multi-resonance super-surface antenna based on non-periodic square ring structure | |
CN205355251U (en) | Broadband directional aerial based on resonant mode reflector | |
Esmail et al. | Overview of planar antenna loading metamaterials for gain performance enhancement: The two decades of progress | |
CN102593585B (en) | Integrated balun feed sine antenna device | |
CN104134858B (en) | A kind of miniaturization conical spiral antenna of loop coupling | |
CN103490153A (en) | Subminiature ultra-wide-band helical antenna | |
CN105206940B (en) | Low section twist-reflector reflecting plate based on artificial magnetic conductor | |
CN101174732B (en) | Broad-band back-reflection helical antenna | |
CN110299586A (en) | A kind of simple millimeter wave broadband high efficiency frequency selecting structures of structure | |
US10381738B2 (en) | Parasitic antenna arrays incorporating fractal metamaterials | |
CN211062858U (en) | High-power capacity dual-band elliptical patch reflection array antenna | |
CN103682665B (en) | A kind of metamaterial microwave antenna | |
CN1758484B (en) | Backfire antenna | |
CN102509853B (en) | Double-arm double-excitation helical antenna without balun band disc | |
CN102456951A (en) | Base station antenna | |
CN114759354B (en) | Miniaturized broadband stable beam horn feed source antenna | |
CN110518370A (en) | A kind of wide angle covering array antenna of multiband Shared aperture | |
CN116526132A (en) | Vortex wave antenna with switchable modes based on helical structure | |
CN101572349B (en) | Small helical antenna | |
CN111403906B (en) | A cluster type multi-mode electromagnetic vortex generator | |
US20130234895A1 (en) | Multi-band broadband anntenna with mal-position feed structure | |
Ghattas et al. | Optimization of dielectric rod antenna design in millimeter wave band for wireless communications | |
CN110350319A (en) | A kind of millimeter wave omnidirectional lens antenna | |
CN219371392U (en) | Reflective phase gradient super surface capable of improving antenna gain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20191120 Address after: 541004 No.1, Jinji Road, Qixing District, Guilin City, Guangxi Zhuang Autonomous Region Co-patentee after: Beijing Simulation Center Patentee after: Guilin University of Electronic Technology Address before: 541004 the Guangxi Zhuang Autonomous Region golden Guilin Qixing District Road No. 1 Patentee before: Guilin University of Electronic Technology |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180109 Termination date: 20200121 |
|
CF01 | Termination of patent right due to non-payment of annual fee |