CN105486702B - 一种基于x射线的目标缺陷检测系统 - Google Patents

一种基于x射线的目标缺陷检测系统 Download PDF

Info

Publication number
CN105486702B
CN105486702B CN201510888635.4A CN201510888635A CN105486702B CN 105486702 B CN105486702 B CN 105486702B CN 201510888635 A CN201510888635 A CN 201510888635A CN 105486702 B CN105486702 B CN 105486702B
Authority
CN
China
Prior art keywords
image
module
ray
flat panel
panel detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510888635.4A
Other languages
English (en)
Other versions
CN105486702A (zh
Inventor
王慧明
刘东华
耿辰
戴亚康
郑健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Conmix Automation Equipment Co Ltd
Original Assignee
Suzhou Conmix Automation Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Conmix Automation Equipment Co Ltd filed Critical Suzhou Conmix Automation Equipment Co Ltd
Priority to CN201510888635.4A priority Critical patent/CN105486702B/zh
Publication of CN105486702A publication Critical patent/CN105486702A/zh
Application granted granted Critical
Publication of CN105486702B publication Critical patent/CN105486702B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter

Abstract

本发明公开了一种基于X射线的目标缺陷检测系统,其包括:X射线源控制模块,其被配置成通过调节X射线源发射的X射线的参数,用以控制X射线成像设备的图像成型质量;平板探测器配置模块,其用以控制平板探测器捕获到的所述图像的质量;图像实时采集模块,其被配置成实时采集图像,并传输给图像查看模块;缺陷记录模块,其被配置成评定所述图像,并记录评定结果;以及人机交互模块;其中,所述图像查看模块还分别连接LUT调整模块和图像增强模块。本发明通过对X射线源成像和探测器图像捕获参数的调节控制,并对采集得到的图像进一步进行处理,以改善图像的视觉效果,提高了图像成像的清晰度,从而提高了工件缺陷的效率和准确度。

Description

一种基于X射线的目标缺陷检测系统
技术领域
本发明涉及X射线检测设备技术领域。更具体地说,本发明涉及一种基于X射线的目标缺陷检测系统。
背景技术
射线检测是常规无损检测的重要方法之一,广泛应用于航空、航天、核电、国防以及其它工业部门,在工业生产和国民经济中发挥了重要作用。目前,在生产实际中,射线检测普遍使用胶片照相法。X射线胶片照相的成像质量较高,能正确提供被测试件缺陷真实情况的可靠信息,但是,它具有操作过程复杂、运行成本高、结果不易保存且查询携带不便以及评片人员眼睛易受强光损伤等缺点。
为了解决上述问题,20世纪90年代末出现了X射线数字照相(DigitalRadiography,DR)检测技术。X射线数字照相系统中使用了平板探测器(flat paneldetector),其像元尺寸可小于0.1mm,因而其成像质量及分辨率几乎可与胶片照相媲美,同时还克服了胶片照相中表现出来的缺点,也为图像的计算机处理提供了方便。因此,基于平板探测器的X射线数字成像系统在无损检测和评价(NDT/NDE)、集装箱扫描、电路板检查以及医疗应用等方面具有广阔的应用前景。
然而,由于射线源、工件、成像系统、成像工艺等多因素的影响,得到的图像的质量有时会达不到规定的质量标准,导致图像细节信息被掩盖,影响对结果的判断。同时与X射线平板探测器相配合的应用软件发展相对滞后,通常仅提供对平板探测器图像的观察功能,而无法对图像的获取条件进行调整,也无法对图像进行后期处理,且在实际使用中较多依赖人眼对于目标缺陷的识别能力,检测效率较低,检测结果的有效性也受到了一定的影响。
发明内容
本发明的一个目的是解决至少上述问题和/或缺陷,并提供至少后面将说明的优点。
本发明还有一个目的是提供一种基于X射线的目标缺陷检测系统,其能够对X射线源成像和探测器获取图像的参数进行控制调整,并可以对实时采集的图像进行优化处理,有效提高图像的清晰度和对比度,突出了缺陷,便于后续对图像中缺陷细节的分析。
为了实现根据本发明的这些目的和其它优点,提供了一种基于X射线的目标缺陷检测系统,其包括:
X射线源控制模块,其被配置成通过调节X射线源发射的X射线的参数,用以控制X射线成像设备的图像成型质量;
平板探测器配置模块,其用以控制平板探测器捕获到的所述图像的质量;
图像实时采集模块,其被配置成实时采集平板探测器生成的图像,并传输给图像查看模块以显示于显示模块中;
缺陷记录模块,其被配置成评定所述图像,并记录评定结果;以及
人机交互模块,其被配置成用户可在显示模块中进行操作参数的输入或修改,人机交互模块能够为使用者提供最适合的用户界面,包括界面的风格、配色、窗口尺寸等,并对不同的输入事件提供功能支持,通过人机交互模块可保证不同的使用者快速适应软件的使用方法,并因人而异的提供最适合的操作可视化效果,以保证使用者以最高效率进行目标缺陷的检测;
其中,所述图像查看模块还分别连接LUT调整模块和图像增强模块,所述图像查看模块可接收图像实时采集模块所传输的图像数据,调用图像增强模块、LUT调整模块对图像进行进一步的处理,所述LUT调整模块用以保证所述图像在不同显示模块上显示效果的一致性,提高软件系统的兼容性与可用性,扩大用户硬件选择范围。所述图像增强模块以提高所述图像的质量,然后将处理得到的图像实时显示在窗口中。
其中,X射线源控制模块、平板探测器配置模块和图像实时采集模块均与X射线探测器的命令处理器相连,所述命令处理器将平板探测器捕获到的X射线处理为数字信号,并传输给所述图像实时采集模块。
优选的是,其中,X射线源用于产生一定能量的X射线穿透工件,X射线在工件内部被吸收而产生强度上的差异,从而传递工件内部的缺陷、形状等信息到达平板探测器,不同的检测工件需要不同的发射功率,X射线源的电压会影响X射线的穿透能力,X射线源的电流会影响X射线的能量,从而影响图像的曝光量,光路上介质比如空气因温度场的波动而造成的密度变化也会影响X射线的运行,由此所述X射线源控制模块可通过调节所述X射线源的电流、电压或温度等参数获得对工件最优的穿透力,以提高X射线成像设备的图像成型质量,此外,X射线源控制模块还可通过简单的用户交互操作对射线源的多种错误状态进行标示。
优选的是,其中,所述X射线源控制模块以不大于0.1V的精度对所述电压进行调整,所述X射线源控制模块以不大于0.001A的精度对所述电流进行调整,保证了对X射线源调节精度。
优选的是,其中,所述平板探测器配置模块可通过调节平板探测器的空间分辨率、曝光时间或增益模式等参数以控制平板探测器捕获所述图像的质量。
优选的是,其中,所述平板探测器配置模块可自动对平板探测器捕获的图像进行偏移校正或增益校正以减少图像中固有的噪声,使每个像素对剂量的响应具有一致性,其中,偏移校正可补偿图像中固定条纹像素的明暗变化,而增益校正是有效区内一系列由原始X线曝光的帧的平均。此外,还可以控制进行校正的帧数,以尽量减少由于校正数据引入的误差。
优选的是,其中,所述平板探测器配置模块可控制平板探测器采样的位数,此位数即为二维图像中每一像素点所存储的二进制位数,在同一颜色通道中,不同的位数可代表不同的灰度级别,通过控制图像采样的质量可提高图像的分辨率
优选的是,其中,所述平板探测器配置模块可以以单张捕获或序列捕获的方式进行捕获图像,且对每次捕获的文件可以项目编号、工件编号的方式进行编号,便于对捕获图像的管理。
优选的是,其中,所述LUT调整模块可通过Gamma校正补偿不同输出设备上颜色显示的差异,以便在不同的监视器上查看,其中所述LUT调整模块通过调整Gamma曲线的角度以实现不同灰度值的映射,保证在不同显示器上获得相同的灰度显示效果,其中所述Gamma曲线绘制的公式为输出强度=输入强度1/gamma,所述曲线角度的调整精度为不大于1角度值。
优选的是,其中,所述图像增强模块连接有可扩展的系统算法库,算法库中包括多种可用于平板探测器图像的图像处理算法,该图像增强模块可选择所用的处理算法,并可控制算法的参数,当有多种算法进行图像增强时,还可通过调整所述算法库中不同算法的处理顺序,以实现最优的图像增强效果。当使用所述增强模块进行图像增强时,经增强的图像可实时显示在显示模块中。此外,其连接的系统算法库具备高度扩展性,可根据用户需求内置多种图像处理算法,所有算法具备相同的输入输出接口。
优选的是,其中,所述缺陷记录模块可选择缺陷种类,并可通过所述图像查看模块配合鼠标进行缺陷尺寸的测量以评定定级,并可撰写缺陷说明的备注文档。
本发明至少包括以下有益效果:
(1)本发明根据待测工件的具体情况可对X射线探测器的X射线源的温度、电压、电流等参数进行调整,通过选择合适的发射功率和外界温度条件,来获得最优的图像清晰度和曝光率,从而提高X射线成像设备的图像成型质量;
(2)本发明还可以对探测器捕获图像的参数、校正帧数、记录格式及采样位数等进行控制调整,提高探测器在将X射线能量转变成电信号时对工件密度差异及细微结构的分辨能力,提高探测器的成像能力;
(3)本发明可通过可扩展的算法库对实时图像进行处理以提高图像整体的对比度和可分辨能力,从而提高了对工件缺陷的辨识度。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1为本发明的一个实施例中基于X射线的目标缺陷检测系统的框图;
图2为本发明的另一实施例中基于X射线的目标缺陷检测系统的工作流程示意图。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
图1示出了根据本发明的一种实现形式,其包括:
X射线源控制模块,其被配置成通过调节X射线源发射的X射线的参数,用以控制X射线成像设备的图像成型质量;
平板探测器配置模块,其用以控制平板探测器捕获到的所述图像的质量;
图像实时采集模块,其被配置成实时采集平板探测器生成的图像,并传输给图像查看模块以显示于显示模块中;
缺陷记录模块,其被配置成评定所述图像,并记录评定结果;以及
人机交互模块,其被配置成用户可在显示模块中进行操作参数的输入或修改;
其中,所述图像查看模块还分别连接LUT调整模块和图像增强模块,所述LUT调整模块用以保证所述图像在不同显示模块上显示效果的一致性,所述图像增强模块以提高所述图像的质量;
其中,X射线源控制模块、平板探测器配置模块和图像实时采集模块均与X射线探测器的命令处理器相连,所述命令处理器将平板探测器捕获到的X射线处理为数字信号,并传输给所述图像实时采集模块。
在这种技术方案中,根据X射线成像原理,任何可吸收或遮挡X射线的物体均可作为缺陷检测的目标,X射线图像采集系统所采集的目标为机械零件,用户先分别通过X射线源控制模块和平板探测器配置模块调整X射线源和平板探测器的工作参数后启动检测系统,X射线源发射X射线穿透工件,并在工件内部被吸收产生强度上的差异,从而传递工件内部的缺陷、形状至平板探测器,平板探测器接收上述带有工件内部信号的X射线,并处理成数字信号,传输给所述图像实时采集模块。
参照图2,上述X射线成像数据输入并被采集后,用户可通过图像实时采集模块以及图像查看模块在个人计算机的显示器上观察到平板探测器捕获的原始采集图像,若得到的图像清晰度或细节信息有缺陷,可利用图像增强模块进行处理可提高图像的对比度,突出缺陷,提高图像质量,此外还可通过LUT调整模块保证图像在不同显示模块上显示效果的一致性,最后在图像显示窗口中,可通过鼠标拖动等人机交互方式对缺陷的几何性状进行测定,并记录工件缺陷。
上述方案中,X射线图像采集系统通过串口或USB与个人计算机相连接,数据可以经由该连接方式进行双向传输,个人计算机通过键盘、鼠标、显示器与用户进行人机交互。
上述方案中,所述X射线源控制模块通过调节所述X射线源的电流、电压或温度的方式调节X射线成像设备的图像成型质量,在本实例中可设置X射线源的电压为100.0伏特,电流为1.450安培,然后通过该模块打开射线源,开始进行图像采集。
上述方案中,所述X射线源控制模块以不大于0.1V的精度对所述电压进行调整,所述X射线源控制模块以不大于0.001A的精度对所述电流进行调整。
上述方案中,所述平板探测器配置模块通过调节平板探测器的空间分辨率、曝光时间或增益模式以控制平板探测器捕获所述图像的质量。
上述方案中,所述平板探测器配置模块可自动对平板探测器捕获的图像进行偏移校正或增益校正,并可以控制进行校正的帧数。
上述方案中,所述平板探测器配置模块可控制平板探测器采样的位数,用以提高图像的分辨率。
上述方案中,所述平板探测器配置模块以单张捕获或序列捕获的方式进行捕获图像,且对每次捕获的文件可以项目编号、工件编号的方式进行编号。
上述方案中,所述LUT调整模块通过调整Gamma曲线的角度以实现不同灰度值的映射,保证在不同显示器上获得相同的灰度显示效果,其中所述Gamma曲线绘制的公式为输出强度=输入强度1/gamma,所述曲线角度的调整精度为不大于1角度值,本实例中具体设置Gamma曲线角度为80度,此时gamma值为5.671282,图像查看模块所显示的图像此时与原始图像相比发生变化,图像的灰度均匀性增强。
上述方案中,所述图像增强模块连接有可扩展的系统算法库,并可通过调整所述算法库中不同算法的处理顺序及算法参数,以实现最优的图像增强效果。当使用所述增强模块进行图像增强时,经增强的图像可实时显示在显示模块中。其中,在预置的算法库中具备锐化、反向、浮雕、增强、高斯平滑、旋转几种,其中锐化算法为基于二阶微分应用拉普拉斯算子对图像进行处理,反向算法则是通过遍历图像并对图像像素进行按位取反,浮雕算法是通过遍历图像像素,用当前像素点的像素值减去周围8邻域的像素值再与一个固定的值相加得到,在该实施例中,相加的固定值为128,高斯平滑是用一定直径或宽度的高斯核对图像像素进行卷积,在本实施例中,所用的高斯核直径为3像素,旋转则是将图像的像素矩阵与一个旋转矩阵相乘,实现图像中所有像素映射至新的旋转后的位置。在本实施例中,算法库中具备如上所述6种算法,则对平板探测器采集到图像的处理方法依据不同的算法作用顺序以及选择的算法种类可有种可能情况,在本实施例中,选择先反向再锐化作为平板探测器图像增强算法,则图像查看模块所显示的图像依据所采用的图像增强算法发生了进一步的变化。
上述方案中,所述缺陷记录模块可选择缺陷种类,并可通过所述图像查看模块配合鼠标进行缺陷尺寸的测量以评定定级,并可撰写缺陷说明的备注文档。在本实例中,记录该零件的缺陷类型为“气孔、裂纹”,裂纹长度为5像素,气孔直径为2像素,评级为III级,保存该缺陷检测记录,将缺陷记录的文字、原始图像以及测量结果图像同时保存在同一工件标号的文件内,完成对该零件的缺陷检测。
这里说明的模块数量和处理规模是用来简化本发明的说明的。对本发明的基于X射线的目标缺陷检测系统的应用、修改和变化对本领域的技术人员来说是显而易见的。
如上所述,本发明根据待测工件的具体情况可对X射线探测器的X射线源的温度、电压、电流等参数进行调整,通过选择合适的发射功率和外界温度条件,来获得最优的图像清晰度和曝光率,从而提高X射线成像设备的图像成型质量;
此外,本发明还可以对探测器捕获图像的参数、校正帧数、记录格式及采样位数等进行控制调整,提高探测器在将X射线能量转变成电信号时对工件密度差异及细微结构的分辨能力,提高探测器的成像能力;
此外,本发明可通过可扩展的算法库对实时图像进行处理以提高图像整体的对比度和可分辨能力,从而提高了对工件缺陷的辨识度。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用。它完全可以被适用于各种适合本发明的领域。对于熟悉本领域的人员而言,可容易地实现另外的修改。因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (9)

1.一种基于X射线的目标缺陷检测系统,其特征在于,包括:
X射线源控制模块,其被配置成通过调节X射线源发射的X射线的参数,用以控制X射线成像设备的图像成型质量;
平板探测器配置模块,其用以控制平板探测器捕获到的所述图像的质量;
图像实时采集模块,其被配置成实时采集平板探测器生成的图像,并传输给图像查看模块以显示于显示模块中;
缺陷记录模块,其被配置成评定所述图像,并记录评定结果;以及
人机交互模块,其被配置成用户可在显示模块中进行操作参数的输入或修改;
其中,所述图像查看模块还分别连接有LUT调整模块和图像增强模块,所述LUT调整模块用以保证所述图像在不同显示模块上显示效果的一致性,所述图像增强模块以提高所述图像的质量;
其中,所述X射线源控制模块、平板探测器配置模块和图像实时采集模块均与X射线探测器的命令处理器相连,所述命令处理器将平板探测器捕获到的X射线处理为数字信号,并传输给所述图像实时采集模块;
其中,所述LUT调整模块通过调整Gamma曲线的角度以实现不同灰度值的映射,保证在不同显示器上获得相同的灰度显示效果,其中所述Gamma曲线绘制的公式为输出强度=输入强度1/gamma,所述曲线角度的调整精度不大于1角度值。
2.如权利要求1所述的基于X射线的目标缺陷检测系统,其特征在于,所述X射线源控制模块通过调节所述X射线源的电流、电压或温度的方式控制所述X射线成像设备的图像成型质量。
3.如权利要求2所述的基于X射线的目标缺陷检测系统,其特征在于,所述X射线源控制模块以不大于0.1V的精度对所述电压进行调整,所述X射线源控制模块以不大于0.001A的精度对所述电流进行调整。
4.如权利要求1所述的基于X射线的目标缺陷检测系统,其特征在于,所述平板探测器配置模块通过调节平板探测器的空间分辨率、曝光时间或增益模式以控制平板探测器捕获所述图像的质量。
5.如权利要求1所述的基于X射线的目标缺陷检测系统,其特征在于,所述平板探测器配置模块可自动对平板探测器捕获的图像进行偏移校正或增益校正,并可以控制进行校正的帧数。
6.如权利要求1所述的基于X射线的目标缺陷检测系统,其特征在于,所述平板探测器配置模块可控制平板探测器采样的位数,用以提高图像的分辨率。
7.如权利要求1所述的基于X射线的目标缺陷检测系统,其特征在于,所述平板探测器配置模块以单张捕获或序列捕获的方式捕获图像,且对每次捕获的文件以项目编号、工件编号的方式进行编号。
8.如权利要求1所述的基于X射线的目标缺陷检测系统,其特征在于,所述图像增强模块连接有可扩展的系统算法库,并可通过调整所述算法库中不同算法的处理顺序及算法参数,以实现最优的图像增强效果,当使用所述增强模块进行图像增强时,经增强的图像可实时显示在显示模块中。
9.如权利要求1所述的基于X射线的目标缺陷检测系统,其特征在于,所述缺陷记录模块可选择缺陷种类,并可通过所述图像查看模块配合鼠标进行缺陷尺寸的测量以评定定级,并可撰写缺陷说明的备注文档。
CN201510888635.4A 2015-12-07 2015-12-07 一种基于x射线的目标缺陷检测系统 Active CN105486702B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510888635.4A CN105486702B (zh) 2015-12-07 2015-12-07 一种基于x射线的目标缺陷检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510888635.4A CN105486702B (zh) 2015-12-07 2015-12-07 一种基于x射线的目标缺陷检测系统

Publications (2)

Publication Number Publication Date
CN105486702A CN105486702A (zh) 2016-04-13
CN105486702B true CN105486702B (zh) 2018-06-26

Family

ID=55673821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510888635.4A Active CN105486702B (zh) 2015-12-07 2015-12-07 一种基于x射线的目标缺陷检测系统

Country Status (1)

Country Link
CN (1) CN105486702B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107550505A (zh) * 2017-08-29 2018-01-09 上海联影医疗科技有限公司 X线探测器、x线摄像系统及x线摄像方法
CN107741434A (zh) * 2017-12-15 2018-02-27 河南送变电建设有限公司 一种导线压接质检用便携式x射线成像装置及质检方法
CN108008016A (zh) * 2018-01-03 2018-05-08 国网安徽省电力有限公司电力科学研究院 基于x射线与超声联合检测的电力电缆及接头无损检测系统及方法
CN108627527A (zh) * 2018-05-09 2018-10-09 昆山国显光电有限公司 一种开槽区裂纹检测装置及检测方法
CN108872273A (zh) * 2018-05-09 2018-11-23 昆山国显光电有限公司 一种开槽区裂纹检测系统及检测方法
CN109342466B (zh) * 2018-08-29 2021-05-25 乐山-菲尼克斯半导体有限公司 一种应用x光自动检测分立器件焊线线弧缺陷的方法
CN109781752B (zh) * 2019-01-28 2021-07-20 上海市建筑科学研究院 检测套筒灌浆缺陷的x射线数字成像增强与定量识别方法
CN110031487A (zh) * 2019-03-04 2019-07-19 禾准电子科技(昆山)有限公司 一种涂胶无损检测方法
CN115755155A (zh) * 2022-11-04 2023-03-07 成都善思微科技有限公司 一种探测器图像质量监控方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182775A (en) * 1990-01-12 1993-01-26 Kawasaki Jukogyo Kabushiki Kaisha Method of processing radiographic image data for detecting a welding defect
CN101118225A (zh) * 2007-08-09 2008-02-06 中国航天科技集团公司长征机械厂 通过x射线底片分析铝合金焊接质量的方法
CN101556598A (zh) * 2009-05-08 2009-10-14 中国矿业大学 射线检测焊缝图像管理系统及辅助评片方法
CN102175700A (zh) * 2011-01-20 2011-09-07 山东大学 数字x射线图像焊缝分割和缺陷检测方法
CN102175701A (zh) * 2011-02-11 2011-09-07 王慧斌 工业x射线机在线探伤检测系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182775A (en) * 1990-01-12 1993-01-26 Kawasaki Jukogyo Kabushiki Kaisha Method of processing radiographic image data for detecting a welding defect
CN101118225A (zh) * 2007-08-09 2008-02-06 中国航天科技集团公司长征机械厂 通过x射线底片分析铝合金焊接质量的方法
CN101556598A (zh) * 2009-05-08 2009-10-14 中国矿业大学 射线检测焊缝图像管理系统及辅助评片方法
CN102175700A (zh) * 2011-01-20 2011-09-07 山东大学 数字x射线图像焊缝分割和缺陷检测方法
CN102175701A (zh) * 2011-02-11 2011-09-07 王慧斌 工业x射线机在线探伤检测系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于X射线平板探测器的直焊缝检测技术;韩得水;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20140815(第 08 期);摘要、第1、9-11、18-20页 *
基于射线实时成像系统图像处理与缺陷识别的研究;李昭月;《中国优秀硕士学位论文全文数据库 信息科技辑》;20120315(第 03 期);第1-3、8-11、57-62页 *

Also Published As

Publication number Publication date
CN105486702A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
CN105486702B (zh) 一种基于x射线的目标缺陷检测系统
US7418078B2 (en) Spot-size effect reduction
JP5384521B2 (ja) 放射線撮像装置
CN104161536B (zh) 一种基于互补光栅的锥束ct散射校正方法及其装置
JP2001299733A (ja) Pci放射線画像処理装置、pci放射線画像検出処理装置、pci放射線画像出力装置及びpci画像診断支援装置
US9619893B2 (en) Body motion detection device and method
JP4509493B2 (ja) X線ct画像撮影方法およびx線ct装置
JP2013176468A (ja) 情報処理装置、情報処理方法
KR20120103456A (ko) 화상처리장치, 화상처리방법, 및 컴퓨터 판독가능한 기억매체
Yang et al. Imaging and measuring methods for coating layer thickness of TRISO-coated fuel particles with high accuracy
WO2019097796A1 (ja) 医用画像処理装置および医用画像処理方法
Brooks et al. Automated analysis of the American College of Radiology mammographic accreditation phantom images
CN103310471A (zh) Ct 图像生成装置及方法、ct 图像生成系统
US20190273845A1 (en) Vibration monitoring of an object using a video camera
CN109870471B (zh) 一种单光栅侦测的锥束ct角度序列散射获取方法
CN111012370A (zh) 基于ai的x射线成像分析方法、装置及可读存储介质
CN104132950B (zh) 基于原始投影信息的cl扫描装置投影旋转中心标定方法
US11553891B2 (en) Automatic radiography exposure control using rapid probe exposure and learned scene analysis
CN109813259B (zh) 高动态x射线成像方法、存储介质和装置
US20050253065A1 (en) Methods, apparatus, and software for adjusting the focal spot of an electron beam
JP2018179711A (ja) X線検査装置
Kang et al. A novel multi-view X-ray digital imaging stitching algorithm
JP2017070590A (ja) 画像処理装置及びその制御方法、コンピュータプログラム
Doering Three-dimensional flaw reconstruction using a real-time X-ray imaging system
CN114942466B (zh) 一种基于气隙相关性的x射线散射估计方法与系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant