CN105483501A - Method for smelting phosphorus-containing ultra-low carbon steel - Google Patents

Method for smelting phosphorus-containing ultra-low carbon steel Download PDF

Info

Publication number
CN105483501A
CN105483501A CN201410483658.2A CN201410483658A CN105483501A CN 105483501 A CN105483501 A CN 105483501A CN 201410483658 A CN201410483658 A CN 201410483658A CN 105483501 A CN105483501 A CN 105483501A
Authority
CN
China
Prior art keywords
steel
molten steel
molten
blowing
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410483658.2A
Other languages
Chinese (zh)
Inventor
吕志勇
张宏亮
崔福祥
刘博�
张立夫
李超
王金辉
赵雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN201410483658.2A priority Critical patent/CN105483501A/en
Publication of CN105483501A publication Critical patent/CN105483501A/en
Pending legal-status Critical Current

Links

Abstract

The invention provides a method for smelting phosphorus-containing ultra-low carbon steel. The method comprises the first step of pretreating molten iron, specifically, blowing desulphurizing powder into the molten iron to enable the S content to be less than or equal to 0.003wt%, the second step of conducting deoxygenation and decarburization in a converter, blowing oxygen for 15-18 min, adding slag making materials, conducting slag-stopping and steel tapping when the content of C in the molten steel is less than or equal to 0.06%, the content of O reaches 0.05-0.09%, and the temperature of the molten steel in the converter reaches 1680-1720 DEG C, and adding 2-5 kg/t lime through an argon station, the third step of carrying out ladle furnace (LF) refining, specifically, adding slag former into a steel ladle, carrying out bottom argon blowing and stirring, transferring the molten steel to carry out RH vacuum refining, decarburization and denitrification when the temperature of the molten steel reaches 1630-1650 DEG C, carrying out alloying in batches when the content of C in the steel is less than or equal to 0.0050wt%, carrying out still standing for 15-25 min and then continuous casting when the content of compositions and temperature reach the target content and temperature, blowing argon into spaces between plates at a long nozzle, a stopper rod, an upper nozzle and a submerged nozzle when pouring is conducted on a tundish, and adding carbon-free covering agents to protect pouring. By means of the method, the purity degree of the molten steel and the castability of the steel can be improved, nozzle clogging is effectively controlled, the smelting production efficiency and the steel quality are improved, consumption of spare parts is reduced, and the cost of per ton of steel is lowered.

Description

A kind of smelting process of phosphorous ultra low-carbon steel
Technical field
The invention belongs to process for making field, particularly a kind of smelting process of phosphorous ultra low-carbon steel.
Background technology
RH vacuum metling ultra low-carbon steel (C≤0.0050%) technology is ripe day by day, along with the high development of automotive industry, has higher requirement to automobile ultra low-carbon steel, requires to have high strength and excellent deep drawability.In ultra low-carbon steel, strengthening element C content is low and be fixed, and thus usually adds strengthening element P and improves intensity, reach the requirement of high strength.
The smelting of phosphorous ultra low-carbon steel mainly solves decarburization, falls nitrogen, and purity control and microalloying eliminate the problem of C, N interstitial atom.Decarburization, the critical technological point falling nitrogen generally solve.Microalloying adds Ti and C, atom N, and form precipitate Ti (C, N), can eliminate interstitial atom, adding P can form substitutional solid solution, improves the tensile strength of ultra low-carbon steel, to reach the requirement of high strength.But it is the critical technological point smelting phosphorous ultra low-carbon steel that purity controls.When cast is containing Ti ultra low-carbon steel, produces dross in submerged nozzle, have a strong impact on production efficiency, quality product is worked the mischief simultaneously.And for containing Ti steel grade, increase P element wherein and nozzle clogging problem will be made more serious.
Summary of the invention
The invention provides a kind of smelting process of phosphorous ultra low-carbon steel, its object is to the Molten Steel Cleanliness by improving phosphorous ultra low-carbon steel, nozzle clogging in production control process, thus improve smelting production efficiency and steel.
For this reason, the solution that the present invention takes is:
A smelting process for phosphorous ultra low-carbon steel, its operational path is hot metal pretreatment-converter smelting-LF stove refining-RH vacuum refinement-continuous casting, and concrete grammar is:
Hot metal pretreatment: blowing desulfurization pulvis in molten iron, and it is clean to skim, when during S≤0.003wt%, molten iron being proceeded to converter smelting in molten iron.
Converter smelting: carry out deoxidation carbon drop in converter, oxygen blow duration is 15 ~ 18min; In molten steel, slag making materials is added in smelting process, when in molten steel, C≤0.06wt%, O reach 0.05 ~ 0.09wt%, and tap in ladle when in converter, liquid steel temperature reaches 1680 ~ 1720 DEG C, adopt Slag Retaining Process in tapping process, argon station adds 2 ~ 5kg/t lime.
LF stove refining: adopt the heating of electrode pair molten steel, add slag former simultaneously in ladle, with steel ladle bottom argon blowing, molten steel is stirred, the composition of even molten steel and temperature.When liquid steel temperature reaches 1630 ~ 1650 DEG C, proceed to vacuum refinement operation.
RH vacuum refinement: adopt the decarburization of RH vacuum cycle device, denitrogenation, when in steel during C≤0.0050wt%, alloying in batches, changes inclusion kind and quantity.After composition various in molten steel and temperature reach target value, leave standstill 15 ~ 25min, then molten steel is proceeded to continuous casting working procedure.
Continuous casting: when basket pouring, adopt blowing argon gas sealing in position between long nozzle, stopper, filling pipe end, soaking water gap plate, tundish adds carbon-free covering agent and carries out molding casting.
Beneficial effect of the present invention is:
The present invention can improve the Molten Steel Cleanliness of phosphorous ultra low-carbon steel, the castability of the phosphorous ultra low-carbon steel of remarkable improvement, make often to water time production stove number and bring up to 6 stoves by 4 stoves, nozzle clogging in effective production control process, improve and smelt production efficiency and steel, make 75 grades of ratios improve 50%, and can spare parts consumption be reduced, reduce ton steel cost, often water the secondary submerged nozzle usage quantity that often flows and be down to 1 by 2 ~ 3.
Embodiment
Embodiment 1: steel grade is: 210P1; Wherein P content is 0.08wt%, and C content is 0.0029wt%.
Hot metal pretreatment: adopt desulphurization spray gun to blowing magnesium base desulfurization powder in molten iron, CaO/Mg mass ratio is 4:1, and it is clean to skim, when during S≤0.003wt%, molten iron being proceeded to converter smelting in molten iron.
Converter smelting: carry out deoxidation carbon drop in converter, oxygen blow duration is 15min; In molten steel, add slag making materials in smelting process, as C0.04wt%, O0.06wt% in molten steel, and tap in ladle when liquid steel temperature reaches 1690 DEG C in converter, adopt Slag Retaining Process in tapping process, argon station adds 3.5kg/t lime.
LF stove refining: adopt the heating of electrode pair molten steel, add slag former lime 1t (260 tons of LF stoves) simultaneously in ladle, carries out modification to top slag, improves basicity.And with steel ladle bottom argon blowing, molten steel is stirred, when liquid steel temperature reaches 1640 DEG C, proceed to vacuum refinement operation.
RH vacuum refinement: adopt RH vacuum cycle device decarburization 12min, when in steel during C≤0.0050wt%, it is calm to add aluminum steel section; Add manganese alloy, silicon alloy after aluminium alloying 3min, after the 3min of interval, add niobium alloy and phosphorus alloy, after the 5min of interval, add titanium alloy again, after clean circulation 6min, close RH vacuum cycle device.After composition various in molten steel and temperature reach target value, leave standstill 20min, inclusion is fully floated, again molten steel is proceeded to continuous casting working procedure thereafter.
Continuous casting: when basket pouring, is blown into 6L/min argon gas-sealed to stopper, filling pipe end, and tundish adds 1kg/t carbon-free covering agent and carries out molding casting.
Embodiment 2:170P1; Wherein P content is 0.04wt%, and C content is 0.0020wt%.
Hot metal pretreatment: adopt desulphurization spray gun to blowing magnesium base desulfurization powder in molten iron, CaO/Mg mass ratio is 4:1, and it is clean to skim, when during S≤0.003wt%, molten iron being proceeded to converter smelting in molten iron.
Converter smelting: carry out deoxidation carbon drop in converter, oxygen blow duration is 18min; In molten steel, add slag making materials in smelting process, as C0.05wt%, O0.08wt% in molten steel, and tap in ladle when liquid steel temperature reaches 1710 DEG C in converter, adopt Slag Retaining Process in tapping process, argon station adds 3kg/t lime.
LF stove refining: adopt the heating of electrode pair molten steel, add slag former lime 1t (260 tons of LF stoves) simultaneously in ladle, carries out modification to top slag, improves basicity.And with steel ladle bottom argon blowing, molten steel is stirred, when liquid steel temperature reaches 1630 DEG C, proceed to vacuum refinement operation.
RH vacuum refinement: adopt RH vacuum cycle device decarburization 12min, when in steel during C≤0.0050wt%, it is calm to add aluminum steel section; Add manganese alloy, silicon alloy after aluminium alloying 3min, after the 3min of interval, add niobium alloy and phosphorus alloy, after the 5min of interval, add titanium alloy again, after clean circulation 6min, close RH vacuum cycle device.After composition various in molten steel and temperature reach target value, leave standstill 25min, inclusion is fully floated, again molten steel is proceeded to continuous casting working procedure thereafter.
Continuous casting: when basket pouring, is blown into 5L/min argon gas-sealed between long nozzle, stopper, filling pipe end, soaking water gap plate, and tundish adds 1kg/t carbon-free covering agent and carries out molding casting.

Claims (1)

1. a smelting process for phosphorous ultra low-carbon steel, is characterized in that:
Hot metal pretreatment: blowing desulfurization pulvis in molten iron, and it is clean to skim, when during S≤0.003wt%, molten iron being proceeded to converter smelting in molten iron;
Converter smelting: carry out deoxidation carbon drop in converter, oxygen blow duration is 15 ~ 18min; In molten steel, slag making materials is added in smelting process, when in molten steel, C≤0.06wt%, O reach 0.05 ~ 0.09wt%, and tap in ladle when in converter, liquid steel temperature reaches 1680 ~ 1720 DEG C, adopt Slag Retaining Process in tapping process, argon station adds 2 ~ 5kg/t lime;
LF stove refining: adopt the heating of electrode pair molten steel, add slag former simultaneously in ladle, with steel ladle bottom argon blowing, molten steel is stirred, when liquid steel temperature reaches 1630 ~ 1650 DEG C, proceed to vacuum refinement operation;
RH vacuum refinement: adopt the decarburization of RH vacuum cycle device, denitrogenation, when in steel during C≤0.0050wt%, alloying in batches; After composition various in molten steel and temperature reach target value, leave standstill 15 ~ 25min, then molten steel is proceeded to continuous casting working procedure;
Continuous casting: when basket pouring, adopt blowing argon gas sealing in position between long nozzle, stopper, filling pipe end, soaking water gap plate, tundish adds carbon-free covering agent and carries out molding casting.
CN201410483658.2A 2014-09-19 2014-09-19 Method for smelting phosphorus-containing ultra-low carbon steel Pending CN105483501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410483658.2A CN105483501A (en) 2014-09-19 2014-09-19 Method for smelting phosphorus-containing ultra-low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410483658.2A CN105483501A (en) 2014-09-19 2014-09-19 Method for smelting phosphorus-containing ultra-low carbon steel

Publications (1)

Publication Number Publication Date
CN105483501A true CN105483501A (en) 2016-04-13

Family

ID=55670770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410483658.2A Pending CN105483501A (en) 2014-09-19 2014-09-19 Method for smelting phosphorus-containing ultra-low carbon steel

Country Status (1)

Country Link
CN (1) CN105483501A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107365884A (en) * 2016-05-12 2017-11-21 鞍钢股份有限公司 A kind of method of ultra-low-carbon steel carbon component close limit control
CN107365890A (en) * 2016-05-12 2017-11-21 鞍钢股份有限公司 A kind of control method of X80 inclusion in pipeline steel
CN108866276A (en) * 2018-07-26 2018-11-23 攀钢集团攀枝花钢铁研究院有限公司 Improve the smelting process of heavy rail steel cleanness
CN109666854A (en) * 2019-01-15 2019-04-23 舞阳钢铁有限责任公司 A kind of smelting process of mild steel
CN110484808A (en) * 2019-09-04 2019-11-22 鞍钢股份有限公司 A method of improving phosphorous ultra-low-carbon steel castability
CN111545718A (en) * 2020-05-11 2020-08-18 首钢集团有限公司 Method and device for blowing argon in slab continuous casting
CN111621622A (en) * 2020-06-09 2020-09-04 攀钢集团攀枝花钢铁研究院有限公司 Smelting method of high-cleanliness steel
CN114807731A (en) * 2022-05-20 2022-07-29 山东钢铁集团日照有限公司 Smelting method of steel grade with ultra-low carbon and large silicon-manganese alloy amount

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230516A (en) * 1992-02-19 1993-09-07 Kawasaki Steel Corp Melting method for extra-low-carbon steel
JP2004238698A (en) * 2003-02-07 2004-08-26 Nisshin Steel Co Ltd Production method of high cleanliness steel
CN101215618A (en) * 2007-12-27 2008-07-09 本钢板材股份有限公司 Method for smelting ultra-low-carbon steel
CN101550475A (en) * 2009-05-15 2009-10-07 首钢总公司 Method for producing ultra-low-carbon steel
CN103014537A (en) * 2011-09-21 2013-04-03 山西太钢不锈钢股份有限公司 Smelting method of steel used in high speed passenger train hollow axle
CN103451349A (en) * 2013-08-16 2013-12-18 河北钢铁股份有限公司邯郸分公司 Control method for preventing nozzle clogging in casting process of ultra-low carbon-aluminium deoxidized molten steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230516A (en) * 1992-02-19 1993-09-07 Kawasaki Steel Corp Melting method for extra-low-carbon steel
JP2004238698A (en) * 2003-02-07 2004-08-26 Nisshin Steel Co Ltd Production method of high cleanliness steel
CN101215618A (en) * 2007-12-27 2008-07-09 本钢板材股份有限公司 Method for smelting ultra-low-carbon steel
CN101550475A (en) * 2009-05-15 2009-10-07 首钢总公司 Method for producing ultra-low-carbon steel
CN103014537A (en) * 2011-09-21 2013-04-03 山西太钢不锈钢股份有限公司 Smelting method of steel used in high speed passenger train hollow axle
CN103451349A (en) * 2013-08-16 2013-12-18 河北钢铁股份有限公司邯郸分公司 Control method for preventing nozzle clogging in casting process of ultra-low carbon-aluminium deoxidized molten steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107365884A (en) * 2016-05-12 2017-11-21 鞍钢股份有限公司 A kind of method of ultra-low-carbon steel carbon component close limit control
CN107365890A (en) * 2016-05-12 2017-11-21 鞍钢股份有限公司 A kind of control method of X80 inclusion in pipeline steel
CN108866276A (en) * 2018-07-26 2018-11-23 攀钢集团攀枝花钢铁研究院有限公司 Improve the smelting process of heavy rail steel cleanness
CN109666854A (en) * 2019-01-15 2019-04-23 舞阳钢铁有限责任公司 A kind of smelting process of mild steel
CN110484808A (en) * 2019-09-04 2019-11-22 鞍钢股份有限公司 A method of improving phosphorous ultra-low-carbon steel castability
CN111545718A (en) * 2020-05-11 2020-08-18 首钢集团有限公司 Method and device for blowing argon in slab continuous casting
CN111545718B (en) * 2020-05-11 2022-04-19 首钢集团有限公司 Method and device for blowing argon in slab continuous casting
CN111621622A (en) * 2020-06-09 2020-09-04 攀钢集团攀枝花钢铁研究院有限公司 Smelting method of high-cleanliness steel
CN114807731A (en) * 2022-05-20 2022-07-29 山东钢铁集团日照有限公司 Smelting method of steel grade with ultra-low carbon and large silicon-manganese alloy amount

Similar Documents

Publication Publication Date Title
CN106636953B (en) A kind of effective martensitic stain less steel P91 smelting processes of boiler
CN105483501A (en) Method for smelting phosphorus-containing ultra-low carbon steel
CN104862443B (en) A kind of smelting process of low carbon low silicon welding wire steel
CN101550475B (en) Method for producing ultra-low-carbon steel
CN103627841B (en) Control method for nitrogen content of molten steel of wear-resistant steel
CN101215618A (en) Method for smelting ultra-low-carbon steel
CN102719600A (en) Production method of ultra low carbon steel
CN104789859B (en) Method for producing peritectic steel by using medium-thin slab continuous caster
CN103045948B (en) High-chromium steel and manufacturing method thereof
CN101768656B (en) Method for refining ultra-low carbon ferritic stainless steel under vacuum
CN105177427A (en) Steel for 30CrMo gas cylinders and production method thereof
CN102248142A (en) Method for producing medium and low carbon aluminum killed steel
CN109913607A (en) A kind of smelting process of ultra-low-carbon steel
CN105018669A (en) Method for producing technically pure iron for nuclear power
CN103334050A (en) Process utilizing sheet billet continuous casting to manufacture low aluminum silicon calm carbon structural steel
CN105154623A (en) Efficient alloying method for smelting 38CrMoAl steel
CN107354269A (en) The method that RH complex deoxidizations produce ultra-low-carbon steel
CN102787196A (en) Method for smelting stainless steel by direct reduced iron
CN104451385A (en) Low-carbon low-nitrogen and high-oxygen industrial pure iron and production method thereof
CN108893682B (en) Die steel billet and preparation method thereof
CN105088087B (en) High-toughness optimal welding micro-alloyed cast steel and preparation method thereof
CN108504819B (en) Process and device for smelting low-micro ferrochrome through AOD and VOD duplex
CN103484599B (en) Smelting method of high-manganese wear-resistant steel
CN103540712B (en) Nitrogen increasing method of low-carbon high-nitrogen stainless steel ladle
CN103555882B (en) Method for adding nitrogen in low carbon stainless steel ladle

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160413