CN105473147A - 维生素d受体/smad基因组回路门纤维化反应 - Google Patents
维生素d受体/smad基因组回路门纤维化反应 Download PDFInfo
- Publication number
- CN105473147A CN105473147A CN201480035908.4A CN201480035908A CN105473147A CN 105473147 A CN105473147 A CN 105473147A CN 201480035908 A CN201480035908 A CN 201480035908A CN 105473147 A CN105473147 A CN 105473147A
- Authority
- CN
- China
- Prior art keywords
- vdr
- vitamin
- cell
- sternzellen
- fibrosis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/59—Compounds containing 9, 10- seco- cyclopenta[a]hydrophenanthrene ring systems
- A61K31/592—9,10-Secoergostane derivatives, e.g. ergocalciferol, i.e. vitamin D2
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/045—Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
- A61K31/07—Retinol compounds, e.g. vitamin A
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/59—Compounds containing 9, 10- seco- cyclopenta[a]hydrophenanthrene ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/59—Compounds containing 9, 10- seco- cyclopenta[a]hydrophenanthrene ring systems
- A61K31/593—9,10-Secocholestane derivatives, e.g. cholecalciferol, i.e. vitamin D3
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7042—Compounds having saccharide radicals and heterocyclic rings
- A61K31/7052—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
- A61K31/706—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
- A61K31/7064—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
- A61K31/7068—Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/542—Carboxylic acids, e.g. a fatty acid or an amino acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/62—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
- A61K47/6929—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
- A61K47/6929—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
- A61K47/6931—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/167—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction with an outer layer or coating comprising drug; with chemically bound drugs or non-active substances on their surface
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/18—Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/02—Nutrients, e.g. vitamins, minerals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
- A61P39/02—Antidotes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
- G01N33/5058—Neurological cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/82—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving vitamins or their receptors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2500/00—Screening for compounds of potential therapeutic value
- G01N2500/10—Screening for compounds of potential therapeutic value involving cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/08—Hepato-biliairy disorders other than hepatitis
- G01N2800/085—Liver diseases, e.g. portal hypertension, fibrosis, cirrhosis, bilirubin
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Cell Biology (AREA)
- Nanotechnology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- Food Science & Technology (AREA)
- Microbiology (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Toxicology (AREA)
- Neurology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Neurosurgery (AREA)
- Tropical Medicine & Parasitology (AREA)
- Gastroenterology & Hepatology (AREA)
- Diabetes (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
Abstract
本发明提供了组合物,该组合物包括纳米颗粒和增加维生素D受体(VDR)生物学活性的化合物(例如,VDR激动剂);本发明还提供了使用这样的化合物以增加细胞(如上皮细胞或星状细胞)的维生素A、维生素D和/或脂质的保留或存储的方法。这样的方法可用于治疗或预防纤维化。
Description
相关申请的交叉引用
本申请要求2013年4月24日提交的第61/815575号的美国临时申请的优先权,其通过引用纳入本发明。
领域
本发明提供了组合物,该组合物包括纳米颗粒和增加维生素D受体(VDR)的生物学活性的化合物(例如VDR激动剂),以及使用这类化合物的方法,例如保持或增加细胞中维生素A、维生素D和/或脂质的存储,例如治疗或预防纤维化。
致谢政府的支持
本发明得到了美国国立卫生研究院的DK057978、HL105278、DK090962、HL088093、ES010337和CA014195的政府支持。政府对本发明具有一定的权利。
背景技术
肝纤维化,定义为细胞外基质(ECM)的过量积聚和所导致的肝功能和适应性(pliability)损失,这是由急性或慢性肝损伤触发的伤口愈合反应的结果(BatallerandBrenner,2005;Hernandez-GeaandFriedman,2011;LeeandFriedman,2011)。在工业化国家中,导致纤维化的肝损伤的主要原因包括慢性肝炎病毒(HBV/HCV)感染、酒精滥用,以及越来越多的是非酒精性脂肪性肝炎(NASH)(Friedman,1999,2003;FriedmanandBansal,2006;Siegmundetal.,2005)。在持续性的伤害下,纤维状胶原渐进沉积,最终导致实质结节被胶原带包围,这是肝硬化的组织学特征(signature)(BatallerandBrenner,2005;Friedman,2003)。
慢性肝病和肝硬化是一个重大的全球性健康问题(BatallerandBrenner,2005)。在澳大利亚和英国,慢性肝病是第5大最常见的死亡原因,位于心脏疾病、癌症、中风和胸部疾病之后(Williams,2006)。在美国,它们是第8大最常见的死亡原因(Kimetal.,2002)。目前,FDA还没有批准慢性肝病的抗纤维化疗法(Cohen-NaftalyandFriedman,2011),并且在肝病的根本原因得不到改善的情况下,治疗的选择仅限于解决随之而来的并发症,如门静脉高压、肝细胞癌和肝功能衰竭。因此,更好地了解在肝脏中调节肝纤维化反应的分子机制是需要的,以确认(identification)新的目标,从而成功地治疗抗纤维化。
在肝纤维化中,中心参与者(centralplayers)是非实质细胞(NPC),例如肝星状细胞(HSC)(BatallerandBrenner,2005;Bouwensetal.,1992),它们是ECM的主要生成者(Friedman,2008;Friedmanetal.,1985;Reynaertetal.,2002)。在健康的肝脏中,HSC是视黄酸(retinoid)(维生素A)存储细胞,位于Disse空间中,处于肝窦内皮细胞和肝细胞之间(Friedman,2008)。损伤后,旁分泌刺激导致HSC经历戏剧性的表型改变(在一个称为活化的过程中),因此它们表现出增生、收缩和视黄醇存储的损失,伴随着趋化因子、细胞因子和病理细胞外基质成分的分泌(Friedman,2008;Geerts,2001)。虽然调节此过程的准确机制还未阐明,但转化生长因子β1(TGFβ1)信号传导(signaling)被认为是最有效的促纤维化途径之一,而促纤维化负责ECM合成(Breitkopfetal.,2006;InagakiandOkazaki,2007)。
TGFβ是一种多功能细胞因子,在细胞分裂、分化、迁移、粘附、组织和死亡上有深刻的影响。存在三种主要的TGFβ同种型(isoform)(TGFβ1、TGFβ2和TGFβ3),并且TGFβ1是与肝纤维化有关的最重要同种型(InagakiandOkazaki,2007)。肝损伤后,衍生自旁分泌和自分泌来源的TGFβ1,结合至HSC细胞表面的I型和II型丝氨酸/苏氨酸受体激酶(InagakiandOkazaki,2007)。随后,其下游的效应因子SMAD2和SMAD3磷酸化并释放到细胞溶质中,在那里它们与SMAD4形成络合物。然后这个SMAD络合物可以易位进入细胞核,识别基因组上的SMAD结合元件(SBE),并且直接调节靶基因(FengandDerynck,2005;Massagueetal.,2005)。因此,破译HSC中的TGFβ-SMAD转录网络,并了解可如何通过细胞外和细胞内的因子加以控制,是发展有效的抗纤维化策略的关键。
概要
由于肝脏中的VDR表达水平较低,维生素D在肝功能方面的生理作用早已不复存在(Bookoutetal.,2006;Hanetal.,2010),但是本发明的内容表明,VDR是肝纤维化的调节物质(modulator)。例如,在肝损伤的标准小鼠模型中,合成VDR激动剂卡泊三醇的施用降低了胶原沉积和纤维化基因表达。这也表明,VDR敲除的小鼠发生自发肝纤维化,证明这一受体在正常的肝平衡状态下的作用。机理研究表明,VDR信号传导(signaling)的活化,针对广泛的TGFβ/SMAD依赖转录反应产生了拮抗作用,该反应是在肝星状细胞(HSC)的促纤维化基因上发生的。VDR和SMAD3的全基因组结合位点的映射显示,这些在促纤维化基因的顺式调节元件上的转录因子的DNA占位产生了重叠。此外,TGFβ-SMAD信号传导增强了配位的VDR与这些基因位点的可达性,而这又拮抗SMAD3的募集(recruitment)。这种动态的VDR/SMAD基因组反馈回路表明了一种以前无法识别的调节肝纤维化的机制。
基于这些观察,本发明提供了一种组合物,该组合物包括纳米颗粒和增加维生素D受体(VDR)生物活性的化合物,例如增加细胞的维生素A、维生素D和/或脂质存储的一种或多种的化合物。纳米颗粒可用于传输维生素D激动剂至肝、胰腺或肾。在一个实例中,纳米颗粒包括一种或多种白蛋白、视黄醇(retinol)结合蛋白、甘露糖-6-磷酸修饰的白蛋白(例如见Lietal.,J.Pharm.Pharmacol.2009,61(9):1155-61,例如靶向纳米颗粒至肝星状细胞)、脂肪酸酯或视黄基(retinyl)酯。这种试剂可存在于纳米颗粒的表面上(例如,涂覆有这些试剂的一种或多种)。在一些实例中,纳米颗粒是脂质纳米颗粒或聚合物纳米颗粒。在纳米颗粒之中或之上的VDR激动剂的实例包括但不限于:维生素D、维生素D前体、维生素D类似物、维生素D受体配体、维生素D受体激动剂前体、及其组合。本发明公开的组合物可以包括其它治疗剂,如化疗剂(例如吉西他滨),生物治疗剂(例如单克隆抗体),或其组合。
本发明还提供了使用治疗有效量的所公开的组合物,以增加或保持细胞的维生素A、维生素D和/或脂质的方法,例如上皮细胞或星状细胞。这样的方法可以在体外或体内进行。例如,治疗有效量的组合物可以给予需要的受试者,从而增加或保持受试者的上皮细胞和/或星形细胞中的维生素A、维生素D和/或脂质。在一些实例中,受试者具有肝病、肾病或胰腺疾病,如一种或多种酒精肝疾病、脂肪肝疾病、肝纤维化/硬化、胆汁性纤维化/硬化、肝癌、乙型肝炎病毒感染、丙型肝炎病毒感染、硬化性胆管炎、布-加综合症、黄疸、非酒精性脂肪性肝炎、血色病、肝豆状核病变、肝癌、胆管癌、恶性血管皮内细胞瘤、血管肉瘤、胰腺纤维化、胰腺导管腺癌(PDA)或肾纤维化。
本发明还提供了增加星状细胞(如肝、胰、肺、心脏、或肾脏星状细胞)的VDR表达的方法。这样的方法可包括使星状细胞与一定量的VDR激动剂接触,该VDR激动剂的量足以提高VDR激动剂与VDR的结合至少10倍。
本发明还提供了可治疗纤维化的试剂的筛选方法,如肝、胰腺或肾脏的纤维化。这样的方法可包括使星状细胞(如肝、胰、肺、心脏或肾脏星状细胞)与一种或多种测试剂和任选的(optionally)TGF-β1接触。接着,检测由星状细胞生成的VDR激动剂,由星状细胞生成或表达的CYP24A1,由星状细胞生成、翻译后修饰(磷酸化)或表达的SMAD3,VDR激动剂与VDR的结合,或其组合。与不存在一种或多种测试剂时相比,所选择的测试剂使星状细胞的VDR激动剂的生成增加至少5倍;与不存在一种或多种测试剂时相比,所选择的测试剂使星状细胞的CYP24A1的生成增加至少5倍;与不存在一种或多种测试剂时相比,所选择的测试剂使星状细胞的SMAD3的生成、翻译后修饰(磷酸化)或表达降低至少1.5倍,或其组合。所选择的测试剂是可以治疗纤维化的试剂。在一些实例中,该方法还包括确定一种或多种测试剂是否在体外或体内具有高钙血症效果。
根据下面的详细描述,并参考附图,本发明前述的和其它的目的和特征将变得更加明显。
附图的简要说明
图1A-1E。功能性VDR在HSC中的特异性表达。(A)小鼠肝脏、原代肝细胞和HSC中的相对VDRmRNA表达(肝表达=1)。通过RT-qPCR定量水平。数据表明了一式三份进行的至少三个独立实验的平均值+/-SEM。星号表示统计学显著差异(Student'st检验,***P<0.001)。(B)对来自(A)的样品的蛋白裂解物的VDR进行蛋白质印迹分析。(C)对新鲜分离的初级小鼠HSC用VDR特异性抗体染色,以监测VDR的表达。通过DAPI染色,DNA是可视化的。(D)和(E)用指定浓度的1,25(OH)2D3或卡泊三醇(Cal)培养16小时的原代鼠HSC(mHSC)或LX-2细胞中的CYP24A1mRNA的相对表达,如通过RT-qPCR测量的(未处理的HSC表达=1)。数据表明了一式三份进行的至少三个独立实验的平均值+/-SEM。星号表示统计学显著差异(Student'st检验,**P<0.01,***P<0.001)。
图2A-2F。卡泊三醇在CCl4治疗的小鼠的肝纤维化过程中的预防作用。(A)骨化三醇(1,25(OH)2D3)和卡泊三醇的分子结构。(C)来自野生型C57BL/6J小鼠的代表性肝脏的天狼星红(左)和H&E(右)染色,这些小鼠在经CCl4/卡泊三醇共处理4周(n=5)之前经卡泊三醇(Cal,20μg/kg,经口管饲)预处理。(D)和(E)在天狼星红染色的基础上定量纤维化(D),并在H&E染色的基础上采用Ishak分数评价肝纤维化(E)。(F)和(B)在经载体(DMSO)(n=3)、四氯化碳(CCl4,0.5ml/kg,n=6)、卡泊三醇(Cal,20μg/kg,n=3)和CCl4加卡泊三醇(n=6)处理4周的C57BL/6J小鼠中的肝羟脯氨酸含量(F)和血清钙浓度(B)(见图3)。
图3A-3J。在CCl4处理的小鼠中全身给予卡泊三醇衰减肝纤维化,而Vdr的基因消除(abrogation)导致自发性肝纤维化。(A)肝脏来自4周处理(载体(DMSO)(n=3)、四氯化碳(CCl4,0.5ml/kgi.p.,n=6)、卡泊三醇(Cal,20μg/kg经口管饲,n=3)和CCl4加卡泊三醇(n=6))并经天狼星红(左)和H&E(右)染色的C57BL/6J小鼠。比例尺200μm。通过(B)天狼星红染色、(C)羟脯氨酸含量和(D)H&E染色(Ishak分数)定量纤维化。星号表示统计学显著差异(Student's非配对t检验,**P<0.01,***P<0.001)。(E)-(G)Col1α1、Tgfβ1和Timp1的肝基因表达水平的RT-qPCR测量值。数据表明了平均值±SEM。星号表示统计学显著差异(Student's非配对t检验,**P<0.01,***P<0.001)。(H)来自Vdr+/+(n=3)、Vdr+/-(n=4)和Vdr-/-(n=4个中的2个)的小鼠的天狼星红(上)和H&E(下)染色的肝脏切片,所述小鼠在处死前保持补充钙和磷酸盐的救援(rescue)饮食(2%钙,1.25%磷,20%乳糖)6个月。箭头分别指示外周正弦纤维化(Vdr+/-小鼠)和炎性细胞浸润(Vdr-/-小鼠)。比例尺50μm。(I)通过羟基脯氨酸含量和(J)Col1α1mRNA表达定量纤维化,使用来自Vdr-/-小鼠的在天狼星红染色时表现出最小的纤维化(参见结果)的4个肝脏中的2个的肝脏。数据表明了平均值±SEM。星号表示统计学显著差异(Student's非配对t检验,*P<0.05)。
图4A-4C。VDR信号传导抑制TGFβ诱导的促纤维化基因。(A)在10nM1,25(OH)2D3(A-HSC+l,25(OH)2D3)的存在下,比较在新鲜分离的大鼠HSC(静态HSC,Q-HSC)、活化的HSC(A-HSC,在塑料上培养3天)和细胞培养物中的519个差异性地表达基因的热映射。使用log2转换的微阵列表达数据的行和列的欧几里德群,对每个处理组n=2。(B)针对经TGFβ1(1ng/ml)和TGFβ1加1,25(OH)2D3(100nm)处理24小时的原代大鼠HSC的纤维化所涉及的基因的成倍表达变化的热映射,对每个处理组n=2。(C)对照物(siCNTL)或VDR特异性(siVDR)siRNA转染的LX-2细胞的纤维化基因表达,这些LX-2细胞经载体(DMSO)、卡泊三醇(Cal,100nM)、TGFβ1(1ng/ml)或TGFβ1+Cal处理16小时。数据表明了一式三份进行的至少三个独立实验的平均值±SEM。星号表示统计学显著差异(Student's非配对t检验,*P<0.05,**P<0.01)。
图5A-5B。SMAD2/3是TGFβ诱导的纤维化基因表达所需要的。(A)通过RT-qPCR测定SMAD2、SMAD3、COL1A1和COL1A2在LX-2细胞中的相对表达,这些LX-2细胞经载体或TGFβ1(1ng/ml)处理24小时之前经对照物(CNTL)、SMAD2、SMAD3或SMAD2/3特异性siRNA转染48小时。(B)在经TGFβ1(1ng/ml)+/-卡泊三醇(100nM)处理指定时间的LX-2细胞中的总的和磷酸化的SMAD3。在蛋白质印迹分析之前,使用SMAD2/3抗体对核提取物进行免疫沉淀。星号表示非特异性条带。
图6A-6H。肝星状细胞的VDR和SMAD3顺反组。(A)和(E)饼图说明了VDR和SMAD3结合位点在经处理的LX-2细胞中的基因组位置(在16小时的卡泊三醇(100nM)预处理之后,再经卡泊三醇(100nM)和TGFβ1(1ng/ml)处理4小时,FDR<0.0001)。启动子区域,<2kb,来自TSS;基因间区域,不是启动子、内含子或外显子。(B)和(F)针对分别对应CYP24A1和ID1基因的VDR和SMAD3的代表性ChIP-Seq读数。(C)和(G)对注释(annotated)有VDR和SMAD3结合位点的基因的基因本体论(GO)分类。(D)和(H)对序列进行的从头基元分析,该序列位于100bp的VDR和SMAD3峰之内(FDR<0.0001)。
图7A-7D。描绘标准化VDR和SMAD3ChIP-Seq标签的靶基因的基因轨迹。(A)SPP1,(B)BGLAP,(C)SMAD7和(D)TGFβ1。
图8A-8F。TGFβ信号传导经由VDR/SMAD3基因组串扰的拮抗作用。(A)描绘了在如图4中处理的LX-2细胞中VDR和SMAD3基因组结合位点的重叠的Venn图。(B)强度图显示了随着与统计学显著的SMAD3结合峰(23,532峰,FDR=0.0001)中心的距离而变化的ChIP-片段密度的分级群。VDR(蓝色)的0位置的强度表明了VDR/SMAD3位点与作为阳性对照物作用的SMAD3(红色)的重叠。(C)在VDR和SMAD3共同结合位点处,通过qPCR分析经处理的LX-2细胞的ChIP-re-ChIP。相对于输入染色质表达的占位。(D)由VDR和SMAD3共同占位的基因中富含常见的人类表型。(E)具有由VDR和SMAD3共占位的基因组位点的TGFβ1/VDR共调节的促纤维化基因的数目。(F)如图6A-6H中处理的LX-2细胞中由TGFβ1和VDR共调节的促纤维化基因中观察到的VDR/SMAD3共占位位点的数目。数据表明了一式三份进行的至少三个独立实验的平均值±SEM。星号表示统计学显著差异(Student'st检验,*P<0.05,**P<0.01)。也见表3和图9A-9B。
图9A和9B。VDR/SMAD3共结合位点调节维生素D和TGFβ之间的拮抗作用。(A)将经空的pGL3报告子或具有如图10C所述的COL1A1的2个(1+2)VDR/SMAD共结合位点且具有一个内对照β-半乳糖苷酶表达载体(pCMX-LacZ)的pGL3报告子转染的LX-2细胞,在如所述的不同条件下经受处理。使用β-半乳糖苷酶活性作为内部对照物,分析转染的全细胞裂解物的标准化荧光素酶活性。相对于标准化的荧光素酶活性,表达萤光素酶活性(RLU),该标准化的荧光素酶活性通过如下获得:用相同的报告子转染细胞,并用载体处理,其被任意指定为数值1。数据表明了一式三份进行的至少三个独立转染的平均值±SEM。星号表示统计学显著差异(Student'st检验,**P<0.01)。(B)在200bp窗口内的SMAD3结合频率的移动平均值都集中在VDR结合位点处,这些位点位于由VDR和SMAD3共结合的基因组区域内。
图10A-10G。VDR和SMAD之间的基因组拮抗。(A)和(B)在LX-2细胞(TGFβ1(1ng/ml)+卡泊三醇(100nM),4小时)中,相对于VDR/SMAD3共占位位点的中心,VDR和SMAD3ChIP-Seq信号强度的点。(C)在经处理的LX-2细胞(载体(DMSO)、卡泊三醇(Cal,100nΜ)、TGFβ1(1ng/ml)或TGFβ1+卡泊三醇)中VDR和SMAD3的对应于COL1A1的代表性的ChIP-Seq读数。这三个共占位位点被指定为1、2和3。(D)和(F)在如上处理的LX-2细胞中,由VDR和SMAD3共结合的COL1A1调节区域#1的ChIP-qPCR。(E)和(G)在如上处理的对照物(siCNTL)、VDR特异性(siVDR)siRNA或SMAD3特异性(siSMAD3)siRNA转染的LX-2细胞的COL1A1调节区域#1的ChIP-qPCR。相对于输入染色质表达的占位。数据表明了一式三份进行的至少三个独立实验的平均值±SEM。星号表示统计学显著差异(Student'st检验,*P<0.05,**P<0.01)。
图11A-11F。描绘标准化VDR和SMAD3ChIP-Seq标签的在不同的条件下的纤维化基因的基因轨迹,如(A)-(F)所示。
图12A-12B。在由VDR和SMAD共占位的纤维化基因的调节区处,共活化子/辅阻遏物募集和组蛋白H3乙酰化状态。(A)将(载体(DMSO),卡泊三醇(Cal,100nM)、TGFβ1(1ng/ml)或TGFβ1+卡泊三醇)处理的LX-2细胞用抗体识别的CBP、p300和乙酰化组蛋白H3进行免疫沉淀,并且通过使用引物的qPCR进行分析,该引物侧接经VDR和SMAD3共结合的COL1A1调节区#1。相对于在经相应条件处理的LX-2细胞中的输入染色质,表达占位的水平。数据表明了一式三份进行的至少三个独立实验的平均值±SEM。星号表示统计学显著差异(Student'st检验,*P<0.05)。(B)将(TGFβ1(1ng/ml)+/-卡泊三醇(100nM))处理的LX-2细胞用所示的抗体进行免疫沉淀,并通过使用引物的qPCR进行分析,该引物侧接COL1A1或COL1A2调节区。相对于在经相应条件处理的LX-2细胞中的输入染色质,表达占位的水平。
图13A-13F。TGFβ揭露(unmasks)信号依赖性VDR顺反组(Citrome)。(A)Venn图显示在经处理的LX-2细胞中VDR顺反组的重叠(FDR<0.0001)。(B)相对于LX-2细胞中的SMAD3结合位点的中心,分别以VDRCal/TGFβ1+Cal(3,537重叠)、仅VDRCal(仅2,744卡泊三醇)或仅VDRTGFβ1+Cal(仅21,447卡泊三醇+TGFβ1)分类,在(A)中描绘的VDRChIP-Seq峰位置的点。(C)相对于如所示处理的LX-2细胞中的VDR/SMAD3共占位位点的中心,VDRChIP-Seq信号强度的点。(D)对如上处理的LX-2细胞的核和全细胞提取物(NE,WCE)中的VDR进行的蛋白质印迹分析。TFIIH(P89)用作上样(loading)对照物。(E)仅卡泊三醇、仅卡泊三醇+TGFβ1或卡泊三醇/卡泊三醇+TGFβ1重叠VDRChIP-Seq峰(含VDRE)的百分比。(F)相对于如所示处理的LX-2细胞中的VDR/SMAD3共占位位点的中心,组蛋白H3ChIP-Seq的信号强度的点。
图14A-14D。VDR/SMAD基因组回路。(A)和(B)在经处理的LX-2细胞(载体(DMSO)、卡泊三醇(100nM)、TGFβ1(1ng/ml)、TGFβ1(1ng/ml)+卡泊三醇(100nM))中的COL1A1调节区#1处,VDR和SMAD3结合的时间进程。这是通过ChIP-qPCR测定的。在时间进程测试之前,使用卡泊三醇(100nM)预处理LX-2细胞16小时,和相对于输入染色质表达的占位。数据表明了一式三份进行的至少三个独立实验的平均值±SEM。星号表示统计学显著差异,与相应时间点的卡泊三醇诱导的VDR占位或TGFβ1诱导的SMAD3占位相比较(Student's未配对的t检验,*P<0.05,**P<0.01)。(C)TGFβ1+卡泊三醇诱导的VDR和SMAD3结合的时间进程,分别标准化至单独的卡泊三醇或单独的TGFβ1。数据表明了一式三份进行的至少三个独立实验的平均值±SEM。(D)描述提供了HSC中推荐的VDR/SMAD基因组回路控制促纤维化反应的模型。
序列表
核酸序列使用标准字母缩写表示,核苷酸碱基按37C.F.R.1.822定义。各核酸序列只有一条链被示出,但应理解互补链包括任何提及的显示链。
SEQIDNO:1-34是用于测量各种基因的表达的引物序列。
详细说明
提供的以下术语和方法的解释用于更好地描述本发明公开内容,并指导本领域技术人员实践本发明。单数形式的“一”、“一个”和“该”指一个或多于一个,除非上下文另有明确说明。例如,术语“包括一个细胞”包括个或多个细胞,这也被认为是等同于短语“包括至少一个细胞”。术语“或”是指所述的可选元素中的一个元素,或是两个以上的元素的组合,除非上下文另有明确说明。如本文中所用的,“包括(comprises)”是指“包括(includes)”。因此,“包括A或B”是指“包括A、B或A和B”,不排除其它元素。本文引用的所有登录号都通过引用将2014年4月24日可用的序列纳入本发明中。在本文中引用的所有参考文献,包括专利和专利申请,和登录号,都通过引用纳入本发明。
除非另有说明,本文中使用的所有技术和科学术语都具有与本发明所属领域的技术人员的通常理解相同的含义。尽管与本文中所述内容相似或等同的方法和材料可用在本发明的实验或实践中,但是合适的方法和材料还是如下所述的。所述材料、方法和实施例仅是说明性的,并不是旨在进行限制。
适合用于本发明的实践或测试的方法和材料的描述如下。然而,所提供的材料、方法和实施例仅是说明性的,并不是旨在进行限制。因此,除非另有说明,本发明公开内容的方法和技术,可以根据与本发明所述内容相似或等同的方法和材料进行,和/或根据本领域已知的常规方法进行,和如本发明说明书部分引用和讨论的各种一般和更具体的文献所述进行。
为了便于阅读本发明公开内容的各种实施方案,提供了以下具体术语的解释:
给予:本文所提供的组合物可通过本领域中已知的任何方法,如口服、经鼻、吸入、直肠、阴道、经皮和胃肠外给药,递送至对其有需要的受试者。通常,胃肠外制剂通过除了摄入以外的任何可能的方式给予。此术语也指注射,无论是静脉内、鞘内、肌肉内、腹膜内、关节内、瘤内给予,还是皮下给予;以及各种表面施用,例如包括鼻内、吸入、皮内和局部施用。
接触:使一种试剂靠近另一种试剂,从而允许所述试剂相互作用。例如,含有纳米颗粒和VDR激动剂的组合物可用在细胞(例如在组织培养物中)上,或给予受试者,从而允许纳米颗粒/VDR激动剂与细胞在体外或体内相互作用。
纤维化:是指作为修复或反应过程的在器官或组织中过量的纤维性结缔组织的形成和发展,与作为器官或组织正常组成部分的纤维组织的形成相对。术语纤维化至少包括肝/肝纤维化,肾/肾纤维化,和胰纤维化。在具体的实例中,本文中经治疗的受试者具有纤维化,如肝纤维化。
肝纤维化是异常细胞外基质(ECM)蛋白的积累,和肝功能的相应损失,并且伴随着由慢性肝损伤引发的炎症驱动的伤口愈合过程(Bataller&Brenner2005JClinInvest.,115(2):209-18)。导致纤维化的肝损伤的常见原因包括慢性丙型肝炎病毒(HCV)感染、酒精滥用、慢性乙型肝炎病毒感染(HBV)和非酒精性脂肪性肝炎(NASH),非酒精性脂肪性肝炎是在久坐的生活方式的背景下增加的肥胖和相关的胰岛素抗性的肝代谢结果(Bataller&Brenner2005JClinInvest.,ll5(2):209-18;Friedman1999AmJMed.,107(6B):27S-30S;Siegmundetal,2005DigDis.,23(3-4):264-74;Friedman&BansalHepatology.,43(2Suppll):S82-8)。肝损伤导致的炎症过程触发多种细胞反应,包括细胞修复、再生、增加细胞外基质周转,并且最终在一些患者中导致显著的纤维化。肝脏的进行性纤维化最终可导致肝硬化、肝功能损失(代偿失调性肝硬化)、门脉高压和肝细胞癌(Bataller&Brenner2005JClinInvest.115(2):209-18;Friedman2003J.Hepatol.38(Suppl.1):S38-S53)。
不囿于理论,肝纤维化被认为发生在持续的肝损伤后的伤口愈合过程的结果,其中实质细胞增殖,以替代坏死或凋亡的细胞。这一过程与炎症反应和ECM的有限沉积有关。如果肝损伤持续存在,最终肝细胞被丰富的细胞外基质成分——包括纤维胶原——所替代。这种纤维材料在肝脏小叶结构中的分布取决于肝损伤的起源。在慢性病毒性肝炎和慢性胆汁淤积症中,纤维化组织最初位于肝门束周围;而在酒精诱导的肝病和NASH中,发现它位于中心周围和窦周区域(Friedman2003J.Hepatol,38(Suppl.1):S38-S53;Popper&Uenfriend1970.Am.J.Med.,49:707-721)。随着肝纤维化疾病的发展,病理从孤立的胶原蛋白带发展至桥接纤维化,并最终形成肝硬化,该肝硬化具有封装在I型胶原带中的肝细胞再生结节(Popper&Uenfriend1970.Am.J.Med.,49:707-721)。
肾纤维化引起显著的发病率和死亡率,作为导致需要透析或肾移植的主要原发性获得性病变。肾纤维化可以发生在肾单位(肾的功能单元)的过滤或重吸收组分上。实验模型已经确定了许多促进肾结疤形成的因素,特别是肾小球过滤的自动调整中涉及的生理紊乱。这反过来又导致正常结构被积累的细胞外基质(ECM)替代。各个细胞的生理学的改变谱导致产生了大量的肽和非肽纤维蛋白原(fibrogens),这些纤维蛋白原刺激了ECM的合成和降解之间的平衡发生变化,从而有利于结疤。几乎所有形式的末期肾病(ESRD)的特点都是显著的肾纤维化。
胰腺纤维化是各种病因的慢性胰腺炎的一个特征,并且由这样的过程如坏死/凋亡、炎症和管阻塞引起。在胰腺中诱导纤维化的初始事件是可能涉及空隙间质细胞、导管细胞和/或腺泡细胞的损伤。胰腺的这些组织隔室(compartments)的任何一个受到的损害都与细胞因子触发的由常驻的(resident)成纤维细胞/胰腺星状细胞到肌成纤维细胞的转变和随后的细胞外基质生成和沉积相关。取决于胰腺的损伤位点和所涉及的组织隔室,主要发生小叶间(周围)纤维化(如酒精性慢性胰腺炎中)、导管周围纤维化(如遗传性胰腺炎中)、导管周围和小叶间纤维化(如自身免疫性胰腺炎中)或弥漫性小叶间和小叶内纤维化(如梗阻性慢性胰腺炎中)。
肝星状细胞(HSC):包括在肝脏的窦周空间(血窦和肝细胞之间的小区域)内发现的周细胞。肝星状细胞是参与肝纤维化的主要细胞类型,肝纤维化是响应于肝损害形成的疤痕组织。星状细胞可以选择性地用氯化金染色,但是它们在常规的组织学制备中的静止的(非活化的)状态的区别特征,是在它们的细胞质中存在多个富含维生素A的脂质滴,其暴露在紫外线(UV)光中自动发出荧光。
在正常的肝中,星状细胞处于静止状态。静态星状细胞占肝细胞总数的5-8%。每个细胞都具有几个长突起,这些突起从细胞体延伸,并环绕包围窦状小管。在细胞体内的脂质滴存储(store)维生素A。不囿于理论,静态肝星状细胞被认为在生理(正常)的ECM生成和周转中发挥作用,以及充当肝的常驻抗原呈递(presenting)细胞、呈递脂质抗原和刺激NKT细胞增殖。
当肝受损时,星状细胞可以变成活化的状态。活化的星状细胞的特征是增殖、收缩和趋化。存储的维生素A的量在肝损伤中逐渐减少。活化的星状细胞还负责分泌过多的和病理的ECM成分,以及减少基质降解酶的生成,这导致纤维化。
高钙血症:血液中钙水平的提高,可以由例如1α,25(OH)2-VitD3水平的提高(正常范围是约8.5-10.5mg/dL或2.2-2.6mmol/L)引起。它可以是由于过度的骨骼钙释放、增加的肠道钙吸收或降低的肾钙排泄导致的。
高钙血症本身会导致疲劳、抑郁、精神错乱、厌食、恶心、呕吐、便秘、胰腺炎或增加排尿。异常的心脏节律也可导致高钙血症,并且短QT间期和扩大的T波的EKG结果表明高钙血症。
更常见的症状是高血钙水平(12.0mg/dL或3mmol/l)。严重的高钙血症(高于15-16mg/dL或3.75-4mmol/l)被认为是医疗上的紧急情况,这样的水平可导致昏迷、心脏骤停。
分离的:“分离的”生物成分(例如核酸分子、肽或细胞)已被从混合样品(如细胞提取物)的其它生物成分中纯化出来。例如,“分离的”肽或核酸分子是从细胞的其它成分中分离出来的,这些肽或核酸分子存在于细胞的其它成分中(如用于重组肽或核酸分子的表达宿主细胞)。
药学上可接受的载体:本发明可用的药学上可接受的载体是常规的。Remington'sPharmaceuticalSciences,byE.W.Martin,MackPublishingCo.,Easton,PA,15thEdition(1975)描述了适合用于本文所公开的组合物的药物递送的组合物和制剂。例如,本文提供的组合物可以在一种或多种药学上可接受的载体的存在下给予。
一般来说,载体的性质取决于所采用的特定给药模式。例如,胃肠外制剂通常包含可注射流体,该可注射流体包括药学上和生理学上可接受的流体,例如水、生理盐水、平衡盐溶液、葡萄糖水、甘油等作为载体。对于固体组合物(例如粉剂、丸剂、片剂或胶囊形式),常规的无毒固体载体可以包括例如药物级的甘露醇、乳糖、淀粉或硬脂酸镁。除了生物学中性的载体,待给予的药物组合物可含有少量的无毒辅助物质,如润湿剂或乳化剂、防腐剂和pH缓冲剂等,例如乙酸钠或脱水山梨醇单月桂酸酯。其它药物组合物的实施方案可以与常规的药学上可接受的载体、佐剂和反离子一起制备,这是本领域技术人员已知的。在一些实施方案中,组合物是单位剂量形式的固体、半固体和液体剂型,例如片剂、丸剂、胶囊、锭剂、粉剂、液体溶液或悬浮液。
SMAD3(针对同源序列同源物3的母体):OMIM603109。包括SMAD3核酸分子和蛋白质。SMAD3蛋白以信号的形式存在于细胞中,并且调节TGFβ信号。SMAD3序列是可公开获得的,例如从序列数据库获得(例如登录号NP_001138574.1和AAB81755.1提供示例性SMAD3蛋白序列,登录号AH011390.1、NM_001145102.1和AF016189.1提供示例性SMAD3核酸序列)。本领域技术人员可以鉴别另外的SMAD3核酸和蛋白质序列,包括保留SMAD3生物学活性的SMAD3变体(如与这些可公开获得的序列具有至少80%、至少90%、至少95%、至少98%或至少99%的序列同一性的变体序列,以及与成熟形式的SMAD3具有上述同一性的变体序列)。
受试者:活的多细胞脊椎动物生物体,该类别包括人类和非人类哺乳动物。本文所公开的方法和组合物在医学和兽医中具有同等的应用。因此,一般性术语“受试者”应理解为包括所有动物,包括但不限于人类或兽医受试者,例如其它灵长类(包括猴)、狗、猫、马和牛。在一个实例中,受试者具有肝、胰腺或肾的纤维化,或是具有发生肝、胰腺或肾的纤维化的风险。
治疗有效量:单独或与其它试剂联合使用的治疗剂(如本文提供的组合物,其包括VDR激动剂)的用量,该用量足以防止疾病的进展、引起疾病的消退或能够减轻疾病引起的症状,如与肝、胰腺或肾纤维化相关的症状,例如发烧、呼吸症状、纤维化程度、疼痛或肿胀。在一个实例中,治疗有效量是包括VDR激动剂和纳米颗粒的本文所提供的组合物的用量,该用量足以使纤维化症状减少至少10%、至少20%、至少50%、至少70%或至少90%。在一个实例中,治疗有效量是包括VDR激动剂和纳米颗粒的本文所提供的组合物的用量,该用量足以使上皮细胞或星状细胞中维生素A、维生素D和/或脂质的量增加至少10%、至少20%、至少50%、至少70%或至少90%。在一个实例中,治疗有效量是包括VDR激动剂和纳米颗粒的本文所提供的组合物的用量,该用量足以在上皮细胞或星状细胞中保持维生素A、维生素D和/或脂质的量,使该量的减少不超过20%,如不超过10%、不超过5%或不超过1%。
转化生长因子β1(TGF-β1):OMIM190180。包括TGF-β1核酸分子和蛋白质。转化生长因子TGF-β1蛋白帮助控制细胞的生长和分裂(增殖),控制细胞成熟的过程,以执行特定功能(分化)、细胞运动(运动)与自毁细胞(凋亡)。TGF-β1序列是可公开获得的,例如从序列数据库得到(例如登录号NP_000651.3和NP_035707.1提供了示例性TGF-β1蛋白序列,登录号NM_000660和NM_011577提供了示例性TGF-β1核酸序列)。本领域技术人员可以鉴别另外的TGF-β1核酸和蛋白序列,包括保留TGF-β1生物学活性的TGF-β1变体(如与这些可公开获得的序列具有至少80%,至少90%,至少95%,至少98%或至少99%的序列同一性的变体序列,以及与成熟形式的TGF-β1具有上述同一性的变体序列)。
治疗疾病:“治疗”是指一种治疗性干预,在疾病开始发展后,其改善疾病或病理学病症(例如纤维化)的迹象或症状。“预防”是指抑制疾病的充分发展,例如对已知易患疾病的那些人,例如已经患上肝、胰或肾纤维化的人,或具有发生肝、胰或肾纤维化的风险的人。
维生素D:一组脂溶性的开环甾类化合物(secosteroid)激素原和激素,其两种主要形式是维生素D2(麦角钙化醇)和维生素D3(胆钙化甾醇),它们被转换为1α,25二羟基维生素D3(1α,25-(OH)2-D3),也被称为骨化三醇,生理学活性形式的维生素D。
维生素D激动剂或类似物:任何化合物,合成的或天然的,其结合并活化VDR,如VDR配体(如骨化三醇)、VDR激动剂前体、维生素D类似物、维生素D前体。
天然的和合成的维生素D激动剂和类似物的具体的非限制性实例包括1α,25(OH)2D3、卡泊三醇、LG190090、LG9190119、LG190155、LG190176和LG190178(例如见Boehmetal,(1999)Chemistry&Biology,6:265-275);LY2108491和LY2109866(Maetal,(2006)JClin.Invest.,116:892-904);2β-(3-羟基丙氧基)1α,25-二羟维生素D3(ED-71)(Tsurukamietal,(1994)Calcif.Tiss.Int.54:142-149);EB1089(Pepperetal,(2003)Blood,101:2454-2460);OCT(22-氧杂-骨化三醇)(Makibayashietal,(2001)Am.J.Path.,158:1733-1741);(lαOH-2,19-降-25羟维生素D3)和(1,3-脱氧-2-CHCH2OH-19-降-25-羟维生素D3)(Posneretal,(2005)Bioorganic&MedicinalChemistry,13:2959-2966);以及任何维生素D类似物,这些类似物在Reyetal,(1999)J.OrganicChem.,64:3196-3206中公开;以及胆汁酸衍生物,如石胆酸(LCA)和熊去氧胆酸(UDCA)(例如见Nehringetal,(2007)PNAS,104:10006-10009;Makishimaetal,(2002)Science,296:1313-1316;Copacietal,(2005)Rom.J.Gastroenterol,14:259-266)。这些参考文献各自在此通过引用的方式全文纳入本发明。
维生素D前体:能够通过酶转化为维生素D受体激动剂的任何化合物。在某些非限制性的实例中,酶是CYP27B1。维生素D前体的具体的非限制性的实例包括维生素D3(胆钙化甾醇)、25-羟基-维生素D3(25-OH-D3)(骨化二醇),以及维生素D2(麦角钙化醇)和其前体。
维生素D受体(VDR):核激素受体(NHR)超家族(superfamily)的一员,并且是钙平衡和骨骼健康的关键调节物(Bouillonetal.,2008;Goltzmanetal.,2004)。VDR具有共同的核受体结构,例如该结构是由N-末端活化结构域、具有2个锌指结构域的DNA结合域(DBD)、铰链域和配体结合域(LBD)构成的。VDR活化的基因转录需要通过核蛋白-α的初始核转位,再与RXR异二聚体化,并结合至靶基因中存在的响应元素上。VDR调节与肠和肾的钙维持和磷酸盐体内平衡相关的基因。由VDR/RXR异二聚体引起的信号通过共活化或共抑制蛋白质的联合而调节,并且这些信号也依赖在核隔室内的其它信号传导配体。VDR/RXR异二聚体是不允许的,因为还不知道RXR配体的存在或不存在是否影响VDR响应。
在NHR超家族内的VDR的最接近的结构和功能的相关物包括法尼酯X受体(FXR)、组成型雄烷受体(CAR)和孕烷X受体(PXR),所有这些都是肝脏中胆汁酸体内平衡和异型生物质解毒的调节物(Bookoutetal.,2006;Bouillonetal.,2008)。
VDR的内源性活化物包括生物学活性形式的维生素D(1α,25(OH)2D3(骨化三醇))和胆汁酸,例如石胆酸(LCA)及其衍生物(LCA-乙酸盐、LCA-甲酸盐、3-酮LCA)(Makishimaetal.,2002;Nagpaletal.,2005)。
概览
肝纤维化是一种可逆的伤口愈合反应,涉及肝星状细胞(HSC)的TGFβ1活化。本文中表明,维生素D受体(VDR)配体抑制HSC活化和消除(abrogate)肝纤维化,而VDR敲除的小鼠自发地发生肝纤维化。在机制上,示出了由TGFβ1促纤维化刺激(insult)引起的HSC的全基因组VDR结合位点(VDR顺反组)的明显的再分布。这一TGFβ1诱导的VDR顺反组广泛地与SMAD3结合位点重叠,并与许多顺式调节元件发生共占位,这些调节元件被确认位于在一大系列的促纤维化基因上。VDR配体的添加减少了SMAD3在共调节基因上的占位,揭示了一种调节肝纤维化的交叉VDR/SMAD基因组回路。这些结果提供了VDR作为内分泌检查点以调节肝脏的伤口愈合反应的作用,并且表明VDR配体作为一种肝纤维化以及其它器官纤维化——例如肾和胰腺——的疗法,。
90年代初确立了在正常的和纤维化的肝中HSC作为用于ECM沉积的主要效应子细胞,这在了解肝纤维化的发病机理方面是里程碑式的发现(Friedman,1993)。自那时以来,对细胞信号传导分子、激素、细胞膜受体和转录因子在HSC中的宽泛谱进行了调查,并发现其促进肝纤维化(Hernandez-GeaandFriedman,2011)。然而,对积极地防止这种病理学过程的因子和信号传导级联知之甚少。
这里显示了VDR的药理学活化减轻了在实验动物模型中肝纤维化的进展,而VDR表达的基因消除导致肝纤维化的自发性发展,因而暗示内分泌检查点中的VDR会不利地调节肝脏的伤口愈合反应。在机制上,本发明提供了一种之前未认识到的且暂时性受控的(controlled)、由具有相反作用的VDR和SMAD转录因子构成的基因组回路,其能够在肝脏中抑制HSC的纤维化反应强度和治理纤维化。具体地,在对肝损伤的响应中,通过TGFβ1的HSC活化,诱导促纤维化基因通过SMAD转位表达,实现核和染色质的重塑(remodeling)。通过增加与相邻维生素D响应元件(VDRE)的可接近性,SMAD活化促进VDR募集至先前隐藏(cryptic)的基因组位点。配位的VDR随后拮抗染色质上的SMAD停留位置,并损害组蛋白H3的乙酰化,最终抑制促纤维化基因的表达(图14D)。值得注意的是,将近10,500个TGFβ1诱导的SMAD和VDR结合位点的近侧位置鉴别全部的染色质结构,并揭示整体的VDR/SMAD基因组回路作为肝纤维化响应的主要调节物发挥作用。
对抑制TGFβ信号传导的染色质基础的鉴别,直接关注于作为调节靶标的SMAD依赖性转录。这是相关的,因为TGFβ-SMAD信号传导在后生动物生物学的几乎每个方面起着重要作用,并且它的失调可导致各种人体疾病,从自身免疫至纤维化和癌症(Hernandez-GeaandFriedman,2011;LiandFlavell,2008;Massague,2008)。VDR和SMAD之间的基因组拮抗的该发现不仅确立了VDR作为第一DNA结合转录因子——其在染色质界面衰减TGFβ-SMAD信号传导,而且还增加了(顺反组层)对于更一般性的概念“转录串扰”的特异性。
通过观察发现TGFβ-SMAD活化使配体结合的VDR的后续募集成为可能,从而抑制SMAD靶标,这揭示了一种手段,通过该手段,两个内源性的信号传导通路可以交叉调节彼此的活性。因此,该基因组中继允许SMAD的正向活化,以随后通过VDR被抑制,并因而构成了一个自我调节的基因组回路,它与之前报道的转录因子之间的基因组串扰以相互排斥的方式高度区分(Barishetal.,2010;Huaetal.,2009)。这个回路可以为HSC赋予在正常的和纤维化的肝中编排ECM合成的能力。
除了TGFβ-SMAD通路以外,在纤维化之前在临床上几乎都是持续性炎症(Hernandez-GeaandFriedman,2011;LeeandFriedman,2011)。因此,VDR信号传导的更广泛抗炎作用可能有助于其在肝脏中的抗纤维化性质。在这方面,已有记载表明VDR在几种对炎症反应重要的细胞类型中的表达(Barishetal.,2005;Griffinetal.,2001;vonEssenetal.,2010),并且两种维生素D的缺乏、VDR本身的多态性以及参与维生素D代谢的基因已与炎性疾病的风险和严重程度均相关(Agmon-Levinetal.,2012;Janssensetal.,2011;Mungeretal.,2006;Ramagopalanetal.,2011)。然而,在肝纤维化的情况下,VDR信号传导的抗炎作用不太清楚。一方面,失调的炎症反应再加上在Vdr-/-小鼠中肝纤维化的自发性发展,表明VDR信号传导可能通过抗炎机制控制肝纤维化(图3H,右)。另一方面,这个概念被在Vdr+/-小鼠中发现的不具有任何炎症反应的最温和的周围窦状小管肝纤维化表型所钝化(图3H,中部)。此外,炎症和纤维化之间的因果关系仍然有待充分建立,在肝纤维化期间炎症的主要促纤维化作用似乎是敏化HSC用于TGFβ-SMAD活化(Sekietal.,2007;SekiandSchnabl,2012)。因此,VDR信号传导的抗炎性质可能无法在其抗纤维化功能上起主要作用。
本文的结果清楚地表明VDR信号传导在肝脏病理生理学中的作用未被理解。由于其异常低的表达,VDR与其高表达的同源分支成员相比受到更少的注意,其高表达的同源分支成员包括FXR、PXR和CAR并且几乎影响肝功能的每个方面,包括脂质和糖代谢、药物处置、胆固醇流出和胆汁酸的动态平衡(Bookoutetal.,2006;Chawlaetal.,2001)。然而,最近的研究显示,低的维生素D水平与慢性肝病患者中增加的肝纤维化相关(Abramovitchetal.,2011;LimandChalasani,2012;Pettaetal.,2010;Terrieretal.,2011),并且维生素D可抑制大鼠的肝纤维化(Abramovitchetal.,2011),这表明肝VDR的潜在生理学作用。然而,VDR是否可以以及如何直接或间接地调节肝纤维化的问题仍然未得到解决。本文中的观察——VDR促进HSC静止并控制TGFβ信号传导——确定了一种新的机制,通过该机制,维生素D可以发挥其抗纤维化作用。这些结果与一些研究相一致,所述研究表明VDR的多态性与肝纤维化的进程增加和肝硬化的演变相关(Bauretal.,2011;Tanakaetal.,2009)。
在发达国家中最高达45%的死亡可归因于纤维化疾病,但目前很少有抗纤维化药物被批准用于临床使用(Wynn,2008)。虽然设计用于中和TGFβ的疗法显示了广泛的抗纤维化活性(Rosenbloometal.,2010),但是其有益之处通过在非患病组织中不必要地阻断TGFβ而损失。VDR/SMAD基因组回路的确定提供了一种更安全的抗纤维化策略,这一策略通过限制TGFβ对VDR阳性细胞的抑制作用——而不扰动全身性的信号传导——而进行。
总之,本文中的结果提供了一种包括VDR和SMAD转录因子的交叉基因组回路,其管控肝纤维化。这一发现扩展了对两个不同的信号依赖性转录因子如何彼此交互以建立细胞识别和功能的理解。通过使用基因和诱导的模型,本发明提供了一种新的观点,用以说明对TGFβ1信号传导响应的全部计划是如何建立和调节的。此外,这些研究确立了VDR作为药物靶标用于治疗肝纤维化,并且提供了一种VDR依赖性基因表达调节的新范例。考虑到VDR和TGFβ的普遍表达模式,VDR/SMAD基因组回路可适用许多其它的细胞类型,这可影响很多人类疾病的发病机理。
基于这些发现,本发明提供了组合物,其包括纳米颗粒和增加维生素D受体(VDR)的生物学活性的化合物(在此称为VDR激动剂)。例如,这样的组合物可包含两种以上的不同类型的纳米颗粒和/或两种以上的不同的VDR激动剂。在一个实例中,纳米颗粒是或包括脂质纳米颗粒和/或聚合纳米颗粒。所公开的组合物可以进一步包括其它治疗剂,如化疗(例如吉西他滨)、生物剂(例如单克隆抗体),或它们的组合。在一些实例中,该组合物包括药学上可接受的载体。
在一个实例中,纳米颗粒包括在其表面上的、靶向至感兴趣细胞——如星形细胞(如肝、肾、胰腺、心脏或肺星状细胞)——的试剂。在一个实例中,纳米颗粒包括在其表面上的一种或多种白蛋白、视黄醇结合蛋白、甘露糖-6-磷酸修饰的白蛋白(例如见Lietal.,J.Pharm.Pharmacol.2009,61(9):1155-61,在此通过引用纳入本发明,例如将纳米颗粒靶向至肝星状细胞)、脂肪酸酯或视黄基酯(例如视黄基棕榈酸酯)。在一个实例中,白蛋白是血清白蛋白(例如人[OMIM103600,例如登录号NP_000468.1]或牛[例如登录号NP_851335])。在另一实例中,白蛋白来自鸡蛋白。白蛋白是市售可得的,例如来自Sigma-Aldrich(例如目录号A2153、05470、A9731和A5503)。在一些实例中,将白蛋白修饰以包括甘露糖-6-磷酸。可与纳米粒子一起使用的视黄醇结合蛋白(RBP)包括可公开获得的那些,例如来自序列数据库(例如,登录号AAA59188.1、AAB06955.1、CAA24959.1和AAA42018.1,以及保留了RBP生物学活性的RBP变体,如与可公开获得的序列具有至少80%、至少90%、至少95%、至少98%或至少99%的序列同一性的那些变体序列,或者与成熟形式的RBP具有上述同一性的变体序列)。任何本领域中已知的方法可以用于使这样的分子附着到纳米颗粒上。
在一些实例中,纳米粒子的直径为至少1纳米,例如至少10纳米、至少100纳米或至少500纳米,例如1至1000纳米、10至1000纳米、50至500纳米或100至500纳米。
例如,在一些实例中,增加VDR生物学活性的化合物(或含有这种化合物的组合物),与不存在该化合物时的生物学活性相比,可使VDR的生物学活性增加至少25%、至少50%、至少75%、至少90%、至少95%、至少100%、至少200%、至少300%、至少400%或至少500%。在一些实例中,增加的VDR生物学活性是指细胞的维生素A、维生素D和/或脂质的存储的一种或多种(例如通过减少这些试剂的释放)。因此,例如,增加VDR生物学活性的化合物(或含有这种化合物的组合物),与不存在该化合物时的存储相比,可使细胞的维生素A、维生素D和/或脂质的存储增加至少25%、至少50%、至少75%、至少90%、至少95%、至少100%、至少200%、至少300%、至少400%或至少500%。在一些实例中,增加VDR生物学活性的化合物(或含有这种化合物的组合物),与不存在该化合物时的释放相比,使细胞的维生素A、维生素D和/或脂质的释放减少至少50%、至少75%、至少90%、至少95%、至少98%或至少99%。在一些实例中,增加VDR生物学活性的化合物(或含有这种化合物的组合物),使星状细胞、上皮细胞或两者中的VDR生物学活性增加。这种细胞的实例包括胰腺星状细胞、肾星状细胞、肝星状细胞、心脏星状细胞以及肺星状细胞。
VDR激动剂的实例包括但不限于:维生素D、维生素D前体、维生素D类似物、维生素D受体配体、维生素D受体激动剂前体,或它们的组合。VDR激动剂的具体实例包括但不限于:卡泊三醇、25-羟基-D3(25-OH-D3)(骨化二醇)、维生素D3(胆钙化甾醇)、维生素D2(麦角钙化甾醇)、1,α25-二羟基维生素D3(骨化三醇),或其组合。
本发明还提供了使用所公开的组合物的方法。在一个实例中,本发明提供了用于在上皮细胞或星状细胞中增加或保持维生素A、维生素D和/或脂质的方法。所述方法可包括:使治疗有效量的本文提供的组合物与上皮细胞和/或星状细胞接触,从而在上皮细胞或星状细胞中增加或保持维生素A、维生素D和/或脂质。这样的方法可以在体外或体内进行。例如,上皮细胞或星状细胞可在受试者中,并且接触可包括对受试者给予治疗有效量的组合物,从而在上皮细胞或星状细胞中增加或保持维生素A、维生素D和/或脂质。在一些实例中,这样的方法治疗受试者的疾病,如肝病、肾病或胰腺疾病。使用所公开的方法可治疗的肝病的实例包括:酒精肝疾病、脂肪肝疾病、肝纤维化/硬化、胆汁性纤维化/硬化、肝癌、乙型肝炎病毒感染、丙型肝炎病毒感染、硬化性胆管炎、布-加综合症、黄疸、非酒精性脂肪性肝炎、血色素沉着症或威尔森氏症(Wilson'sdisease)的一种或多种。在一些实例中,肝癌是肝细胞癌、胆管癌、恶性血管皮内细胞瘤或血管肉瘤。可用所公开的方法治疗的胰腺疾病的实例包括但不限于:胰腺纤维化和胰腺导管腺癌(PDA)。在一些实例中,肾病是肾纤维化。
本发明还提供了降低SMAD3与VDR共调节促纤维化基因的基因组增强子元件的结合的方法。该方法可以包括使治疗有效量的本文所提供的组合物(例如包括纳米颗粒和VDR激动剂)与上皮细胞和/或星状细胞接触,从而降低上皮细胞和/或星状细胞上SMAD3与共调节促纤维化基因的基因组增强子元件的结合。在一些实例中,与不存在组合物时的生物学活性相比,组合物使SMAD3与共调节促纤维化基因的基因组增强子元件的结合降低至少25%、至少50%、至少75%、至少90%、至少95%或至少99%。
本发明还提供了增加星状细胞(如胰腺星状细胞、肾星状细胞、肝星状细胞、心脏星状细胞或肺星状细胞)中VDR表达的方法。这样的方法可包括使星状细胞与一定量的VDR激动剂相接触,该VDR激动剂是纳米颗粒的一部分,该激动剂的量足以使VDR激动剂与VDR的结合提高至少10倍、至少20倍、至少50倍或至少100倍。
本发明还提供了筛选可治疗纤维化的试剂的方法,如肝、胰腺或肾脏的纤维化。在具体实例中,该方法包括:使肝、肾、肺、心脏、肾脏或胰腺星状细胞与一种或多种测试剂和任选的TGF-β1接触。随后,检测细胞所生成的一种或多种VDR激动剂,细胞的CYP24A1的生成或表达,星状细胞的SMAD3的生成、翻译后修饰或表达,以及VDR配体与VDR的结合。相对于不存在一种或多种测试剂的情况,测试剂使细胞的VDR激动剂的生成增加至少5倍(例如至少6倍,至少8倍或至少10倍);相对于不存在一种或多种测试剂的情况,测试剂使细胞的CYP24A1的生成或表达增加至少1.5倍(例如至少6倍、至少8倍或至少10倍);相对于不存在一种或多种测试剂的情况,测试剂使细胞的SMAD3的生成、翻译后修饰或表达降低至少5倍(例如至少6倍、至少8倍或至少10倍),或其组合,其中所选择的测试剂是可以治疗纤维化的试剂。在一些实例中,所选择的测试剂使VDR与VDR激动剂的结合提高至少10倍、至少20倍、至少50倍或至少100倍。筛选方法还可包括确定一种或多种所选择的测试剂是否具有体外或体内高钙血症效果。在一些实例中,该方法还包括选择在体外、体内或在二者中都不具有高钙血症效果的测试剂。
在一些实例中,筛选方法还包括体内测试。例如,该方法可以包括对具有纤维化的哺乳动物(如肝、胰腺或肾纤维化的动物模型)给予一种或多种所选择的测试剂,和确定所述一种或多种测试剂是否治疗或预防纤维化(如使纤维化减少至少25%、至少50%、至少75%、至少90%、至少95%或至少99%,使在星状细胞和/或上皮细胞中维生素A、维生素D、脂质的存储提高至少25%、至少50%、至少75%、至少90%、至少95%、至少100%、至少2倍、至少3倍、至少5倍或至少10倍,或它们的组合,相对于在不存在给予所选择的测试剂的情况下的量)。在一些实例中,该方法还包括选择治疗纤维化的测试剂。
含有纳米粒子和VDR激动剂的组合物
本发明提供了组合物,其包含纳米颗粒和增加VDR的生物学活性的化合物,该化合物即VDR激动剂,如维生素D、维生素D前体、维生素D类似物、维生素D受体配体、维生素D受体激动剂前体,或它们的组合。这样的组合物可以包括另外的试剂,如一种或多种药学上可接受的载体,其它治疗剂,或它们的组合。在一个实例中,组合物还包含化疗剂(如吉西他滨)、生物剂(如治疗性抗体),或它们的组合。可用的VDR激动剂的具体实例包括,但不限于:卡泊三醇、25-羟基-D3(25-OH-D3)(骨化二醇)、维生素D3(胆钙化甾醇)、维生素D2(麦角钙化甾醇)、1α,25-二羟基维生素D3(骨化三醇),或其组合。VDR激动剂可以在纳米颗粒中或附着在纳米颗粒表面上。
在公开的组合物中可用的纳米颗粒的实例包括,并不限定于:美国专利公开号20130287688、20130287857、20100233251、20100092425、20120027808、20080226739和20050215507,以及美国专利号7427394、8343497、8562998、7550441、7727969、8343498和8277812,所有这些文献通过引用纳入本发明。在一些实例中,纳米颗粒是脂质或聚合纳米颗粒。在一个实例中,纳米颗粒包括在其表面上的一种或多种白蛋白、视黄醇结合蛋白、甘露糖-6-磷酸修饰的白蛋白(例如见Lietal.,J.Pharm.Pharmacol.2009,61(9):1155-61)、脂肪酸酯或视黄基酯(例如视黄基棕榈酸酯)。纳米颗粒还可以包括用于包封生物学活性物质的线性树枝状混合聚合物,包括:用于预定靶标的配体(例如,用于(在肺、肝、肾、心脏或胰腺中停留的)星状细胞的配体,用于VDR激动剂的配体,或它们的组合)、树突,以及连接配体至树突的聚乙二醇(PEG)链。在一些实例中,纳米颗粒的直径是约0.1nm-5000nm,例如1-100nm、0.1-1nm、5-20nm、5-15nm、10-5,000nm、20-1,000nm、10-500nm、10-200nm、10-150nm、10-100nm、10-25nm、20-40nm,或10、15、20、25、35、45、50、75、100、150或200nm。
可通过所公开的组合物增加的VDR的生物学活性,可包括减少维生素A从细胞的释放、维生素D从细胞的释放、脂质从细胞的释放,或其组合。在一些实例中,细胞是星状细胞(如胰腺、肾或肝星状细胞)、上皮细胞,或两者。例如,在对损伤或应力响应时,维生素A、D和脂质可以从活化的细胞(如活化的上皮细胞或星状细胞)中释放,这可导致其它损伤如纤维化。因此,为了减少这些其它损伤如纤维化,可以增加VDR的功能使细胞恢复到静止状态。
一种包括纳米颗粒和增加VDR的生物学活性的化合物(例如VDR激动剂)的组合物,可使VDR活性增加至少20%、至少25%、至少40%、至少50%、至少75%、至少80%、至少90%、至少95%、至少100%、至少200%、至少300%、至少400%,甚至在一些实例中是至少500%。因此,在一个实例中,包括纳米颗粒和增加VDR的生物学活性的化合物的组合物,与不存在该组合物时相比,可使维生素A从细胞(如星状细胞或上皮细胞)中的释放减少至少10%、至少20%、至少25%、至少40%、至少50%、至少75%、至少80%、至少90%或至少95%。在一个实例中,包括纳米颗粒和增加VDR的生物学活性的化合物的组合物,与不存在该组合物时相比,可使维生素D从细胞(如星状细胞或上皮细胞)中的释放减少至少10%、至少20%、至少25%、至少40%、至少50%、至少75%、至少80%、至少90%或至少95%。在一个实例中,包括纳米颗粒和增加VDR的生物学活性的化合物的组合物,与不存在该组合物时相比,可使脂质从细胞(如星状细胞或上皮细胞)中的释放减少至少10%、至少20%、至少25%、至少40%、至少50%、至少75%、至少80%、至少90%或至少95%。
在一些实例中,包括纳米颗粒和增加VDR的生物学活性的化合物的组合物,与不存在该组合物时相比,可使细胞(如星状细胞或上皮细胞)的维生素A的保留或存储增加至少10%、至少20%、至少25%、至少40%、至少50%、至少75%、至少80%、至少90%或至少95%。在一个实例中,包括纳米颗粒和增加VDR的生物学活性的化合物的组合物,与不存在该组合物时相比,可使细胞(如星状细胞或上皮细胞)的维生素D的保留或存储增加至少10%、至少20%、至少25%、至少40%、至少50%、至少75%、至少80%、至少90%或至少95%。在一个实例中,包括纳米颗粒和增加VDR的生物学活性的化合物的组合物,与不存在该组合物时相比,可使细胞(如星状细胞或上皮细胞)的脂质的保留或存储增加至少10%、至少20%、至少25%、至少40%、至少50%、至少75%、至少80%、至少90%或至少95%。
测量细胞中维生素A、维生素D和脂质的方法是已知的并且在本文中提供,此类测试可以用于确定一个化合物是否增加VDR活性并因而可用在本文所提供的组合物中。Vogel等提供了测量细胞中维生素A的示例性方法(J.LipidRes.41(6):882-93,2000),Blum等提供了测量细胞中维生素D的方法(Endocrine.33(l):90-4,2008)。在一个实例中,化合物或组合物恢复细胞(如星形细胞)至静止状态的能力可以由以下确定:在化合物/组合物存在和不存在的情况下(例如在接触化合物/组合物之前和之后)用结合中性脂质的荧光染料对细胞进行染色。静止细胞的特征在于细胞质脂质滴,它们在活化的细胞状态下失去,并在使用诱导静止的药物(如增加VDR生物学活性的化合物)处理活化细胞时累积。因此,对活化细胞处理和随后的染色和荧光测量,可用于确定增加VDR生物学活性的化合物,其驱动细胞(如星状细胞)变得静止。
示例性VDR激动剂
所公开的组合物包括一种或多种VDR激动剂(如VDR配体),VDR激动剂可以结合并活化VDR,从而例如防止或减弱肝、胰腺和/或肾的损伤、炎症和纤维化。VDR激动剂包括但不限于1α,25(OH)2-D3及其前体和类似物、VDR配体和VDR激动剂前体。本公开内容不限于特定的维生素D激动剂。各种生物学活性维生素D激动剂都是可用的。示例性的试剂是本领域已知的。
在一些实例中,1α,25(OH)2D3或者维生素D前体或类似物,被用作VDR激动剂。没有必要使用维生素D的最具生物活性的形式来实现有益的治疗效果。维生素D受体的天然存在的配体是骨化三醇。在一个实施方案中,对受试者给予骨化三醇的前体(如骨化二醇),然后该前体在靶细胞群中转换为骨化三醇。
此外,HSC表达CYP24A1——一种细胞色素P450酶,其通过侧链羟基化终止骨化三醇的生物学效应。因此,在一个实施方案中,VDR配体或其它VDR激动剂或激动剂前体——通过CYP24A1对失活具有抗性——用于在靶细胞群中实现更有效和更持久的VDR活化。在具体的实例中,VDR配体是一种可通过CYP27B1活化并通过CYP24A1对失活具有抗性的VDR配体。这允许在肝脏(例如HSC)、胰腺、肾中的靶细胞群中的VDR活化,同时最大限度地减少对钙体内平衡的不期望的全身效应。
在一个实例中,VDR激动剂或其前体显示出高的第一通过肝脏清除性质,这归因于广泛的肝代谢。具有此性质的分子,当口服给药时,被吸收并经门静脉运送至肝脏。在肝脏中,分子活化细胞群(如肝星状细胞、Kupffer细胞和窦内皮细胞)中的VDR,同时表现出对钙体内平衡的最小化的全身效应,这归因于低的全身生物利用度。
可用的VDR激动剂包括活化VDR的那些分子。确定试剂是否是VDR激动剂的方法都是常规的。例如,CYP24A1表达的诱导可在与试剂接触的表达VDR的细胞中测量,其中CYP24A1表达的增加(如10至20倍的表达增加)表明该试剂是VDR激动剂。其它方法包括转染的报告子基因结构(constructs)和FRET分析。在一些实例中,通过测量共活化剂肽(例如LXXLL)的诱导募集而检测激动剂与纯化的LBD的结合。例如,与不存在激动剂时相比,VDR激动剂可在表达VDR的细胞中使CYP24A1的表达增加至少20%、至少50%、至少75%、至少80%、至少90%、至少100%、至少200%,或者甚至至少1000%或更多。
VDR激动剂包括维生素D化合物、前体和类似物。维生素D化合物包括但不限于:具有以下特征中的至少一个的化合物:通过维生素D的5,7-二烯双键体系相互连接的维生素D的C环、D环及3β-羟基环己烷A环,和连接至D环的任意侧链(例如,具有“维生素D核”和通过维生素D的典型的5,7-二烯双键体系相互连接的被取代的或未取代的A-、C-和D环,以及连接至D环的侧链的化合物)。
维生素D类似物包括能够模仿开环甾类化合物(secosteroid)骨化三醇的各种活性的不开环甾类化合物(nonsecosteroid)。这类化合物的实例包括但不限于:LG190090、LG190119、LG190155、LG190176和LG1900178(见Boehmetal,Chemistry&Biology6:265-275,1999)。
维生素D化合物包括那些维生素D化合物和维生素D类似物,其在体内具有生物学活性,或者在哺乳动物受试者中起作用,使得化合物在体内变为活性的。这类化合物的实例包括但不限于:维生素D、骨化三醇,及其类似物,例如,1α-羟基维生素D3(1α-OH-D3)、1,25-二羟基维生素D2(1,25-(OH)2D2)、1α-羟基维生素D2(1α-OH-D2)、1α,25-(OH)2-16-烯-D3、1α,25-(OH)2-24-氧代-16-烯-D3、1α,24R(OH)2-D3、1α,25(OH)2-22-氧杂-D3、20-表-22-氧杂-24a,24b,-二均聚-1α,25(OH)2-D3、20-表-22-氧杂-24a,26a,27a,-三均聚-1α25(OH)2-D3、20-表-22-氧杂-24均聚-1α,25(OH)2-D3、1,25-(OH)2-16,23E-二烯-26-三氟-19-降-D3和不开环甾类化合物维生素D模拟物。
在一个实例中,VDR激动剂是以下的一种或多种:维生素D、1,α25二羟基维生素D3、卡泊三醇、1α-羟基维生素D3、1,25-二羟基维生素D2、1α-羟基维生素D2、1α,25-(OH)2-16-烯-D3、1α,25-(OH)2-24-氧代-16-烯-D3、1α,24R(OH)2-D3、1α,25(OH)2-22-氧杂-D3、20-表-22-氧杂-24a,24b,-二均聚-1α,25(OH)2-D3、20-表-22-氧杂-24a,26a,27a,-三均聚-1α25(OH)2-D3、20-表-22-氧杂-24均聚-1α,25(OH)2-D3和1,25-(OH)2-16,23E-二烯-26-三氟-19-降-D3。
在一个实施方案中,具有生物学活性的维生素D化合物选自1,α25-二羟基维生素D3、19-降-1,25-二羟基维生素D2、19-降-1,25-二羟基-21-表-维生素D3、1,25-二羟基-24-均聚-22-脱氢-22E-维生素D3,和19-降-1,25-二羟基-24-均聚-22-脱氢-22E-维生素D3,和不开环甾类化合物维生素D模拟物。在另一实例中,所述具有生物学活性的VDR激动剂选自由下式表示的类似物:
其中X1和X2各自选自由氢和酰基组成的组;其中Y1和Y2可以是H,或者一个可以是O-芳基或O-烷基,而另一个是氢并且可具有β或α构型;Z1和Z2均为H,或Z1和Z2一起为CH2;并且其中R是烷基、羟基烷基或氟代烷基,或者R可以表示以下侧链:
其中(a)可具有S或R构型,并且其中R1表示氢、羟基或O-酰基,R2和R3各自选自由烷基、羟基烷基和氟代烷基组成的组,或者一起表示基团--(CH2)m--,其中m是具有2-5中的一个数值的整数,R4选自由氢、羟基、氟、O-酰基、烷基、羟基烷基和氟代烷基组成的组,R5选自由氢、羟基、氟、烷基、羟基烷基和氟代烷基组成的组,或者R4和R5一起表示双键氧,R6和R7一起构成碳-碳双键,和R8可以是H或CH3,并且其中n是具有1-5中的一个数值的整数,并且其中在侧链的20、22或23位的任一位置处的碳原子可被O、S或N原子替代。
在一个实例中,当给予受试者时,在本文提供的方法中使用的VDR激动剂不引起高钙血症的症状。在另一实例中,当给予受试者时,与骨化三醇相比,VDR激动剂不产生那么高的(即较小程度的)血钙反应。在一个实例中,与骨化三醇相比,VDR激动剂具有低的血钙反应特性。在另一个实施方案中,这些化合物选自lα,25-(OH)2-24-表-D2、1α,25-(OH)2-24a-均聚-D3、1α,25-(OH)224a-二均聚-D3、1α,25-(OH)2-19-降-D3和20-表-24-均聚-1α,25-(OH)2-D3。
可以使用的其它示例性VDR激动剂提供于表1中。
表1.1,25-(OH)2D3及其合成类似物(来自Nagpaletal.,Endocr.Rev.2005;26:662-687)。
其它试剂
所公开的组合物可以包括其它治疗剂,如化疗剂、生物剂(例如单克隆抗体、抑制性RNA分子)等。具体实例公开如下。
在一些实例中,该组合物包括药学上可接受的载体、稀释剂等。具体实例公开如下。
使用含有纳米粒子和VDR激动剂的组合物的方法
本发明公开内容还提供了使用所公开的组合物的方法,该组合物包括纳米颗粒和化合物,该化合物增加VDR的生物学活性,以增加或保持细胞——如上皮细胞或星状细胞——的维生素A、维生素D和/或脂质。因此,本发明提供了方法,其可用于使活化的星状细胞或上皮细胞回到其静止状态,或保持星状细胞或上皮细胞处于静止状态。
在一些实例中,该方法包括使治疗有效量的一种或多种所公开的组合物与细胞(例如VDR阳性细胞)——如上皮细胞或星状细胞(如活化的上皮细胞或星状细胞)——接触。这样的方法可用于增加或保持细胞的维生素A、维生素D和/或脂质,并由此用于使活化的星状细胞或上皮细胞回到其静止状态,或者维持星状细胞或上皮细胞处于静止状态。在一些实例中,细胞是在受试者中,并且接触包括对受试者给予治疗有效量的组合物,从而增加或保持受试者的细胞(如上皮细胞和/或星状细胞、如胰腺星状细胞、肝星状细胞、心脏星状细胞、肺星状细胞和/或肾星状细胞)中的维生素A、维生素D和/或脂质。
在一些实例中,与不处理时相比,该方法使细胞(如星状细胞或上皮细胞)的维生素A的保留或存储增加至少10%、至少20%、至少25%、至少40%、至少50%、至少75%、至少80%、至少90%或至少95%。在一个实例中,与不处理时相比,该方法使细胞(如星状细胞或上皮细胞)的维生素D的保留或存储增加至少10%、至少20%、至少25%、至少40%、至少50%、至少75%、至少80%、至少90%或至少95%。在一个实例中,与不处理时相比,该方法使细胞(如星状细胞或上皮细胞)的脂质的保留或存储增加至少10%、至少20%、至少25%、至少40%、至少50%、至少75%、至少80%、至少90%或至少95%。
在一些实例中,待治疗的受试者患有肝病,例如酒精性肝病、脂肪肝病、肝纤维化/硬化、胆汁性纤维化/硬化、肝癌(如肝细胞癌、胆管癌、恶性血管皮内细胞瘤或血管肉瘤)、肝炎、硬化性胆管炎、布-加综合症、黄疸、血色素沉着症或威尔森氏症的一种或多种。在一些实例中,待治疗的受试者患有胰腺疾病,如胰腺纤维化、胰腺导管腺癌(PDA),或两者。在一些实例中,待治疗的受试者患有肾脏疾病,例如肾纤维化或肾细胞癌。因此,所公开的组合物可用于治疗或预防这些疾病的一种或多种。
在一个实例中,受试者表现出肝、胰腺或肾纤维化的症状。例如,受试者可能感染乙型肝炎或丙型肝炎。在某些实例中,给予包括纳米颗粒和增加VDR的生物学活性的化合物的治疗组合物,减少了纤维化的症状。在一些实例中,所述受试者具有发展纤维化的风险(例如,感染乙型肝炎,或是酒精性肝病,或具有其它肝病),并且预防性给予治疗组合物。
在一些实例中,与未经所公开的组合物处理的情况相比,所公开的方法可以用于减少一种或多种纤维化(例如,通过减少纤维化的肝、肾或胰腺的纤维含量)、减少肿瘤生长、大小、体积和转移性病灶。因此,在一些实例中,与不处理时相比,该方法使纤维化减少(例如,通过减少纤维化的肝、肾或胰腺的纤维含量)至少10%、至少20%、至少25%、至少40%、至少50%、至少75%、至少80%、至少90%或至少95%。在一些实例中,与不处理时相比,该方法使肿瘤的生长速度(如肝、肾或胰腺肿瘤)降低至少10%、至少20%、至少25%、至少40%、至少50%、至少75%、至少80%、至少90%或至少95%。在一些实例中,与不处理时相比,该方法使肿瘤(如肝、肾或胰腺肿瘤)的大小或体积减小至少10%、至少20%、至少25%、至少40%、至少50%、至少75%、至少80%、至少90%或至少95%。在一些实例中,与不处理时相比,该方法使转移物(如肝、肾或胰腺肿瘤的转移物)的数量、大小或体积减少至少10%、至少20%、至少25%、至少40%、至少50%、至少75%、至少80%、至少90%或至少95%。
在一些实例中,所公开的方法是预防性的。例如,该方法可包括对具有发展纤维化的风险的受试者给予治疗组合物,该组合物包括纳米颗粒和增加VDR的生物学活性的化合物。这种预防性给药可延缓肝、肾或胰腺纤维化的症状的发作。例如,包括纳米颗粒和增加VDR的生物学活性的化合物的组合物的预防性给予可用于防止纤维化特征或症状中的一种或多种的发作。例如,作为经受纤维化的器官,器官的功能性细胞团减小,因为它被结疤组织(胶原和其它异常的基质成分)替换。此外,纤维化导致建构(architectural)解体,这可减少功能并导致病理,例如门静脉高压,和对肝脏而言增加的肝细胞癌的风险。严重的门静脉高压症通常表现为食管出血/胃静脉曲张和/或腹水。在肾和胰腺中,晚期纤维化的特征是肾功能衰竭,以及内分泌和/或外分泌胰腺功能衰竭。
监测治疗
本文提供的组合物的这些作用,在某些实施方案中,通过肝脏炎症、损伤和纤维化的血液标记物(markers)、血清标记物和血浆标记物进行监测,包括但不限于:谷草转氨酶、谷丙转氨酶、γ-谷氨酰转肽酶、胆红素、α-2巨球蛋白、结合珠蛋白、金属蛋白酶-1的组织抑制剂、透明质酸、III型胶原的氨基酸末端前肽,和其它胶原前体和代谢物、血小板计数、载脂蛋白Al、C反应性蛋白和铁蛋白。这些测试在一些实例中单独使用,而在其它实例中组合使用。肝纤维化也可以通过瞬时弹性技术(FibroscanTM)监测。另一实施方案包括通过直接检查由肝活检获得肝组织而监测治疗的影响。
还监测了所公开的方法对胰腺疾病的效果,在一些实施方案中,通过血液、血清、血浆淀粉酶,或脂肪酶,以及通过检测胰腺的外分泌和内分泌功能,进行监测。在其它实施方案中,胰腺炎是通过成像技术——包括但不限于放射性、核医学、超声和磁共振——监测的。
还监测了所公开的方法对肾脏疾病的效果,在一些实施方案中,通过血液、血清或血浆的尿素或肌酸酐,或通过其它肾功能检测,单独地或组合,进行监测。在一些实施方案中,肾脏疾病是通过成像技术——包括但不限于放射性、核医学、超声和磁共振——监测的。在替代的实施方案中,通过直接检查由肾脏活检获得的组织而监测治疗对肾的影响。
与其它治疗剂组合
所公开的组合物可与其它治疗剂——例如化学疗法和生物疗法——组合用于治疗。在一个实例中,其它治疗剂包括一种或多种核受体配体,包括但不限于下列物质的配体:过氧化物酶体增生物活化的受体-γ(PPAR-γ,NR1C3)、过氧化物酶体增生物活化的受体-α(PPAR-α,NR1C1)和过氧化物酶体增殖物活化的受体-δ(PPAR-δ,NR1C2),法尼酯X受体(FXR,NR1H4)、干扰素-γ(IFN-γ)、血管紧张素转换酶抑制剂、血管紧张素II受体拮抗剂、熊去氧胆酸(UDCA)、姜黄素;还有抗氧化剂,包括但不限于:维生素E、类视黄醇如维生素A;还有疗法,其将蛋白酶递送至肝脏以降解病理学ECM。在一些实例中,其它治疗剂是本文提供的纳米颗粒/VDR激动剂组合物的一部分。
术语“共同给予”,“与……一起给予”及其语法等同物,是指包括给予两种以上的治疗剂至单一的受试者,并且也旨在包括其中试剂通过相同或不同的给药途径或者在相同或不同的时间进行给药的治疗方案。在一些实施方案中,本文所述的一种或多种组合物将与其它试剂共同给予。这些术语包括对受试者给予两种以上的试剂,使得这些试剂和/或其代谢物在同一时间存在于受试者体内。这包括同时给予独立的组合物,在不同的时间给予独立的组合物,和/或给予其中存在两种试剂的组合物。因此,在一些实施方案中,本文所述的化合物和其它试剂以单一的组合物的形式给予。在一些实施方案中,本文所述的化合物和其它试剂混合在组合物中。
示例性的化学疗法和生物疗法
所公开的方法可以使用所公开的组合物以及其它治疗剂,例如化学疗法和生物疗法。在一些实例中,这样的化学疗法和生物疗法是本文所提供的纳米颗粒/VDR激动剂组合物的一部分。化学疗法和生物疗法可包括抗肿瘤化疗剂、抗生素、烷化剂和抗氧化剂、激酶抑制剂,以及其它试剂如抗体。此类试剂的方法和治疗剂量是本领域技术人员已知的,并且可以由熟练的临床医生确定。其它治疗剂,例如抗肿瘤剂,可能会或可能不会落入下面的一个或多个分类中,也适合用于与所记载的组合物联合给药。这些试剂的选择和治疗剂量是本领域技术人员已知的,并且可以由熟练的临床医生确定。
在一个实例中,化学疗法或生物疗法增加细胞——如肝、胰、肾细胞——的杀死(或减少它们的生存力)。此种杀死不需要导致细胞的100%减少,例如,导致活细胞(如癌细胞)的数量减少至少10%、至少20%、至少30%、至少40%、至少50%、至少75%、至少90%、或至少95%(例如与未采用化学疗法或生物疗法处理时相比)的化学疗法,可用在本文所提供的方法中。例如,化学疗法或生物疗法可以使细胞(例如癌症细胞)的生长减少至少10%、至少20%、至少30%、至少40%、至少50%、至少75%、至少90%或至少95%(例如与无化学疗法或生物疗法时相比)。
可以使用(并且在一些实例中是包括纳米颗粒和VDR激动剂的组合物的一部分)的化疗剂的具体实例包括烷化剂,如氮芥(例如苯丁酸氮芥、氮芥、环磷酰胺、异环磷酰胺和美法仑),亚硝基脲(例如卡莫司汀、福莫司汀、洛莫司汀和链佐星),铂化合物(例如卡铂、顺铂、奥沙利铂和BBR3464),白消安,达卡巴嗪,二氯甲基二乙胺,丙卡巴肼,替莫唑胺,塞替派,和乌拉莫司汀;叶酸(例如甲氨蝶呤、培美曲塞和雷替曲塞),嘌呤(例如克拉屈滨、氯法拉滨、氟达拉滨、巯嘌呤和硫鸟嘌呤),嘧啶(例如卡培他滨),阿糖胞苷,氟尿嘧啶,和吉西他滨;植物生物碱,如鬼臼(例如依托泊苷和替尼泊苷);微管结合剂(例如紫杉醇、多西他赛、长春碱、长春地辛、长春瑞滨(诺维本)、长春新碱、埃博霉素、秋水仙碱、海兔毒素15、诺考达唑、鬼臼毒素、根霉素,及其衍生物和类似物),DNA嵌入剂或交联剂(如顺铂、卡铂、奥沙利铂、丝裂霉素类如丝裂霉素C、博莱霉素、苯丁酸氮芥、环磷酰胺,及其衍生物和类似物),DNA合成抑制剂(例如甲氨蝶呤、5-氟-5'-脱氧尿苷、5-氟尿嘧啶及其类似物);蒽环家族成员(例如柔红霉素、阿霉素、表阿霉素、伊达比星、米托蒽醌和戊柔比星);抗代谢物,如细胞毒性/抗肿瘤抗生素、博来霉素、利福平、羟基脲和丝裂霉素;拓扑异构酶抑制剂,如托泊替康和伊立替康;光敏剂,如氨基乙酰丙酸、甲基氨基乙酰丙酸、卟吩姆钠和维替泊芬、酶、酶抑制剂(如喜树碱、依托泊苷、福美坦、曲古抑菌素,及其衍生物和类似物),激酶抑制剂(例如伊马替尼、吉非替尼和厄洛替尼),基因调节剂(如雷洛昔芬、5-氮杂胞苷、5-氮杂-2'-脱氧胞苷、他莫昔芬、4-羟基他莫昔芬、米非司酮,及其衍生物和类似物);以及其它药剂,如阿利维A酸、六甲蜜胺、安吖啶、阿那格雷、三氧化二砷、门冬酰胺酶、阿西替尼、贝沙罗汀、贝伐单抗、硼替佐米、塞来考昔、尼白介素、雌氮芥、羟基脲、拉帕替尼、帕唑帕尼、喷司他丁、马丙考、米托坦、培门冬酶、他莫昔芬、索拉非尼、舒尼替尼、vemurafinib、凡德他尼和维A酸。
在一个实例中,生物疗法(其在一些实例中是包括纳米颗粒和VDR激动剂的组合物的一部分)包括一种抗体或由一种抗体组成,如人源化抗体。这种抗体可以是多克隆的、单克隆的或嵌合抗体。如上所述,制造特定靶标的特异性抗体的方法是常规的。在一些实例中,治疗性抗体缀合至毒素。示例性的生物疗法包括阿仑单抗、贝伐单抗、西妥昔单抗、吉妥珠单抗、利妥昔单抗、帕尼单抗、帕妥珠单抗和曲妥珠单抗。
生物治疗剂的其它实例(其在一些实例中是包括纳米颗粒和VDR激动剂的组合物的一部分)包括抑制性核酸分子,例如反义寡核苷酸、siRNA、微小RNA(miRNA)、shRNA或核酶。特异于靶向并且调节靶核酸的表达的任何类型的反义化合物都可使用。反义化合物与靶核酸分子特异性杂交,并调节靶核酸分子的表达。这些化合物可作为单链、双链、环形、支链或发夹状化合物被引入,并可以包含结构元件,例如内部或末端凸起或环路。双链的反义化合物可以是杂交的两条链以形成双链化合物,或是具有足够自我互补性的单链以允许杂交和形成完全或部分双链的化合物。在一些实例中,反义寡核苷酸是单链反义化合物,使得当反义寡核苷酸杂交到靶mRNA时,双工被RNaseH识别,导致mRNA的切割。在其它实例中,miRNA是约21-23个核苷酸的单链RNA分子,其至少部分地与mRNA分子互补,该mRNA分子通过RNAi通路调节基因表达。在其他实例中,shRNA是一种形成紧密的发夹状物的RNA寡核苷酸,其裂解成siRNA。siRNA分子通常长度为约20-25个核苷酸,并且可以在3'末端上具有两个核苷酸突出端,或者可以是平端的。通常,siRNA的一条链至少部分地互补于靶核酸。特异性靶向基因的反义化合物可以通过设计化合物,使化合物互补于靶核苷酸序列(如mRNA序列)来制备。反义化合物不需要100%互补于靶核酸分子以特异性杂交和调节靶标的表达。例如,反义化合物,或化合物的反义链,如果是双链的化合物,可以至少75%、至少80%、至少85%、至少90%、至少95%、至少99%或100%互补于靶核酸序列。筛选特异性的反义化合物的方法是众所周知的(例如见美国公开号2003-0228689)。此外,设计、制备和使用抑制性核酸分子的方法也是在本领域技术人员的能力范围内的。
治疗剂的给予
在一些实例中,所公开的方法包括向受试者提供治疗有效量的一种或多种所公开的组合物——单独或与另一种治疗剂(如化学疗法或生物疗法)组合。此类试剂的方法和治疗剂量和治疗是本领域技术人员已知的,并且例如可以由熟练的临床医生确定。在一些实例中,所公开的方法还包括:向受试者提供外科手术和/或放射治疗结合本文所述的治疗(例如顺序地、基本同时地或同时地)。给予可以通过单剂量或多剂量完成。此类试剂的方法和治疗剂量以及治疗是本领域技术人员已知的,并且例如可以由熟练的临床医生确定。所需的剂量随着受试者的不同而变化,取决于受试者的物种、年龄、体重和一般状况、所使用的特定治疗剂及其施用方式。
治疗剂,包括本文所提供的纳米颗粒/VDR激动剂组合物,可采用任何本领域已知的合适方式给予需要治疗的受试者。给予的方法包括但不限于皮内、经皮、肌肉内、腹膜内、胃肠外、肿瘤内、静脉内、皮下、阴道、直肠、鼻内、吸入、口服或通过基因枪。鼻内给药是指通过一个或两个鼻孔将组合物递送至鼻子和鼻腔,并且可以包括通过喷雾机制或液滴机制递送,或通过治疗剂的雾化递送。
通过吸入的治疗剂的给予可以是通过喷雾或液滴机制经鼻或口递送。递送可通过插管直达呼吸系统的任何区域。肠胃外给药通常通过注射来实现。注射剂可以常规的形式制备,作为液体溶液或悬浮液,在注射前适合于液体溶液或悬浮液的固体形式,或作为乳液。注射溶液和悬浮液可以从无菌粉末、颗粒和片剂来制备。给予可以是全身的或局部的。
治疗剂,包括本文所提供的纳米颗粒/VDR激动剂组合物,可以以任何合适的方式,例如与药学上可接受的载体一起,进行给予。药学上可接受的载体通过所给予的特定组合物以及通过用于给予组合物的特定方法部分地确定。因此,存在本发明公开内容的药物组合物的多种合适的制剂。在该公开内容中可用的药学上可接受的载体(赋形剂)是常规的。Remington'sPharmaceuticalSciences,byE.W.Martin,MackPublishingCo.,Easton,PA,15thEdition(1975),记载了适合于一种或多种治疗剂的药物递送的组合物和制剂。
用于肠胃外给药的制剂包括无菌水性或非水性溶液、悬浮液和乳液。非水性溶剂的实例是丙二醇、聚乙二醇、植物油如橄榄油,以及可注射的有机酯如油酸乙酯。水性载体包括水、醇/水溶液、乳液或悬浮液,包括盐水和缓冲介质。肠胃外载体包括氯化钠溶液、林格氏(Ringer's)葡萄糖、葡萄糖和氯化钠、乳酸化林格氏或不挥发性油。静脉内载体包括流体和营养补充剂、电解质补充剂(如基于林格氏(Ringer's)葡萄糖的那些)等。也可存在防腐剂和其它添加剂,例如抗菌剂、抗氧化剂、螯合剂和惰性气体等。
用于局部给药——包括本文所提供的纳米颗粒/VDR激动剂组合物的局部给药——的制剂,可包括软膏、洗剂、乳膏、凝胶、滴剂、栓剂、喷雾剂、液体和粉剂。常规的药物载体,水基、粉末基或油基,增稠剂等,可能是必要的或期望的。
用于口服给药——包括本文所提供的纳米颗粒/VDR激动剂组合物的口服给药——的治疗剂,包括粉末或颗粒、在水或非水介质中的悬浮液或溶液、胶囊、锭剂或片剂。增稠剂、调味剂、稀释剂、乳化剂、分散助剂或粘合剂可能是期望的。
治疗剂,包括本文所提供的纳米颗粒/VDR激动剂组合物,可以作为药学上可接受的酸或碱加成盐给予,所述加成盐是通过与无机酸如盐酸、氢溴酸、高氯酸、硝酸、硫氰酸、硫酸和磷酸反应形成的,以及通过与有机酸如甲酸、乙酸、丙酸、乙醇酸、乳酸、丙酮酸、草酸、丙二酸、琥珀酸、马来酸和富马酸反应形成的;或通过与无机碱如氢氧化钠、氢氧化铵、氢氧化钾和有机碱如单烷基、二烷基、三烷基和芳基胺以及取代的乙醇胺反应形成的。
在一些实例中,包含纳米颗粒和增加VDR活性的试剂的组合物的剂量是约1mg至约1000mg、约10mg至约500mg,或约50mg至约100mg。在一些实例中,组合物的剂量是约1mg、约10mg、约50mg、约100mg、约250mg、约500mg、约700mg、约1000mg、约2000mg、约3000mg、约4000mg、约5000mg、约6000mg、约7000mg、约9000mg或约10,000mg。在一些实施方案中,组合物的剂量是约1μg/kg至约1000mg/kg、约1μg/kg至1000μg/kg、约1μg/kg至100μg/kg,或约5mg/kg至约500mg/kg、约10mg/kg至约100mg/kg,约50mg/kg至100mg/kg,或约25至约50mg/kg。在一些实例中,组合物的剂量是约1μg/kg、10μg/kg、20μg/kg、50μg/kg、100μg/kg、500μg/kg、1mg/kg、约5mg/kg、约10mg/kg、约12.5mg/kg、约15mg/kg、约20mg/kg、约25mg/kg、约30mg/kg、约35mg/kg、约40mg/kg、约45mg/kg、约50mg/kg、约60mg/kg、约70mg/kg、约80mg/kg或约100mg/kg。应当理解,这些剂量只是示例性的,合适的剂量可仅使用常规的实验由本领域技术人员确定。在一个实例中,剂量是约20μg/kgPO。
在一个实例中,治疗有效剂量的维生素D2和D3范围,是约50IU至约50,000IU。在一些实施方案中,维生素D2和/或D3的口服给药剂量是例如小于约75IU、约100IU、约250IU、约500IU、约750IU、约1000IU、约1500IU、约2000IU、约2,500IU、约5000IU、约7500IU、约10,000IU、约15,000IU、约20,000IU、约25,000IU、约40,000IU或约50,000IU,或更多。在其它实施方案中,骨化三醇的给药剂量是0.001至10微克。例如,在一些实施方案中,骨化三醇的给药剂量是约0.01μg、约0.05μg、约0.1μg、约0.25μg、约0.5μg、约1μg、约5μg或约10μg。在一些实施方案中,较大剂量的VDR激动剂经递送途径给予,该途径靶向所感兴趣的器官,例如肝脏、肾脏或胰腺。
在某些实施方案中,含有纳米颗粒和增加VDR活性的试剂的组合物口服给药,例如以单剂量或分剂量给药。对于口服给药,组合物例如是以片剂的形式提供,所述片剂含有1.0至1000mg活性成分,例如每天至少75IU、至少100IU、至少250IU、至少500IU、至少750IU、至少800IU、至少1000IU、至少1500IU、至少2000IU、至少2500IU、至少5000IU、至少7500IU、至少10,000IU、至少为15,000IU、至少20,000IU、至少25,000IU、至少40,000IU,或5至少0,000IU,例如每天50IU至2000IU、每天100IU至1000IU,例如每天800IU或更多的活性成分用于对被治疗的受试者的根据症状的剂量调整。一种有效的肠胃外剂量预期可以是更低的,例如在约0.001μg至约10μg的范围内,这取决于化合物。
在另一个实施方案中,如果在纳米颗粒组合物中增加VDR活性的试剂不是1α-羟基化合物,则给予在每天每160磅病人的1.0至100μg之间的日剂量,例如每天每160磅病人的5.0至50μg。在一个不同的实施方案中,如果生物学活性的维生素D化合物是1α-羟基化合物,则给予在每天每160磅病人的0.1至20μg之间的日剂量,而优选的剂量是在每天每160磅病人的0.5至10μg之间。在一个具体的实例中,剂量是在每天3-10μg之间。
在一个实例中,在纳米颗粒组合物中的VDR激动剂是胆钙化醇(cholecalciferol)或骨化二醇。在一些实例中,给予比通常更高的剂量,但频率更低,例如每周50,000至500,000单位。
筛选的方法
基于VDR是用于识别可以治疗或预防纤维化的试剂的靶标的观察,本文提供了用于识别一种或更多种可以治疗或预防纤维化——如肝脏、胰腺和/或肾的纤维化——的试剂的筛选方法。在一些实例中,所述方法包括使细胞(如肝、胰、肺、心脏或肾的星状细胞)与一种或多种测试剂接触。在一个实例中,细胞是肝星状细胞,如原代细胞,或衍生自肝星状细胞的无限增殖细胞系,或保留了星状细胞的一些表型或功能性特征的其它细胞系。在一些实例中,多个细胞依次与一种测试剂接触。在一些实例中,多个细胞与两种以上的不同测试剂同时接触,如1、2、3、4、5、6、7、8、9或10种不同的测试剂。测试剂的加入量可由本领域技术人员确定。在一些实例中,加入到体外细胞的测试剂的量(例如将测试剂加入到在培养基中生长的细胞,例如组织培养皿或多孔板或其它衬底、生长培养基)是至少1nM、至少10nM、至少100nM、至少1mM、至少10mM、至少100mM或1000nM,如1nM至1M、1nM至100nM,或1nM至10nM。在一些实例中,细胞是与至少1国际单位(IU),例如至少5IU、至少10IU、至少10IU、至少100IU、至少1000IU、至少5000IU、至少10,000IU、至少50,000IU、至少100,000IU或至少500,000IU的一种或多种测试剂一起培养,例如5IU至约50,000IU、5至10,000IU、10至1000IU,或50,000至500,000IU。在一些实例中,加入到体外细胞的测试剂的量(例如将测试剂加入到在培养基中生长的细胞,例如组织培养皿或多孔板或其它衬底、生长培养基)是1nM至10μΜ,按增加的半对数浓度筛选。在具体的实施方案中,测试剂包括VDR激动剂。
在一些实例中,细胞还与一定量的TGF-β1接触,相对于不存在TGF-β1的情况,所述一定量足以增加细胞的VDR表达。在一些实例中,与不加入TGF-β1时的表达量相比,细胞的VDR表达增加至少2倍、至少3倍、至少4倍、至少5倍、至少10倍或至少20倍,如2倍至50倍、2倍至20倍、2倍至10倍、2倍至5倍、3倍、4倍、5倍或6倍。测量VDR表达的方法是本领域已知的,并且可包括但不限于:PCR、RT-qPCR、FISH、蛋白质印迹、蛋白质荧光显微镜等。在一些实例中,该方法还包括在加入TGF-β1之后测量VDR表达的步骤。TGF-β1的加入量可由本领域技术人员确定。在一些实例中,加入到体外细胞的TGF-β1的量是至少0.1ng/ml、至少1ng/ml、至少5ng/ml、至少10ng/ml、至少100ng/ml、至少1mg/ml、至少10mg/ml、至少100mg/ml,或1000mg/ml,例如0.1ng/ml至1g/ml、,1ng/ml至100ng/ml、1ng/ml至5ng/ml,或1ng/ml至10ng/ml,例如1ng/ml。
在一些实例中,将一种或多种测试剂与TGF-β1同时加入细胞中,如同一时间或同一时期。在一些实例中,测试剂在TGF-β1之前加入,例如在TGF-β1之前至少1小时、至少6小时、至少12小时,或至少24小时。在一些实例中,TGF-β1在测试剂之前加入,例如在测试剂之前至少1小时、至少6小时、至少12小时或至少24小时(如在测试剂之前的4-6小时)。在一些实例中,测试剂和TGF-β1与细胞一起培养至少30分钟,例如至少60分钟、至少2小时、至少4小时、至少6小时、至少8小时、至少12小时、至少16小时、至少24小时或至少48小时,例如6-24小时、6-12小时或8-24小时,如24小时。
在使用一种或多种测试剂和TGF-β1培养后,该方法可包括一个或多种检测:(1)细胞的VDR激动剂或骨化三醇的生成,(2)细胞的CYP24A1的生成,(3)细胞的SMAD3的生成、翻译后修饰或表达,或(4)VDR与VDR激动剂的结合。测量的方法是本领域已知的,并且本发明公开内容不限于特定检测方法。例如,细胞的VDR激动剂的生成可通过质谱法、免疫分析或其它分析系统来测量(包括基于体内细胞的分析和体外VDR/共活化剂联合分析,这些分析能够检测特定化学结构或化学结构的类别)。细胞的CYP24A1和/或SMAD3的生成或表达可通过用于测量核酸或蛋白表达的任何方法进行测量,如使用CYP24A1特异性抗体或SMAD3特异性抗体的方法(例如蛋白质印迹、免疫组织化学等),以及使用CYP24A1特异性或SMAD3特异性探针或引物的方法(如PCR扩增、原位杂交等)。测量VDR与VDR激动剂的结合的方法包括但不限于:测量配体诱导的受体共活化剂结合(例如,使用PerkinElmer公司的系统)、配体诱导的受体共活化剂结合的FRET测量、竞争性配体结合分析(例如使用放射性标记的配体VDR),配体结合结构域的差异热稳定性等。
可选择测试剂使其具有以下的一个或多个效果:(1)相对于不存在一种或多种测试剂的情况,使细胞的VDR激动剂或骨化三醇的生成增加至少2倍、至少3倍、至少4倍、至少5倍或至少10倍,(2)相对于不存在一种或多种测试剂的情况,使肝细胞的CYP24A1的生成或表达增加至少2倍、至少3倍、至少4倍、至少5倍或至少10倍,(3)相对于不存在一种或多种测试剂的情况,使肝细胞的SMAD3的生成或表达降低至少1倍、至少1.5倍、至少2倍、至少3倍、至少4倍、至少5倍或至少10倍,或(4)相对于不存在一种或多种测试剂的情况,使VDR与VDR激动剂的结合增加至少2倍、至少3倍、至少4倍、至少5倍或至少10倍,其中所选的测试剂是可以治疗或预防纤维化的试剂。
在一些实施方案中,筛选方法还包括确定由细胞生成的VDR激动剂是否可以通过Cyp24Al降解;在其它实施方案中,该方法还包括选择不会导致VDR激动剂通过Cyp24Al降解的测试剂。
在一些实施方案中,该方法还包括确定试剂是否具有体外高钙血症效果,并且在某些实例中,该方法还包括选择不具有体外高钙血症效果的测试剂。在其它实施方案中,该方法还包括确定试剂是否具有体内高钙血症效果,并且在某些实例中,该方法还包括选择不具有体内高钙血症效果的测试剂(例如,不会导致血液中钙的水平>3mmol/l)。
另外的实施方案包括对具有纤维化的哺乳动物给予一种或多种所选的测试剂,并确定所述一种或多种测试剂是否治疗或预防纤维化,并且在一些实例中,选择治疗或预防纤维化的测试剂。纤维化的动物模型是已知的,如下面实施例中描述的肝损伤和纤维化的CCl4模型。
本文还提供了在体内或体外增加星状细胞的VDR表达的方法。该方法可以包括使星状细胞与一定量的VDR激动剂以及任选地一定量的TGF-β1相接触,所述一定量足以使VDR激动剂与VDR的结合提高至少10倍。
实施例1
实验程序
本实施例提供了材料和方法用于在下面的实施例中描述的结果。
原代HSC分离与培养
按先前报道的(Hendriksetal.,1985;Knooketal.,1982),通过原位链霉蛋白酶、胶原酶灌注和单步Histogenz梯度,从10周龄的雄性C57BL/6J小鼠和Wistar大鼠中分离HSC。在终点分析之前,将分离的HSC在含有20%FBS(Hyclone公司)的DMEM(Mediatech公司)中于6孔板上培养40小时。
免疫沉淀和蛋白质印迹
全细胞裂解液通过RIPA缓冲液裂解获得,而按先前的报道(Dingetal.,2008)进行对核提取物的分离。使用抗SMAD2/3抗体(SantaCruz,SC-133098),分别从LX-2全细胞和核提取物中免疫沉淀出总的SMAD3和核的SMAD3,随后通过抗SMAD3(CellSignaling,9523)和抗pSMAD3(CellSignaling,9520)特异性抗体进行SDS-PAGE和蛋白质印迹检测。
细胞培养、萤光素酶分析和RT-qPCR
将LX-2细胞——来自ProfessorScottFriedman,MountSinaiSchoolofMedicine,NewYork,NY的慷慨的礼物——如上所述(Xuetal.,2005)进行培养。TGFβ1(R&D系统)、1,25(OH)2D3和卡泊三醇(Tocris)的使用浓度分别是1ng/ml、100nM和100nM,除非另有说明。对萤光素酶分析,使用Fugene6(Roche公司)进行DNA转染,按照制造商的说明进行。在DNA转染后24小时,在萤光素酶/半乳糖苷酶分析(Promega)之前,使用载体、卡泊三醇或TGFβ1或二者处理细胞持续另外的24小时。对于RT-qPCR,在TRIzol提取之后,将总RNA进行纯化并用DNaseI(Invitrogen公司)处理。使用iScriptRTSupermix(Biorad公司)进行cDNA合成。使用SYBRGreenreagent(Biorad公司)对技术性的一式三份样本进行定量PCR。使用相对标准曲线法定量(Biorad公司)。通过标准化至Gapdh(小鼠)或U36B4(人)的数量计算表达水平。引物序列在表2中列出。
表2引物序列
qRT-PCR引物
ChIP-qPCR引物
siRNA的转染
以浓度为20nM的指定siRNA(在SMAD2/3的情况下,将10nM的各siRNA组合用于转染)进行转染,使用RNAiMax转染试剂(Invitrogen公司)。在终点分析前不扰动地培养转染细胞持续至少48小时。
肝损伤和肝纤维化的CCl
4
模型
将8周大的雄性C57BL/6J小鼠IP注射0.5ml/kg体重的CCl4(在来自Sigma的玉米油中1:50v/v)或载体(在玉米油中的DMSO),每周3次,持续4周。将卡泊三醇(20μg/kg体重)经口腔管饲给予,每周5次,在CCl4的首次剂量后20天开始。在最终CCl4注射后72小时,处死动物,并收集整个肝脏和血清用于组织学、细胞学、生物化学和分子分析。
Vdr敲除小鼠
用于Vdr靶向消融的杂交的C57BL/6J小鼠(Lietal.,1997),获自Jackson实验室(库存编号006133)。野生型对照,Vdr+/-和Vdr-/-小鼠保持Vdr-/-救援饮食(Amlingetal.,1999),该饮食含有21%的钙、0.67%的磷和20%的乳糖,每克饮食补充4.4单位的维生素D,在处死前持续6个月。收集肝脏用于如上的分析。
纤维化得分以及肝胶原蛋白和羟脯氨酸含量的定量
将福尔马林固定的肝的5μm切片经标准H&E和天狼星红方法染色,并经不了解实验条件的病理学家观察。使用Ishak修改的组织学活动指数(HAI)评分系统对纤维化评分。也使用ImageJ软件对10个非连续的天狼星红染色的切片的纤维化进行定量。所有图像均使用高分辨率的LeicaDFC420数字照相机获得,该相机安装在配备×4/0.13、×10/0.30、×20/0.50和×40/0.75的UplanFLN俯视物镜的Olympus显微镜上,并且图像经LeicaApplicationSuite处理。使用来自Biovision(K555-100)的商用比色分析设备测量肝羟脯氨酸的含量。
ChIP和ChIP-Re-ChIP
LX-2细胞经卡泊三醇(100nM)预处理16小时,然后用卡泊三醇(100nM)或TGFβ1(1ng/ml)或两者培养持续另外的4小时。然后收获细胞用于ChIP分析。ChIP的实验程序如前所述(Barishetal.,2010)。简单地说,固定后,将来自LX-2细胞的细胞核分离、裂解和用DiagenodeBioruptor剪切,得到大小为200-1000个碱基对的DNA片段,随后使用如下所列出的抗体进行免疫沉淀:正常兔IgG(SantaCruz,SC-2027)、VDR(SantaCruz,sc-1008)、SMAD3(Abeam,ab28379)和组蛋白H3(Abeam,abl791)。对于ChIP-Re-ChIP,在首先的ChIP之后,使用10mMDTT从小珠洗脱出免疫沉淀的DNA-蛋白质复合物,将其稀释100倍,然后用第二抗体re-ChIP重新免疫沉淀。
ChIP-seq数据分析
程序如前所述(Barishetal.,2010)。简单地说,相对于人类hg18参考基因组(NCBIBuild36.1),利用IlluminaPipelineSuitevl.7,排列短的DNA读取结果。使用Bowtiealigner排列器排列读取结果允许在读取结果中存在最高达2个的错配。只有唯一地映射到基因组的标签被用于进一步分析。随后的peakcalling和基元分析使用HOMER进行,HOMER是一个用于ChIP-Seq分析的软件套件。下面描述的用于HOMER的方法是已经实施的,并是在http://biowhat.ucsd.edu/homer/上免费得到的(Heinzetal.,2010)。来自每一个独特位置的一个标签,都被认为消除了在ChIPSeq协议中由片段克隆扩增产生的峰。通过在200bp的滑动窗口内搜索标签簇而确定峰,这要求相邻的簇彼此远离至少1kb。确定一个有效峰的标签数量阈值被选定为假发现率<0.0001,如通过重复使用随机标签位置的峰发现程序而凭经验确定。峰被要求比输入或IgG对照样品具有至少大于4倍的标签(标准化至总计数),以及相对于局部背景区域(10kb)具有大于4倍的标签,以避免确定具有基因组复制或非局部化结合的区域。通过确定最近的RefSeq转录起始点,相对于基因产品注释峰。ChIP-Seq结果的可视化是通过将自定义轨道上载到UCSC基因组浏览器上来实现的。使用GREAT(基因组区域富集注释工具)在http://great.stanford.edu/上进行人类表型分析。
微阵列(microarray)数据分析
使用RNeasy小型试剂盒(Qiagen公司)按标准方案分离来自原代大鼠或小鼠的HSC的总RNA。使用AgilentBioanalyzer评估RNA的完整性和质量,并根据标准Illumina方案,其准备用于杂交至Illumina大鼠或小鼠的基因表达分析。利用IlluminaGenomeStudio软件进行特征提取。利用http://sasquatch.ucsd.edu/vampire/的VAMPIRE,从生物复制品中标准化和确定差异化表达的基因。
登录号
全部数据集(ChIP-seq和微阵列)的GEO登录号是GSE38103。
实施例2
VDR预防肝纤维化
与先前的结果(Abramovitchetal.,2011;Gascon-Barreetal.,2003)一致,观察到VDR在HSC中表达,但在整个肝脏上或纯化的肝细胞中未检测到(图1A-C)。此外,HSC-表达的VDR是全功能的,如通过1,25(OH)2D3或其低血钙类似物卡泊三醇(Cal)的配体诱导的CYP24A1表达确定的(Nagpaletal.,2005)(图2A),在原代HSC和LX-2细胞——一种良好确立的TGFβ1响应性人HSC细胞系(Xuetal.,2005)——中均发生(图1D和1E)。
为了解决VDR信号传导是否可抑制纤维变性基因表达和抵消体内的肝纤维化,通过四氯化碳(CCl4)——一种广泛使用的肝毒性剂——诱导肝纤维化,剂量为0.5ml/kg,在野生型C57BL/6J小鼠中腹膜内(IP)注射给药,每周3次。4周后,CCl4处理的小鼠表现出广泛的肝桥接纤维化,并具有大量的胶原沉积,而CCl4/卡泊三醇-共-处理的小鼠具有显著的纤维化减少,如通过天狼星红染色、肝羟脯氨酸含量和组织学纤维化评分的定量分析所证明(图3A-3D)。通过卡泊三醇处理未显著地改变血清钙浓度(图2B)。关键的纤维化标记物基因——如Col1α1、Tgfb1和Timp1——的考察揭示了通过卡泊三醇的50-70%的下调(图3E-3G)。有趣的是,当在使用CCl4/卡泊三醇-共-处理之前对小鼠用卡泊三醇进行5周的预处理时,肝脏的纤维化反应几乎完全消除(图2C-F),这表明VDR激动剂不仅能够减轻纤维化,也可以有效地主动预防体内肝纤维化。
这使我们考察VDR缺陷是否可影响肝纤维化。事实上,6个月大的Vdr-/-小鼠表现出一种自发的肝损伤/纤维化表型,如通过患有明显的肝硬化(图3H,右/上)伴随肝细胞坏死和入口管(portaltracts)周围的炎症坏死病灶(图3H,右/下,箭头)的4只小鼠中的2只小鼠的胶原沉积增加所证明。由于使用天狼星红染色的肝切片观察到的纤维化程度存在一些可变性,在两只表现出最少纤维化的Vdr-/-小鼠(非肝硬化小鼠)中测量肝羟脯氨酸含量,发现仍显著大于野生型或Vdr+/-小鼠的观察结果(图3I)。此外,在不存在炎症反应的情况下,Vdr+/-小鼠表现出多病灶的环绕窦状小管纤维化(图3H,中/上,箭头),在保持同样的钙和磷酸盐补充饮食的对照野生型小鼠中未观察到病理(图3H,左)。通过肝羟脯氨酸含量的定量分析和关键的纤维化标记物基因Col1α1的考察,确认了组织学结果(图3I-3J)。
这些数据表明,两个Vdr等位基因都是维持正常肝组织结构所必需的,并且当完全消除时,除了纤维化失调外,还导致局部炎症反应失控。
实施例3
VDR信号传导抑制TGFβ-诱导促纤维化基因
表达谱被用来探索VDR信号传导在TGFβ1和TGFβ1+1,25(OH)2D3处理的原代大鼠HSC中的潜在影响。值得注意的是,1,25(OH)2D3处理减弱了HSC的培养诱导的活化,使得处理过的细胞的转录组非常类似于新鲜分离的静止细胞的转录组(图4A),并且1,25(OH)2D3与TGFβ1的共处理导致了对一大系列的TGFβ1诱导的基因(其完整的列表见Dingetal.,Cell,153:610-13,2013的表S1,其在此通过引用纳入,在下表3中提供了一个短的列表)的相当大抑制。
在这些中,39个基因对肝纤维化的发生很重要,包括胶原(BatallerandBrenner,2005;Tsukadaetal.,2006)、Tgf超家族成员(InagakiandOkazaki,2007)、基质金属蛋白酶家族成员(Mmps)(Arthur,2000;Han,2006)、金属蛋白酶组织抑制剂(Timps)(Arthur,2000;Yoshijietal.,2002)、整合素(PatsenkerandStickel,2011),以及赖氨酰氧化酶家族成员(Barry-Hamiltonetal.,2011;KaganandLi,2003;Vadaszetal.,2005)(图4B)。
接着,证实了在原代小鼠HSC和LX-2细胞中,卡泊三醇有力地抑制纤维化基因表达,这表明VDR激动剂的抗TGFβ性质可能在整个哺乳动物物种中都保存(数据未显示)。最后,使用LX-2细胞的RNAi,观察到VDR的损失消除了TGFβ1诱导的基因表达的卡泊三醇介导的抑制(图4C),这共同揭示了VDR体外调节抗TGFβ/纤维化网络。
实施例4
在HSC中定义VDR和SMAD3顺反组
本实施例描述了用于确定VDR是抗纤维化基因网络的直接调节物还是间接调节物的方法。由于SMAD2和SMAD3是HSC中TGFβ1诱导的促纤维化基因表达所必需的(图5A),并且VDR活化对TGFβ1诱导的磷酸化和随后的SMAD3核转位没有显著影响(图5B),这表明VDR的直接调节性作用。为了探索这种可能性,在经卡泊三醇和TGFβ1培养的LX-2细胞中,利用染色质免疫沉淀再加上高通量深度测序(ChIP-Seq),分析VDR和SMAD3的全基因组结合位点。所得的顺反组经识别具有24,984VDR和23,581SMAD3高可信度结合位点(FDR<0.0001)(图6A和6E)。这与已报道的其它转录因子的全范围结合类型是一致的(Barishetal.,2010;Biddieetal.,2011;Heinzetal.,2010;Trompoukietal.,2011),多数VDR和SMAD3结合位点位于遥远的基因间区域和内含区域,而只有16-21%在基因启动子处被发现(图6A和6E)。
从VDR和SMAD3结合位点的列表,许多先前已特征化的功能性维生素D反应元件(VDRE)被证实是用于已知的维生素D诱导基因,如CYP24A1(图6B)、SPP1、BGLAP(图7A-7B),以及SMAD结合元件(SBE)用于TGFβ信号传导靶基因的,包括ID1(图6F)、SMAD7和TGFβ1(图7C和7D)。基于与最接近的转录起始位点的邻近程度,通过基因注释分析分配峰,分别在单独的VDR和SMAD3顺反组内得到11,031和9,210个推定靶基因。这些注释的基因的基因本体论(GO)分析揭示了,对于推定VDR和SMAD3靶基因,最常见的分类功能是代谢(47%)和细胞信号传导(34%)(图6C和6G)。
最后,检查VDR和SMAD3的最显著富集的结合基元。在这些序列信号(signatures)中,具有3bp间隔物(DR3)共有序列的直接的六聚物复制物,是VDR位点处最富集的基元(motif),解释了74%的VDR结合峰(图6D,上),而共有SBE序列——GTCT基元——占SMAD3结合峰的83%(图6H,上)。有趣的是,分析揭示了GTCT和DR3型基元也分别在VDR和SMAD3结合位点处在核小体(nucleosomal)距离内共富集,这表明VDR和SMAD3经由相交的顺反组进行通信(图6D和6H,下)。
实施例5
通过VDR/SMAD3基因组串扰的TGFβ信号传导的拮抗作用
为了针对这种可能性,利用生物信息学分析,通过计算结合至VDR和SMAD3二者的位点数量而定量顺反组相交的程度。总共10,436个基因组位点被共占位(图8A),并且共占位模式是基因组范围的,如通过定量环绕SMAD3结合峰的VDR位点的热图可视化(图8B)。如果这个基因组交叉介导VDR/SMAD3串扰,VDR和SMAD3可同时与它们共占位的位点相互作用。依次的ChIP(ChIP-re-ChIP)实验证实,VDR和SMAD3可以——至少瞬时——共占位同一基因组位点(图8C)。
接下来,如果抗TGFβ信号传导是由VDR/SMAD基因组交叉介导的,则在HSC中的促纤维化基因在共同结合的调节元件中应过多表现出来。确实,指明人表型的GO分析表明,对于VDR/SMAD3共占位的病灶,“异常结疤”反应(67%)显著富集(图8D),导致了使用早先确定的39个促纤维化基因考察潜在的VDR/SMAD3共占位(图4B)。在这个子集中,34个被发现含有VDR/SMAD3共占位位点(图8E)。此外,这些基因中的许多基因被发现含有多个VDR/SMAD3共占位位点(图8F&表3)。
表3由VDR和SMAD共调节的纤维化基因
产生了具有在COL1A1基因上的VDR/SMAD3共结合位点的荧光素酶报告子质粒,并观察到这些基因组元件可以至少部分地总结出卡泊三醇和TGFβ1的相反作用,这表明了这些顺式元件作为促纤维化基因表达的增强物发挥作用(图9A)。
实施例6
VDR/SMAD基因组对抗
在共同占位的基因组区域中VDR和SMAD3之间的空间关系的信息学分析确认它们各自的反应元件共定位在一个核小体窗口(<200个碱基对)中(图9B),进一步支持了由近距离DNA结合引起的基因组拮抗作用的可能性(Barishetal.,2010;Huaetal.,2009).
VDR/SMAD基因组拮抗作用的存在可通过绘制VDR和SMAD3的平均ChIP-Seq信号强度与它们的共占位位点的中心的关系图而可视化。这证明,在卡泊三醇的存在下,SMAD3的TGFβ诱导的募集物整体地受到了~1.5倍的损害,而VDR与这些位点的结合整体地增强了近10倍(图10A-10B)。此外,所提出的基因组拮抗作用通过考察其对具有VDR/SMAD共占位调节元件的促纤维化基因(如COL1A1)的影响进行阐述。测序轨迹的可视化揭示了卡泊三醇促进了在COL1A1基因上的所有三个主要VDR/SMAD3共结合位点处的VDR占位(图10C,中间2个轨道)。与此相反,TGFβ诱导的SMAD3结合在卡泊三醇处理后通常沿着基因方向减弱(图10C,上方2个轨道,并通过ChIP-qPCR独立地验证,10D和10F)。SMAD3与VDR募集物的类似的损失也在其它促纤维化基因——例如COL1A2、TGFB1、TGFB2、TIMP1、TIMP2和LOXL2——的调节区域观察到了(图11A-F)。此外,VDR和SMAD2/3的RNAi介导的消耗分别消除了SMAD3募集物的卡泊三醇依赖性损失以及TGFβ1诱导的与共占位的调节元件的VDR结合,证明了VDR和SMAD是介导该基因组拮抗作用所需的(图10E和10G)。
由于组蛋白修饰共因子(如CBP和p300)的募集和组蛋白H3的高度乙酰化已被确认为TGFβ信号传导的活化的标志性事件(Massagueetal.,2005),可确定VDR/SMAD基因组拮抗作用是否可通过该后生途径的干扰限制TGFβ信号传导。在使用卡泊三醇或TGFβ1或二者处理的细胞中,考察组蛋白H3乙酰化的状态以及CBP和p300对VDR/SMAD共占位位点的募集。ChIP-qPCR证明,TGFβ1诱导了p300和CBP的募集,以及组蛋白H3在COL1A1的VDR/SMAD共占位调节区域的高度乙酰化。这种效应在经卡泊三醇和TGFβ1共处理的细胞中丧失(图12A),这表明VDR/SMAD基因组拮抗作用通过损害共活化剂募集和组蛋白高度乙酰化而限制TGFβ活化。
配体依赖性的共阻遏物募集或“反阻遏”已被提出作为核受体(例如PPARγ的LXR)的主要机制,从而负向调节炎症基因表达(GlassandSaijo,2010)。为了测试反阻遏是否有助于拮抗作用,考察了共阻遏物(包括NCoR、SMRT、HDAC3、CoREST、LSD1和G9a)向促纤维化基因(如COL1A1和COL1A2)的VDR/SMAD3共占位调节区域的潜在诱导的募集,作为对卡泊三醇和TGFβ1的响应。然而,这些共阻遏物与这些位点的结合的变化是未检测到的(图12B),这表明转录活化复合物从这些位点的损失不是归因于增加的共阻遏物募集。
实施例7
TGFβ掩盖信号依赖性VDR顺反组
在确立VDR/SMAD3基因组拮抗作用时,观察到TGFβ/SMAD信号传导似乎提高了配位的VDR向COL1A1的顺式调节区域的募集(图10F和10G)。为了确定该效应是否在促纤维化基因的其它VDR结合位点上观察到,在TGFβ1的存在和不存在的情况下,分析了VDR顺反组+卡泊三醇。观察到TGFβ1促进了配位的但非未配位的VDR向所有促纤维化基因的顺式调节区域的结合(图11B&11A-F,下方4个轨道)。
接着,在TGFβ1的存在和不存在的情况下,比较了卡泊三醇诱导的VDR全范围结合模式。在TGFβ1不存在的情况下6281个结合位点包括从头开始的VDR顺反组,在TGFβ1存在的情况下诱导了一个包括24984个位点的新顺反组(图6A)。有趣的是,只有3537个位点是由2个顺反组共有的,并且85%(21447个位点)的TGFβ诱导的配位的VDR结合位点都是唯一的(图13A),这表明TGFβ导致了配位的VDR的全基因组结合位置的巨大的变化。
两个VDR顺反组的比较研究揭示了,TGFβ1+卡泊三醇位点(但不是仅卡泊三醇的位点)高度富集在SMAD3结合位点处(图13B)。此外,VDR与这些基因组位点的结合是由TGFβ信号传导增强的(图13C),这种效果不可能归因于VDR表达的变化(图13D)。
对VDR基因组位置(loci)的不同子集的DNA序列进行了考察,并观察到70%以上含有从头开始的VDR调节位点(图13E),这表明VDR直接作用于DNA,与SMAD依赖性束缚相对。有趣的是,TGFβ在VDR-SMAD3共结合位点处引起核小体的显著消耗(图13F),表明TGFβ-SMAD信号传导可通过增效局部染色质重塑促进VDR至其相邻位点的结合和由此产生的可访问性。
实施例8
VDR和SMAD之间的基因组回路
上面讨论的发现表明VDR和TGFβ-SMAD信号传导之间的动态关系:也许,TGFβ诱导SMAD结合至染色质创建了一个新的基因组前景,其目前已经可以得到配位的VDR,这可使得暂时延迟的SMAD阻遏成为可能。为了探索这一时间-空间关系,在卡泊三醇或TGFβ1或二者存在的情况下,确定了SMAD3和VDR募集至纤维化基因(如COL1A1)的共占位顺式调节元件的动力学。具体地说,ChIP-qPCR被用来监测VDR和SMAD3与COL1A1的顺式调节区域在多个时间点(0、1、2、4、6、16小时)的结合。
值得注意的是,配位的VDR和SMAD3与该位点的结合都在经处理4小时后由TGFβ1最大程度地提高,随后在16小时后逐渐下降到基础水平(图14A-14B),这证实了TGFβ1促进VDR募集至染色质的作用。有趣的是,在TGFβ1刺激后的SMAD3的结合曲线由于卡泊三醇的存在而急剧地变化,观察到的最大程度的SMAD3结合出现在TGFβ1处理后仅1小时。4小时后,SMAD3募集显著降低70%(图14B)。此外,在卡泊三醇和TGFβ1的存在下,标准化VDR和SMAD3的结合至其基础水平,揭示了VDR和SMAD3的占位呈负相关(图14C),这表明TGFβ诱导的染色质的可访问性产生了一种促进VDR反转SMAD活化的基因组结构。总之,该VDR/SMAD基因组回路提供了一种基于染色质的机制,使VDR通过在HSC中拮抗TGFβ信号传导以阻止纤维化。
参考文献:
Abramovitchetal.(2011).VitaminDinhibitsproliferationandprofibroticmarkerexpressioninhepaticstellatecellsanddecreasesthioacetamide-inducedliverfibrosisinrats.Gut60,1728-1737.
Agmon-Levinetal.(2012).VitaminDinSystemicandOrgan-SpecificAutoimmuneDiseases.ClinRevAllergyImmunol2012,14.
Amling,etal.(1999).RescueoftheskeletalphenotypeofvitaminDreceptor-ablatedmiceinthesettingofnormalmineralionhomeostasis:formalhistomorphometricandbiomechanicalanalyses.Endocrinology140,4982-4987.
Arthur,M.J.(2000).FibrogenesisII.Metalloproteinasesandtheirinhibitorsinliverfibrosis.AmJPhysiolGastrointestLiverPhysiol279,G245-249.
Barishetal.(2005).ANuclearReceptorAtlas:macrophageactivation.MolEndocrinol19,2466-2477.Epub2005Jul2428.
Barishetal.(2010).Bcl-6andNF-kappaBcistromesmediateopposingregulationoftheinnateimmuneresponse.GenesDev24,2760-2765.
Barry-Hamiltonetal.(2011).Allostericinhibitionoflysyloxidase-like-2impedesthedevelopmentofapathologicmicroenvironment.NatMed16,1009-1017.
Bataller,R.,andBrenner,D.A.(2005).Liverfibrosis.JClinInvest115,209-218.
Baur,etal.(2011).Combinedeffectof25-OHvitaminDplasmalevelsandgeneticVitaminDReceptor(NR1I1)variantsonfibrosisprogressionrateinHCVpatients.LiverInt.
Biddieetal.(2011).TranscriptionfactorAP1potentiateschromatinaccessibilityandglucocorticoidreceptorbinding.MolCell43,145-155.
Bookoutetal.(2006).Anatomicalprofilingofnuclearreceptorexpressionrevealsahierarchicaltranscriptionalnetwork.Cell126,789-799.
Bouillonetal.(2008).VitaminDandhumanhealth:lessonsfromvitaminDreceptornullmice.EndocrRev29,726-776.
Bouwensetal.(1992).Livercellheterogeneity:functionsofnon-parenchymalcells.Enzyme46,155-168.
Breitkopf,K.,Godoy,P.,Ciuclan,L.,Singer,M.V.,andDooley,S.(2006).TGF-beta/Smadsignalingintheinjuredliver.ZGastroenterol44,57-66.
Chawlaetal.(2001).Nuclcarrcccptorsandlipidphysiology:opcningtheX-filcs.Science294,1866-1870.
Cohen-NaftalyandFriedman(2011).Currentstatusofnovelantifibrotictherapiesinpatientswithchronicliverdisease.TherapAdvGastroenterol4,391-417.
Dingetal.(2008).MediatorlinksepigeneticsilencingofneuronalgeneexpressionwithX-linkedmentalretardation.MolCell31,347-359.
FengandDerynck(2005).Specificityandversatilityintgf-betasignalingthroughSmads.AnnuRevCellDevBiol21,659-693.
Friedman,S.L.(1993).SeminarsinmedicineoftheBethIsraelHospital,Boston.Thecellularbasisofhepaticfibrosis.Mechanismsandtreatmentstrategies.NEnglJMcd328,1828-1835.
Friedman,S.L.(1999).EvaluationoffibrosisandhepatitisC.AmJMed107,27S-30S.
Friedman,S.L.(2003).Liverfibrosis--frombenchtobedside.JHepatol38Suppl1,S38-53.
Friedman,S.L.(2008).Hepaticstellatecells:protean,multifunctional,andenigmaticcellsoftheliver.PhysiolRev88,125-172.
Friedman,S.L.,andBansal,M.B.(2006).Reversalofhepaticfibrosis--factorfantasy?Hepatology43,S82-88.
Friedman,S.L.,Roll,F.J.,Boyles,J.,andBissell,D.M.(1985).Hepaticlipocytes:theprincipalcollagen-producingcellsofnormalratliver.ProcNailAcadSciUSA82,8681-8685.
Gascon-Barreetal.(2003).ThenormalliverharborsthevitaminDnuclearreceptorinnonparenchymalandbiliaryepithelialcells.IIepatology37,1034-1042.
Geerts,A.(2001).IIistory,heterogeneity,developmentalbiology,andfunctionsofquiescenthepaticstellatecells.SeminLiverDis21,311-335.
Glass,C.K.,andSaijo,K.(2010).NuclcarrcccptortransrcprcssionpathwaysthatrcgulatcinflammationinmacrophagcsandTcclls.NatRcvhmmunol10,365-376.
Goltzmanetal.(2004).EffectsofcalciumandoftheVitaminDsystemonskeletalandcalciumhomeostasis:lessonsfromgeneticmodels.JSteroidBiochemMolBiol89-90,485-489.
Griffinetal.(2001).Dendriticcellmodulationbylalpha,25dihydroxyvitaminD3anditsanalogs:avitaminDreceptor-dependentpathwaythatpromotesapersistentstateofimmaturityinvitroandinvivo.ProcNailAcadSciUSA98,6800-6805.Epub2001May6822.
Hanetal.(2010).Anovelbileacid-activatedvitaminDreceptorsignalinginhumanhepatocytes.MolEndocrinol24,1151-1164.
IIan,Y.P.(2006).Matrixmetalloproteinases,thcprosandcons,inliverfibrosis.JGastroenterolHepatol21Suppl3,S88-91.
Heinzetal.(2010).Simplecombinationsoflineage-determiningtranscriptionfactorsprimecis-regulatoryclementsrequiredformacrophageandBcellidentities.MolCell38,576-589.
Hendriksetal.(1985).Perisinusoidalfat-storingcellsarethemainvitaminAstoragesitesinratliver.ExpCellRes160,138-149.
Hernandez-Gea,V.,andFriedman,S.L.(2011).Pathogenesisofliverfibrosis.AnnuRevPathol6,425-456.
Huaetal.(2009).Genomicantagonismbetweenretinoicacidandestrogensignalinginbreastcancer.Cell137,1259-1271.
Inagaki,Y.,andOkazaki,I.(2007).EmerginginsightsintoTransforminggrowthfactorbetaSmadsignalinhepaticfibrogenesis.Gut56,284-292.
Janssens,W.,Mathieu,C.,Boonen,S.,andDecramer,M.(2011).VitaminDdeficiencyandchronicobstructivepulmonarydisease:aviciouscircle.VitamHorm86,379-399.
Kagan,H.M.,andLi,W.(2003).Lysyloxidase:properties,specificity,andbiologicalrolesinsideandoutsideofthecell.JCellBiochem88,660-672.
Kimetal.(2002).BurdenofliverdiseaseintheUnitedStates:summaryofaworkshop.IIepatology36,227-242.
Knooketal.(1982).Fat-storingcellsoftheratliver.Theirisolationandpurification.ExpCellRes139,468-471.
Lee,U.E.,andFriedman,S.L.(2011).Mechanismsofhepaticfibrogenesis.BestPractResClinGastroenterol25,195-206.
Li,M.O.,andFlavell,R.A.(2008).TGF-beta:amasterofallTcelltrades.Cell134,392-404.
Li,Y.C.,Pirro,A.E.,Amling,M.,Delling,G.,Baron,R.,Bronson,R.,andDemay,M.B.(1997).TargetedablationofthevitaminDreceptor:ananimalmodelofvitaminD-dependentricketstypeIIwithalopecia.ProcNatlAcadSciUSA94,9831-9835.
Lim,L.Y.,andChalasani,N.(2012).Vitaminddeficiencyinpatientswithchronicliverdiseaseandcirrhosis.CurrGastroenterolRep14,67-73.
Makishimaetal.(2002).VitaminDreceptorasanintestinalbileacidsensor.Science296,1313-1316.
Massague,J.(2008).TGFbetainCancer.Cell134,215-230.
Massagucetal.(2005).Smadtranscriptionfactors.GenesDev19,2783-2810.
Mungcretal.(2006).Serum25-hydroxyvitaminDlevelsandriskofmuhiplesclerosis.Jama296,2832-2838.
Nagpal,S.,Ns,S.,andRathnaehalam,R.(2005).NoncalcemicactionsofvitaminDreccptorligands.EndocrRev26,662-687.
Patsenker,E.,andStickel,F.(2011).Roleofintegrinsinfibrosingliverdiseases.AmJPhysiolGastrointestLiverPhysiol301,G425-434.
Pettaetal.(2010).LowvitaminDserumlevelisrelatedtoseverefibrosisandlowresponsivenesstointerferon-basedtherapyingenotype1chronichepatitisC.Hepatology51,1158-1167.
Ramagopalanetal.(2011).RarevariantsintheCYP27B1geneareassociatedwithmultiplesclerosis.AnnNeurol70,881-886.
Reynaertetal.(2002).Hepaticstcllatecells:roleinmicroeirculationandpathophysiologyofportalhypertension.Gut50,571-581.
Rosenbloometal.(2010).Narrativereview:fibroticdiseases:cellularandmolecularmechanismsandnoveltherapies.AnnInternMed152,159-166.
Sckietal.(2007).TLR4enhancesTGF-betasignalingandhepaticfibrosis.NatMed13,1324-1332.
Seki,E.,andSchnabl,B.(2012).Roleofinnateimmunityandthemicrobiotainliverfibrosis:crosstalkbetweentheliverandgut.JPhysiol590,447-458.
Siegmundetal.(2005).Molecularmechanismsofalcohol-indncedhepaticfibrosis.DigDis23,264-274.
Tanakaetal.(2009).VitaminDreceptorpolymorphismsarcassociatedwithincreasedsusceptibilitytoprimarybiliarycirrhosisinJapaneseandItalianpopulations.JHepatol50,1202-1209.
Terrieretal.(2011).Low25-OHvitaminDserumlevelscorrelatewithseverefibrosisinHIV-HCVco-infectedpatientswithchronichepatitis.JHepatol55,756-761.
Trompoukietal.(2011).LineageregulatorsdirectBMPandWntpathwaystocell-specificprogramsduringdifferentiationandregeneration.Cell147,577-589.
Tsukadaetal.(2006).Mechanismsofliverfibrosis,ClinChimActa364,33-60.
Vadaszetal.(2005).AhnormaldepositionofcollagenaroundhepatocytesinWilson′sdiseaseisassociatedwithhcpatocytcspecificexpressionoflysyloxidaseandlysyloxidaselikeprotein-2.JHepatol43,499-507.
vonEssenetal.(2010).VitaminDcontrolsTcellantigenreceptorsignalingandactivationofhumanTcells.NatImmunol11,344-349.
Williams,R.(2006).Globalchallengesinliverdisease.Hepatology44,521-526.
Wynn,T.A.(2008).Cellularandmolccularmcchanismsoffibrosis.JPathol214,199-210.
Xuetal.(2005).Humanhepaticstcllatecelllines,LX-1andLX-2:newtoolsforanalysisofhepaticfibrosis.Gut54,142-151.
Yoshijietal.(2002).Tissueinhibitorofinetalloprotcinases-lattenuatesspontaneousliverfibrosisresolutioninthetransgenicmouse.IIepatology36,850-860.
鉴于本发明公开内容的原理可适用于许多可能的实施方案,应当认为所示的实施方案仅是本发明的实例,而不应被认为是限制本发明的范围。相反地,本发明公开内容的范围由下面的权利要求所限定。因此,我们要求将落入这些权利要求的范围和精神的所有内容作为我们的发明予以保护。
Claims (27)
1.一种组合物,包括:
纳米颗粒,该纳米颗粒在其表面上包括白蛋白、视黄醇结合蛋白、甘露糖-6-磷酸修饰的白蛋白、脂肪酸酯、视黄基酯或线性树枝状混合聚合物中的一种或多种;和
化合物,该化合物在纳米颗粒内或连接在纳米颗粒上,增加维生素D受体(VDR)的生物学活性。
2.权利要求1的组合物,其中所述纳米颗粒包括脂质纳米颗粒或聚合纳米颗粒。
3.权利要求1或2的组合物,其中VDR的生物学活性包括细胞的维生素A、维生素D和/或脂质的存储的一种或多种。
4.权利要求1-3中任一项的组合物,其中与不存在所述化合物时的生物学活性相比,所述化合物使VDR的生物学活性至少增加25%。
5.权利要求1-4中任一项的组合物,其中与不存在所述化合物时的存储相比,所述化合物使细胞的维生素A、维生素D和/或脂质的存储至少增加25%。
6.权利要求1-5中任一项的组合物,其中所述化合物在星状细胞、上皮细胞或二者中增加了VDR的生物学活性。
7.权利要求1-6中任一项的组合物,其中所述化合物增加了胰腺星状细胞、心脏星状细胞、肺星状细胞、肾星状细胞或肝星状细胞中VDR的生物学活性。
8.权利要求1-7中任一项的组合物,其中与不存在所述化合物时的存储相比,所述化合物使星状细胞的维生素A、维生素D和/或脂质的存储至少增加25%。
9.权利要求1-8中任一项的组合物,其中所述组合物还包括化疗剂、生物治疗剂或其组合。
10.权利要求9的组合物,其中化疗剂包括吉西他滨。
11.权利要求1-10中任一项的组合物,其中VDR激动剂是维生素D、维生素D前体、维生素D类似物、维生素D受体配体、维生素D受体激动剂前体,或其组合。
12.权利要求1-11中任一项的组合物,其中VDR激动剂是卡泊三醇、25-羟基-D3(25-OH-D3)(骨化二醇)、维生素D3(胆钙化甾醇)、维生素D2(麦角钙化甾醇)、1α,25-二羟基维生素D3(骨化三醇),或其组合。
13.一种用于在上皮细胞或星状细胞中增加或保持维生素A、维生素D和/或脂质的方法,包括:
使治疗有效量的权利要求1-12中任一项的组合物与上皮细胞或星状细胞接触,从而在上皮细胞或星状细胞中增加或保持维生素A、维生素D和/或脂质。
14.权利要求13的方法,其中所述上皮细胞或星状细胞是在受试者中,并且其中接触包括对受试者给予治疗有效量的所述组合物,从而在上皮细胞或星状细胞中增加或保持维生素A、维生素D和/或脂质。
15.权利要求13的方法,其中所述受试者患有肝病、肾病或胰腺疾病。
16.权利要求15的方法,其中所述肝病是酒精肝疾病、脂肪肝疾病、肝纤维化/硬化、胆汁性纤维化/硬化、肝癌、乙型肝炎病毒感染、丙型肝炎病毒感染、硬化性胆管炎、布-加综合症、黄疸、非酒精性脂肪性肝炎、血色素沉着症或威尔森氏症的一种或多种。
17.权利要求16的方法,其中所述肝癌是肝细胞癌、胆管癌、恶性血管皮内细胞瘤或血管肉瘤。
18.权利要求15的方法,其中所述胰腺疾病是胰腺纤维化或胰腺导管腺癌(PDA)。
19.权利要求15的方法,其中所述肾病是肾纤维化。
20.一种筛选可治疗纤维化的试剂的方法,包括:
使星状细胞与一种或多种测试剂接触;
使用TGF-β1接触星状细胞,与不存在TGF-β1时的表达相比,所述TGF-β1的量足以使所述星状细胞中维生素D受体(VDR)的表达增加至少2倍;
检测星状细胞的VDR激动剂的生成,星状细胞的CYP24A1的生成,星状细胞的SMAD3的生成、翻译后修饰或表达,或其组合;并且
选择测试剂,与不存在一种或多种测试剂时相比,所述测试剂使星状细胞的VDR激动剂的生成增加至少5倍;与不存在一种或多种测试剂时相比,所述测试剂使星状细胞的CYP24A1的生成增加至少5倍;与不存在一种或多种测试剂时相比,所述测试剂使星状细胞的SMAD3的生成、翻译后修饰或表达降低至少5倍,或其组合,其中所选择的测试剂是可治疗纤维化的试剂。
21.权利要求20的方法,其中所选择的测试剂使VDR与VDR激动剂的结合增强至少10倍。
22.权利要求20或21的方法,其中所述方法进一步包括:确定一种或多种所选择的测试剂是否具有体外高钙血症效果。
23.权利要求22的方法,进一步包括选择不具有体外高钙血症效果的测试剂。
24.权利要求20-23中任一项的方法,进一步包括:
对具有纤维化的哺乳动物给予一种或多种所选择的测试剂,和确定所述一种或多种测试剂是否治疗纤维化。
25.权利要求24的方法,进一步包括选择治疗纤维化的测试剂。
26.权利要求20-25中任一项的方法,其中所述纤维化是肝纤维化。
27.一种增加星状细胞的VDR表达的方法,包括:
使星状细胞与一定量的VDR激动剂和一定量的TGF-β1接触,所述一定量足以使VDR激动剂与VDR的结合增强至少10倍。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361815575P | 2013-04-24 | 2013-04-24 | |
US61/815,575 | 2013-04-24 | ||
PCT/US2014/035235 WO2014176394A1 (en) | 2013-04-24 | 2014-04-24 | Vitamin d receptor/smad genomic circuit gates fibrotic response |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105473147A true CN105473147A (zh) | 2016-04-06 |
Family
ID=51792377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480035908.4A Pending CN105473147A (zh) | 2013-04-24 | 2014-04-24 | 维生素d受体/smad基因组回路门纤维化反应 |
Country Status (8)
Country | Link |
---|---|
US (2) | US9872866B2 (zh) |
EP (1) | EP2988752A4 (zh) |
JP (1) | JP2016520572A (zh) |
CN (1) | CN105473147A (zh) |
AU (1) | AU2014257051A1 (zh) |
CA (1) | CA2909941A1 (zh) |
MX (1) | MX2015014701A (zh) |
WO (1) | WO2014176394A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106496330A (zh) * | 2016-11-07 | 2017-03-15 | 陕西理工学院 | 一种VDR‑His融合蛋白及其DNA序列、表达和应用 |
CN110591075A (zh) * | 2019-06-28 | 2019-12-20 | 四川大学华西医院 | 一种PEG-Peptide线性-树状给药系统及其制备方法和用途 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014176394A1 (en) | 2013-04-24 | 2014-10-30 | Salk Institute For Biological Studies | Vitamin d receptor/smad genomic circuit gates fibrotic response |
CN106405062A (zh) * | 2016-08-12 | 2017-02-15 | 路娜 | 内分泌不稳体液检查装置 |
CN106750337B (zh) * | 2016-12-09 | 2019-08-20 | 西南交通大学 | 一种接枝视黄醇聚合物及采用其作为载体的喜树碱化合物 |
US10244377B2 (en) | 2017-06-17 | 2019-03-26 | Link Labs, Inc. | BLE networking systems and methods providing central and peripheral role reversal according to network provisioned timing therefor |
WO2019023149A1 (en) | 2017-07-24 | 2019-01-31 | Salk Institute For Biological Studies | USE OF BROMODOMAIN-CONTAINING PROTEIN-9 ANTAGONISTS IN ASSOCIATION WITH VITAMIN D RECEPTOR AGONISTS IN THE TREATMENT OF DIABETES |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110014126A1 (en) * | 2007-11-06 | 2011-01-20 | Evans Ronald M | Use of vitamin d receptor agonists and precursors to treat fibrosis |
CN102342914A (zh) * | 2011-10-07 | 2012-02-08 | 南昌大学 | 卡泊三醇固体脂质纳米粒及其制备方法 |
WO2012127037A2 (en) * | 2011-03-24 | 2012-09-27 | Leo Pharma A/S | A composition comprising lipid nanoparticles and a corticosteroid or vitamin d derivative |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4417851C1 (de) | 1994-05-20 | 1995-10-05 | Horst Heirler | Diätetisches Lebensmittel mit mittelkettigen Fettsäuren und dessen Verwendung |
US6566353B2 (en) | 1996-12-30 | 2003-05-20 | Bone Care International, Inc. | Method of treating malignancy associated hypercalcemia using active vitamin D analogues |
US5961990A (en) * | 1997-05-02 | 1999-10-05 | Kobo Products S.A.R.L. | Cosmetic particulate gel delivery system and method of preparing complex gel particles |
AUPO727097A0 (en) | 1997-06-10 | 1997-07-03 | Unisearch Limited | Method of treatment of hepatoma and pharmaceutical compositions for use therein |
US6358939B1 (en) | 1999-12-21 | 2002-03-19 | Northern Lights Pharmaceuticals, Llc | Use of biologically active vitamin D compounds for the prevention and treatment of inflammatory bowel disease |
CN1681495B (zh) * | 2002-08-19 | 2010-05-12 | 辉瑞产品公司 | 用于治疗过度增生性疾病的组合物 |
AU2003295773A1 (en) | 2002-11-21 | 2004-06-18 | Novacea, Inc. | Treatment of liver disease with active vitamin d compounds |
EP1631297A4 (en) | 2003-06-11 | 2007-09-05 | Novacea Inc | TREATMENT OF IMMUNOSTIC DISEASES WITH ACTIVE VITAMIN D COMPOUNDS ALONE OR IN COMBINATION WITH OTHER THERAPEUTICS |
US20050124591A1 (en) | 2003-07-29 | 2005-06-09 | Jin Tian | Use of vitamin Ds to treat kidney disease |
US20050148557A1 (en) | 2003-07-29 | 2005-07-07 | Jin Tian | Use of Vitamin Ds to treat kidney disease |
WO2005117542A2 (en) * | 2004-05-10 | 2005-12-15 | Novacea, Inc. | Treatment of pancreatic cancer with active vitamin d compounds in combination with other treatments |
WO2006032299A1 (en) | 2004-09-24 | 2006-03-30 | Susanna Miettinen | Use of inhibitors of 24-hydroxylase in the treatment of cancer |
US20060135610A1 (en) | 2004-12-22 | 2006-06-22 | Bortz Jonathan D | Cardiovascular compositions |
JP4533420B2 (ja) * | 2004-12-22 | 2010-09-01 | 日東電工株式会社 | 線維化抑制のための薬物担体および薬物担体キット |
US8968806B2 (en) | 2005-04-26 | 2015-03-03 | Sean Joseph Delaney | Method and system for creating and using a supplement to balance animal diets |
KR20090060306A (ko) | 2006-08-25 | 2009-06-11 | 코우가 바이오테크놀로지, 인크. | 비타민 d 화합물 및 추가 치료제, 및 그를 함유하는 조성물을 투여하는 것을 포함하는, 암을 치료하는 방법 |
TW200833345A (en) | 2006-11-01 | 2008-08-16 | Novacea Inc | Use of vitamin D compounds and mimics thereof to enhance delivery of therapeutics and oxygen to tumors and other tissues |
JP2008174463A (ja) * | 2007-01-16 | 2008-07-31 | Ankhs:Kk | TGF−βシグナル伝達機構の阻害剤、Smadの分解誘導剤、Smadユビキチン化促進剤、Smurfの分解誘導剤、Smurfユビキチン化促進剤、TGF−βシグナル伝達機構の阻害方法、Smadの分解誘導方法、Smadユビキチン化促進方法、Smurfの分解誘導方法、及びSmurfユビキチン化促進方法 |
EP2155769B1 (en) | 2007-05-04 | 2012-06-27 | Katholieke Universiteit Leuven KU Leuven Research & Development | Tissue degeneration protection |
US20090209500A1 (en) | 2007-11-06 | 2009-08-20 | The Salk Institute For Biological Studies | Use of vitamin d receptor agonists and precursors to treat fibrosis |
PL388252A1 (pl) | 2009-06-10 | 2010-12-20 | Instytut Farmaceutyczny | Terapia skojarzona raka jelita grubego |
IT1397901B1 (it) | 2010-01-26 | 2013-02-04 | Consiglio Nazionale Ricerche | Peptidi ciclici che legano il recettore cxcr4 e relativi usi in campo medico e diagnostico. |
EP2569000B1 (en) | 2010-05-13 | 2017-09-27 | Indiana University Research and Technology Corporation | Glucagon superfamily peptides exhibiting nuclear hormone receptor activity |
JP2013056834A (ja) * | 2011-09-07 | 2013-03-28 | Okayama Univ | 線維化疾患治療剤 |
WO2014176394A1 (en) | 2013-04-24 | 2014-10-30 | Salk Institute For Biological Studies | Vitamin d receptor/smad genomic circuit gates fibrotic response |
BR112015030518A2 (pt) | 2013-06-05 | 2017-08-29 | Salk Inst For Biological Studi | Composição farmacêutica, uso de um ou mais agonistas do receptor da vitamina d (vdr), e, método para a redução da atividade biológica do ligante 12 do motivo c-x-c (cxcl12) |
US20180200379A1 (en) | 2013-06-05 | 2018-07-19 | Salk Institute For Biological Studies | Vitamin d receptor agonists to treat diseases involving cxcl12 activity |
MA40943A (fr) | 2014-11-10 | 2017-09-19 | Constellation Pharmaceuticals Inc | Pyrrolopyridines substituées utilisées en tant qu'inhibiteurs de bromodomaines |
US11319318B2 (en) | 2015-03-05 | 2022-05-03 | Boehringer Ingelheim International Gmbh | Pyridinones and isoquinolinones as inhibitors of the bromodomain BRD9 |
JP2018513849A (ja) | 2015-03-16 | 2018-05-31 | ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア | 対象における全身性免疫応答を抑制または低減するための組成物および方法 |
-
2014
- 2014-04-24 WO PCT/US2014/035235 patent/WO2014176394A1/en active Application Filing
- 2014-04-24 MX MX2015014701A patent/MX2015014701A/es unknown
- 2014-04-24 JP JP2016510776A patent/JP2016520572A/ja active Pending
- 2014-04-24 AU AU2014257051A patent/AU2014257051A1/en not_active Abandoned
- 2014-04-24 CN CN201480035908.4A patent/CN105473147A/zh active Pending
- 2014-04-24 EP EP14787709.6A patent/EP2988752A4/en not_active Withdrawn
- 2014-04-24 CA CA2909941A patent/CA2909941A1/en not_active Abandoned
-
2015
- 2015-10-23 US US14/921,230 patent/US9872866B2/en active Active
-
2017
- 2017-11-08 US US15/807,424 patent/US10238667B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110014126A1 (en) * | 2007-11-06 | 2011-01-20 | Evans Ronald M | Use of vitamin d receptor agonists and precursors to treat fibrosis |
WO2012127037A2 (en) * | 2011-03-24 | 2012-09-27 | Leo Pharma A/S | A composition comprising lipid nanoparticles and a corticosteroid or vitamin d derivative |
CN102342914A (zh) * | 2011-10-07 | 2012-02-08 | 南昌大学 | 卡泊三醇固体脂质纳米粒及其制备方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106496330A (zh) * | 2016-11-07 | 2017-03-15 | 陕西理工学院 | 一种VDR‑His融合蛋白及其DNA序列、表达和应用 |
CN106496330B (zh) * | 2016-11-07 | 2018-07-03 | 陕西理工学院 | 一种VDR-His融合蛋白及其DNA序列、表达方法和应用 |
CN110591075A (zh) * | 2019-06-28 | 2019-12-20 | 四川大学华西医院 | 一种PEG-Peptide线性-树状给药系统及其制备方法和用途 |
CN110591075B (zh) * | 2019-06-28 | 2022-03-04 | 四川大学华西医院 | 一种PEG-Peptide线性-树状给药系统及其制备方法和用途 |
Also Published As
Publication number | Publication date |
---|---|
JP2016520572A (ja) | 2016-07-14 |
CA2909941A1 (en) | 2014-10-30 |
WO2014176394A1 (en) | 2014-10-30 |
US9872866B2 (en) | 2018-01-23 |
US20180071318A1 (en) | 2018-03-15 |
MX2015014701A (es) | 2016-08-08 |
US20160106762A1 (en) | 2016-04-21 |
US10238667B2 (en) | 2019-03-26 |
EP2988752A1 (en) | 2016-03-02 |
EP2988752A4 (en) | 2017-01-18 |
AU2014257051A1 (en) | 2015-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105473147A (zh) | 维生素d受体/smad基因组回路门纤维化反应 | |
Cheng et al. | Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells | |
Paul | The systemic hallmarks of cancer | |
Ding et al. | A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response | |
AU2014274864B2 (en) | Vitamin D receptor agonists to treat diseases involving CXCL12 activity | |
Li et al. | β‑glucan, a dectin‑1 ligand, promotes macrophage M1 polarization via NF‑κB/autophagy pathway | |
Gomes et al. | Regression of atherosclerotic plaques of cholesterol-fed rabbits by combined chemotherapy with paclitaxel and methotrexate carried in lipid core nanoparticles | |
Xu et al. | Alginate nanogels-based thermosensitive hydrogel to improve antidepressant-like effects of albiflorin via intranasal delivery | |
Chen et al. | Mogrol attenuates osteoclast formation and bone resorption by inhibiting the TRAF6/MAPK/NF-κB signaling pathway in vitro and protects against osteoporosis in postmenopausal mice | |
Marzioni et al. | Clinical implications of novel aspects of biliary pathophysiology | |
Han et al. | Metabolic labeling of cardiomyocyte‐derived small extracellular‐vesicle (sEV) miRNAs identifies miR‐208a in cardiac regulation of lung gene expression | |
Ullrich et al. | Epigenetic drugs in somatostatin type 2 receptor radionuclide theranostics and radiation transcriptomics in mouse pheochromocytoma models | |
Deng et al. | Apoptotic neutrophil membrane-camouflaged liposomes for dually targeting synovial macrophages and fibroblasts to attenuate osteoarthritis | |
Li et al. | Prospective therapeutics for intestinal and hepatic fibrosis | |
Arlauckas et al. | Macrophage imaging and subset analysis using single-cell RNA sequencing | |
Tian et al. | Silica-induced macrophage pyroptosis propels pulmonary fibrosis through coordinated activation of relaxin and osteoclast differentiation signaling to reprogram fibroblasts | |
Wan et al. | Exosomes derived from bone marrow mesenchymal stem cells regulate pyroptosis via the miR-143-3p/myeloid differentiation factor 88 axis to ameliorate intestinal ischemia-reperfusion injury | |
Wang et al. | Gemcitabine nano-prodrug reprograms intratumoral metabolism and alleviates immunosuppression for hepatocellular carcinoma therapy | |
Xiong et al. | Integrative analysis of single-Cell RNA sequencing and experimental validation in the study of abdominal aortic aneurysm progression | |
Xie et al. | Identification of XD23 as a potent inhibitor of osteosarcoma via downregulation of DKK1 and activation of the WNT/β-catenin pathway | |
Chen et al. | Saponins from Panax notoginseng ameliorate steroid resistance in lupus nephritis through regulating lymphocyte-derived exosomes in mice | |
AU2015213595A1 (en) | Increasing storage of vitamin A, vitamin D and/or lipids | |
Zhou et al. | Trichosanthin-derived peptide Tk-PQ attenuates immune rejection in mouse tracheal allotransplant model by suppressing PI3K-Akt and inducing type II immune polarization | |
Roy et al. | OPEN ACCESS EDITED BY | |
Zhao et al. | New insights into the role of Klotho in inflammation and fibrosis: molecular and cellular mechanisms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160406 |