CN105468865A - 高原环境下涡轮增压器压气机叶轮可靠性指标评价方法 - Google Patents

高原环境下涡轮增压器压气机叶轮可靠性指标评价方法 Download PDF

Info

Publication number
CN105468865A
CN105468865A CN201510932456.6A CN201510932456A CN105468865A CN 105468865 A CN105468865 A CN 105468865A CN 201510932456 A CN201510932456 A CN 201510932456A CN 105468865 A CN105468865 A CN 105468865A
Authority
CN
China
Prior art keywords
turbo
compressor impeller
altitude environment
impeller
charger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510932456.6A
Other languages
English (en)
Other versions
CN105468865B (zh
Inventor
王正
王增全
邢卫东
王阿娜
席盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China North Engine Research Institute Tianjin
Original Assignee
China North Engine Research Institute Tianjin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China North Engine Research Institute Tianjin filed Critical China North Engine Research Institute Tianjin
Priority to CN201510932456.6A priority Critical patent/CN105468865B/zh
Publication of CN105468865A publication Critical patent/CN105468865A/zh
Application granted granted Critical
Publication of CN105468865B publication Critical patent/CN105468865B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Supercharger (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明提供了一种高原环境下涡轮增压器压气机叶轮可靠性指标评价方法,包括以下步骤:a、确定高原环境下涡轮增压器转速的概率分布特征;b、确定压气机叶轮对应轮毂疲劳失效模式的失效判据;c、确定压气机叶轮对应叶片共振失效模式的失效判据;d、确定涡轮增压器压气机叶轮在高原环境下的可靠度模型;e、确定涡轮增压器压气机叶轮在高原环境下的可靠度变化规律;f、确定涡轮增压器压气机叶轮在高原环境下工作时的可靠性指标。本发明可确定出涡轮增压器压气机叶轮在高原环境下的可靠度变化规律与可靠性指标;能够有效地指导压气机叶轮的结构优化设计与高原环境下工作寿命的确定。

Description

高原环境下涡轮增压器压气机叶轮可靠性指标评价方法
技术领域
本发明属于涡轮增压器结构可靠性评价技术领域,尤其是涉及一种高原环境下涡轮增压器压气机叶轮可靠性指标评价方法。
背景技术
涡轮增压器是柴油机实现功率密度提升和改善高原环境适应性的关键部件之一。压气机叶轮作为涡轮增压器的核心部件之一,其可靠性对整个涡轮增压器有着重要的影响。当涡轮增压柴油机在高海拔地区工作时,由于大气环境的改变,发动机的进气量、热损失、输出功率、燃油消耗率、涡轮增压器转速等参数均会发生不同程度变化,使得发动机的机械负荷和热负荷状况与平原地区存在明显的不同。发动机在高原地区工作时,增压器涡轮的进口燃气温度、增压器转速、最高燃烧压力、燃烧过量空气系数和燃油消耗率等诸因素中的任一因素均可能成为限制发动机正常功率输出的障碍。
通常,限制涡轮增压柴油机功率发挥的最主要因素为涡轮前燃气温度或增压器转速。对于涡轮增压器压气机叶轮而言,柴油机在高海波地区工作时涡轮增压器的转速总体上呈现出增大的趋势,增压器转速的增大会增加压气机叶轮发生轮毂疲劳失效或叶片共振失效的风险,降低压气机叶轮的可靠性与寿命。因此,针对发动机在高原环境下运行时涡轮增压器压气机叶轮的失效特点,对压气机叶轮的可靠性进行准确评估是进行压气机叶轮结构优化设计与合理使用的关键。
发明内容
有鉴于此,本发明旨在提出一种高原环境下涡轮增压器压气机叶轮可靠性指标评价方法,以便进行压气机叶轮结构优化设计。
为达到上述目的,本发明的技术方案是这样实现的:
一种高原环境下涡轮增压器压气机叶轮可靠性指标评价方法,包括如下步骤:
a、确定高原环境下涡轮增压器转速nTC的概率密度函数
b、通过先确定出压气机叶轮轮毂疲劳寿命N与应力s的函数关系式smN=C中参数m的值以及参数C的概率密度函数fC(C)和压气机叶轮轮毂部位最大应力σ与涡轮增压器转速nTC之间的函数关系即σ=Fσ(nTC),再运用如下式(1)确定出以发动机任务剖面循环次数w为寿命度量指标时,涡轮增压器压气机叶轮对应轮毂疲劳失效模式的失效判据,即
g 1 = C - ( w - 1 ) ∫ 0 + ∞ F σ ( n T C ) m f n T C ( n T C ) dn T C m - F σ ( n T C ) - - - ( 1 ) ;
c、通过先确定出压气机叶轮大叶片一阶静态振动固有频率c1的概率密度函数和累积分布函数和压气机叶轮大叶片一阶动态振动固有频率cn1与涡轮增压器转速nTC、一阶静态振动固有频率c1之间的关系即以及压气机叶轮大叶片的最小谐振阶数kmin;再运用如下式(2)确定出压气机叶轮对应叶片共振失效模式的失效判据,即
g 2 = F c n 1 ( n T C , c 1 ) - k min · n T C 60 - - - ( 2 ) ;
d、以发动机任务剖面循环次数w为寿命度量指标,运用如下式(3)确定出涡轮增压器压气机叶轮在高原环境下的可靠度模型,即
R ( w ) = ∫ 0 + ∞ ∫ 0 + ∞ f C ( C ) h [ F c 1 ( c 1 ) ] h - 1 f c 1 ( c 1 ) Π i = 1 w [ ∫ 0 + ∞ f n T C ( n T C ) × sgn ( C - ( i - 1 ) ∫ 0 + ∞ F σ ( n T C ) m f n T C ( n T C ) dn T C m - F σ ( n T C ) + | C - ( i - 1 ) ∫ 0 + ∞ F σ ( n T C ) m f n T C ( n T C ) dn T C m - F σ ( n T C ) | ) × sgn ( F c n 1 ( n T C , c 1 ) - k min · n T C 60 + | F c n 1 ( n T C , c 1 ) - k min · n T C 60 | ) dn T C ] dc 1 d C - - - ( 3 )
式(3)中,sgn(·)为符号函数,h为压气机叶轮的大叶片数量;
e、将步骤a至c中获得的参数代入式(3)中,确定涡轮增压器压气机叶轮在高原环境下的可靠度变化规律;
f、根据压气机叶轮在高原环境下的可靠度模型或压气机叶轮在高原环境下的可靠度变化规律,确定涡轮增压器压气机叶轮在高原环境下工作时的可靠性指标。
进一步的,所述步骤a是通过对发动机在一次任务剖面循环内涡轮增压器的所有峰值工作转速进行统计分析,确定出对应发动机一次任务剖面循环的涡轮增压器转速nTC的概率密度函数
进一步的,所述步骤b是通过对压气机叶轮轮毂取样试样进行应力循环比为0的疲劳性能试验,确定出参数m的值以及参数C的概率密度函数fC(C);通过有限元仿真计算方法确定出压气机叶轮轮毂部位最大应力σ与涡轮增压器转速nTC之间的函数关系即σ=Fσ(nTC)。
进一步的,所述步骤c是通过自振频率测量试验确定出压气机叶轮大叶片一阶静态振动固有频率c1的概率密度函数和累积分布函数采用仿真计算方法确定出压气机叶轮大叶片一阶动态振动固有频率cn1与涡轮增压器转速nTC、一阶静态振动固有频率c1之间的关系即根据压气机叶轮的设计规范确定压气机叶轮大叶片的最小谐振阶数。
相对于现有技术,本发明具有以下优势:
针对涡轮增压器随发动机在高原环境下工作时压气机叶轮的失效特点,结合高原环境下工作时涡轮增压器转速的变化规律,通过确定压气机叶轮对应轮毂疲劳失效模式与叶片共振失效模式的失效判据,能够根据压气机叶轮的结构参数、失效判据以及涡轮增压器转速等得到涡轮增压器压气机叶轮在高原环境下的可靠度模型,进而确定出涡轮增压器压气机叶轮在高原环境下的可靠度变化规律与可靠性指标;能够有效地指导压气机叶轮的结构优化设计与高原环境下工作寿命的确定。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例所述高原环境下涡轮增压器压气机叶轮可靠性指标评价方法的流程图。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本发明。
一种高原环境下涡轮增压器压气机叶轮可靠性指标评价方法,如图1所示,包括以下步骤:
步骤1,确定高原环境下涡轮增压器转速的概率分布特征;
根据发动机在高原地区工作时涡轮增压器的工作转速,通过对发动机在一次任务剖面循环内涡轮增压器的所有峰值工作转速进行统计分析,确定出对应发动机一次任务剖面循环的涡轮增压器转速nTC的概率密度函数
本实施例中,某型车用涡轮增压器随发动机在海拔为4500m的高原环境下工作时,通过对一次任务剖面循环内涡轮增压器的所有峰值工作转速进行统计分析,可以确定出对应发动机一次任务剖面循环的涡轮增压器转速nTC的概率密度函数
f n T C ( n T C ) = 1 1500 exp ( - n T C - 104000 1500 ) exp [ - exp ( - n T C - 104000 1500 ) ] .
步骤2,确定压气机叶轮对应轮毂疲劳失效模式的失效判据;
针对涡轮增压器压气机叶轮在高原环境下工作时潜在的轮毂疲劳失效模式,通过对压气机叶轮轮毂取样试样进行应力循环比为0的疲劳性能试验,确定出压气机叶轮轮毂疲劳寿命N与应力s的函数关系式smN=C中参数m的值以及参数C的概率密度函数fC(C);
同时,采用有限元仿真计算方法确定出压气机叶轮轮毂部位最大应力σ与涡轮增压器转速nTC之间的函数关系即σ=Fσ(nTC),进一步,运用如下式(1)确定出以发动机任务剖面循环次数w为寿命度量指标时,涡轮增压器压气机叶轮对应轮毂疲劳失效模式的失效判据,即
g 1 = C - ( w - 1 ) ∫ 0 + ∞ F σ ( n T C ) m f n T C ( n T C ) dn T C m - F σ ( n T C ) - - - ( 1 )
本实施例中,通过对某型由铝合金制造的压气机叶轮轮毂取样试样进行应力循环比为0的疲劳性能试验,获得的压气机叶轮轮毂疲劳参数m的值为12.4574,参数C的概率密度函数fC(C)为
f C ( C ) = 1 5.7686 × 10 32 2 π exp [ - 1 2 ( C - 5.9309 × 10 33 5.7686 × 10 32 ) 2 ] ;
同时,采用有限元仿真计算方法确定出压气机叶轮轮毂部位最大应力σ与涡轮增压器转速nTC之间的函数关系为进一步,运用式(1)可以确定出以发动机任务剖面循环次数w为寿命度量指标时该型涡轮增压器压气机叶轮对应轮毂疲劳失效模式的失效判据。
步骤3,确定压气机叶轮对应叶片共振失效模式的失效判据;
针对压气机叶轮在高原环境下工作时潜在的叶片共振失效模式,通过自振频率测量试验确定出压气机叶轮大叶片一阶静态振动固有频率c1的概率密度函数和累积分布函数采用仿真计算方法确定出压气机叶轮大叶片一阶动态振动固有频率cn1与涡轮增压器转速nTC、一阶静态振动固有频率c1之间的关系即根据压气机叶轮的设计规范确定压气机叶轮大叶片的最小谐振阶数kmin;进一步,运用如下式(2)确定出压气机叶轮对应叶片共振失效模式的失效判据,即
g 2 = F c n 1 ( n T C , c 1 ) - k m i n · n T C 60 - - - ( 2 )
本实施例中,通过自振频率测量试验确定出某型压气机叶轮大叶片一阶静态振动固有频率c1的概率密度函数和累积分布函数分别为
f c 1 ( c 1 ) = 1 87 2 π exp [ - 1 2 ( c 1 - 6798 87 ) 2 ] 1 2 ,
F c 1 ( c 1 ) = ∫ 0 + ∞ 1 87 2 π exp [ - 1 2 ( c 1 - 6798 87 ) 2 ] dc 1 ;
采用仿真计算方法确定出该型压气机叶轮大叶片一阶动态振动固有频率cn1与涡轮增压器转速nTC、一阶静态振动固有频率c1之间的关系为
cn1=0.005329nTC+c1-212;
根据该型压气机叶轮的设计规范确定压气机叶轮大叶片的最小谐振阶数kmin=3.5,进一步,运用式(2)确定出该型压气机叶轮对应叶片共振失效模式的失效判据为
g 2 = 0.005329 n T C + c 1 - 212 - 3.5 · n T C 60 .
步骤4,确定涡轮增压器压气机叶轮在高原环境下的可靠度模型;
根据步骤1至3中得到的函数关系,以发动机任务剖面循环次数w为寿命度量指标,运用如下式(3)确定出涡轮增压器压气机叶轮在高原环境下的可靠度模型,即
R ( w ) = ∫ 0 + ∞ ∫ 0 + ∞ f C ( C ) h [ F c 1 ( c 1 ) ] h - 1 f c 1 ( c 1 ) Π i = 1 w [ ∫ 0 + ∞ f n T C ( n T C ) × sgn ( C - ( i - 1 ) ∫ 0 + ∞ F σ ( n T C ) m f n T C ( n T C ) dn T C m - F σ ( n T C ) + | C - ( i - 1 ) ∫ 0 + ∞ F σ ( n T C ) m f n T C ( n T C ) dn T C m - F σ ( n T C ) | ) × sgn ( F c n 1 ( n T C , c 1 ) - k min · n T C 60 + | F c n 1 ( n T C , c 1 ) - k min · n T C 60 | ) dn T C ] dc 1 d C - - - ( 3 )
式(3)中,sgn(·)为符号函数,h为压气机叶轮的大叶片数量。
步骤5,确定涡轮增压器压气机叶轮在高原环境下的可靠度变化规律;
将步骤1中确定的涡轮增压器转速概率密度函数步骤2中确定的参数C的概率密度函数fC(C)和参数m以及压气机叶轮轮毂部位最大应力函数Fσ(nTC)、步骤3中确定的压气机叶轮大叶片一阶静态振动固有频率c1的概率密度函数与累积分布函数和压气机叶轮大叶片一阶动态振动固有频率函数以及压气机叶轮大叶片最小谐振阶数kmin、压气机叶轮的大叶片数量h等参数代入式(3)中,确定出涡轮增压器压气机叶轮在高原环境下的可靠度R(w)随发动机任务剖面循环次数w的变化规律。
步骤6,确定涡轮增压器压气机叶轮在高原环境下工作时的可靠性指标;
运用步骤4中式(3)所示压气机叶轮在高原环境下的可靠度模型或根据步骤5中确定的压气机叶轮在高原环境下的可靠度变化规律,确定对应不同发动机任务剖面循环次数时涡轮增压器压气机叶轮的可靠度,同时,确定满足不同可靠度要求时涡轮增压器压气机叶轮对应的发动机任务剖面循环次数。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种高原环境下涡轮增压器压气机叶轮可靠性指标评价方法,其特征在于包括如下步骤:
a、确定高原环境下涡轮增压器转速nTC的概率密度函数
b、通过先确定出压气机叶轮轮毂疲劳寿命N与应力s的函数关系式smN=C中参数m的值以及参数C的概率密度函数fC(C)和压气机叶轮轮毂部位最大应力σ与涡轮增压器转速nTC之间的函数关系即σ=Fσ(nTC),再运用如下式(1)确定出以发动机任务剖面循环次数w为寿命度量指标时,涡轮增压器压气机叶轮对应轮毂疲劳失效模式的失效判据,即
c、通过先确定出压气机叶轮大叶片一阶静态振动固有频率c1的概率密度函数和累积分布函数和压气机叶轮大叶片一阶动态振动固有频率cn1与涡轮增压器转速nTC、一阶静态振动固有频率c1之间的关系即以及压气机叶轮大叶片的最小谐振阶数kmin;再运用如下式(2)确定出压气机叶轮对应叶片共振失效模式的失效判据,即
d、以发动机任务剖面循环次数w为寿命度量指标,运用如下式(3)确定出涡轮增压器压气机叶轮在高原环境下的可靠度模型,即
式(3)中,sgn(·)为符号函数,h为压气机叶轮的大叶片数量;
e、将步骤a至c中获得的参数代入式(3)中,确定涡轮增压器压气机叶轮在高原环境下的可靠度变化规律;
f、根据压气机叶轮在高原环境下的可靠度模型或压气机叶轮在高原环境下的可靠度变化规律,确定涡轮增压器压气机叶轮在高原环境下工作时的可靠性指标。
2.根据权利要求1所述的高原环境下涡轮增压器压气机叶轮可靠性指标评价方法,其特征在于:所述步骤a是通过对发动机在一次任务剖面循环内涡轮增压器的所有峰值工作转速进行统计分析,确定出对应发动机一次任务剖面循环的涡轮增压器转速nTC的概率密度函数
3.根据权利要求1所述的高原环境下涡轮增压器压气机叶轮可靠性指标评价方法,其特征在于:所述步骤b是通过对压气机叶轮轮毂取样试样进行应力循环比为0的疲劳性能试验,确定出参数m的值以及参数C的概率密度函数fC(C);通过有限元仿真计算方法确定出压气机叶轮轮毂部位最大应力σ与涡轮增压器转速nTC之间的函数关系即σ=Fσ(nTC)。
4.根据权利要求1所述的高原环境下涡轮增压器压气机叶轮可靠性指标评价方法,其特征在于:所述步骤c是通过自振频率测量试验确定出压气机叶轮大叶片一阶静态振动固有频率c1的概率密度函数和累积分布函数采用仿真计算方法确定出压气机叶轮大叶片一阶动态振动固有频率cn1与涡轮增压器转速nTC、一阶静态振动固有频率c1之间的关系即根据压气机叶轮的设计规范确定压气机叶轮大叶片的最小谐振阶数。
CN201510932456.6A 2015-12-11 2015-12-11 高原环境下涡轮增压器压气机叶轮可靠性指标评价方法 Active CN105468865B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510932456.6A CN105468865B (zh) 2015-12-11 2015-12-11 高原环境下涡轮增压器压气机叶轮可靠性指标评价方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510932456.6A CN105468865B (zh) 2015-12-11 2015-12-11 高原环境下涡轮增压器压气机叶轮可靠性指标评价方法

Publications (2)

Publication Number Publication Date
CN105468865A true CN105468865A (zh) 2016-04-06
CN105468865B CN105468865B (zh) 2018-05-25

Family

ID=55606560

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510932456.6A Active CN105468865B (zh) 2015-12-11 2015-12-11 高原环境下涡轮增压器压气机叶轮可靠性指标评价方法

Country Status (1)

Country Link
CN (1) CN105468865B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106021645A (zh) * 2016-05-06 2016-10-12 北京航空航天大学 一种航空发动机压气机性能可靠性设计方法
CN106815396A (zh) * 2016-12-08 2017-06-09 中国北方发动机研究所(天津) 车用径流式增压器涡轮叶片叶根疲劳蠕变寿命预测方法
CN107992693A (zh) * 2017-12-08 2018-05-04 中国北方发动机研究所(天津) 一种气缸盖可靠性寿命评价方法
CN108801641A (zh) * 2018-04-20 2018-11-13 上海船舶运输科学研究所 废气涡轮增压器的故障诊断与可靠性预测方法及其系统
CN110375971A (zh) * 2019-07-11 2019-10-25 北京理工大学 径流式涡轮叶轮和压气机叶轮的加速寿命试验装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090287448A1 (en) * 2005-07-30 2009-11-19 James Brown In on or Relating to Rotating Machines
CN102331343A (zh) * 2011-08-19 2012-01-25 中国兵器工业集团第七○研究所 增压器涡轮疲劳寿命预测及其可靠性评价方法
CN103162924A (zh) * 2011-12-08 2013-06-19 中国兵器工业集团第七0研究所 增压器涡轮叶片振动可靠性指标评价方法
CN103745132A (zh) * 2014-01-23 2014-04-23 中国北方发动机研究所(天津) 一种增压器压气机叶轮叶片振动疲劳可靠寿命评价方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090287448A1 (en) * 2005-07-30 2009-11-19 James Brown In on or Relating to Rotating Machines
CN102331343A (zh) * 2011-08-19 2012-01-25 中国兵器工业集团第七○研究所 增压器涡轮疲劳寿命预测及其可靠性评价方法
CN103162924A (zh) * 2011-12-08 2013-06-19 中国兵器工业集团第七0研究所 增压器涡轮叶片振动可靠性指标评价方法
CN103745132A (zh) * 2014-01-23 2014-04-23 中国北方发动机研究所(天津) 一种增压器压气机叶轮叶片振动疲劳可靠寿命评价方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
王正 等: "增压器涡轮叶片振动分析及其可靠性评价方法研究", 《车用发动机》 *
王正 等: "增压器涡轮叶片振动可靠性评价方法研究", 《2012年全国机械行业可靠性技术学术交流会暨第四届可靠性工程分会第四次全体委员大会论文集》 *
王正: "增压器涡轮轮毂疲劳可靠性分析与寿命预测方法", 《车用发动机》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106021645A (zh) * 2016-05-06 2016-10-12 北京航空航天大学 一种航空发动机压气机性能可靠性设计方法
CN106815396A (zh) * 2016-12-08 2017-06-09 中国北方发动机研究所(天津) 车用径流式增压器涡轮叶片叶根疲劳蠕变寿命预测方法
CN106815396B (zh) * 2016-12-08 2020-04-10 中国北方发动机研究所(天津) 车用径流式增压器涡轮叶片叶根疲劳蠕变寿命预测方法
CN107992693A (zh) * 2017-12-08 2018-05-04 中国北方发动机研究所(天津) 一种气缸盖可靠性寿命评价方法
CN107992693B (zh) * 2017-12-08 2021-12-10 中国北方发动机研究所(天津) 一种气缸盖可靠性寿命评价方法
CN108801641A (zh) * 2018-04-20 2018-11-13 上海船舶运输科学研究所 废气涡轮增压器的故障诊断与可靠性预测方法及其系统
CN110375971A (zh) * 2019-07-11 2019-10-25 北京理工大学 径流式涡轮叶轮和压气机叶轮的加速寿命试验装置及方法

Also Published As

Publication number Publication date
CN105468865B (zh) 2018-05-25

Similar Documents

Publication Publication Date Title
CN108229015B (zh) 一种高空两级涡轮增压器变工况匹配设计方法
CN105468865A (zh) 高原环境下涡轮增压器压气机叶轮可靠性指标评价方法
Yang et al. A new component map generation method for gas turbine adaptation performance simulation
Ewen et al. Investigation of the aerodynamic performance of small axial turbines
CN110207946A (zh) 一种高速内外流一体化风洞试验模型缩比方法
Zheng et al. Effects of Reynolds number on the performance of a high pressure-ratio turbocharger compressor
US11210435B2 (en) Method of designing and producing a turbine
CN112883575B (zh) 一种考虑表面粗糙度的叶轮机械边界层转捩模型修正方法
Fredriksson et al. Meanline modeling of radial inflow turbine with twin-entry scroll
Wolters et al. Engine performance simulation of the integrated V2527-Engine Fan
CN104200107A (zh) 不同飞行迎角对航空发动机失速/喘振特性影响的适航审定方法
Zheng et al. Stability improvement of high-pressure-ratio turbocharger centrifugal compressor by asymmetric flow control: part ii—non-axisymmetric self recirculation casing treatment
Aziz et al. Preliminary design of a transonic fan for a low by-pass turbofan engine
CN114139345B (zh) 一种基于试验数据相关性的涡轴发动机输出轴功率预测方法
Liu et al. Numerical analysis of flow interaction of turbine system in two-stage turbocharger of internal combustion engine
Zhang et al. An integrated turbocharger design approach to improve engine performance
Chen et al. Engine performance improvements through turbocharger matching and turbine design
Dong et al. A new multistage axial compressor designed with the APNASA multistage CFD code: Part 2—Application to a new compressor design
Yipeng et al. Sensitivity analysis of impeller blade parameters to compressor performance and aerodynamic noise
Xu et al. Integral design of a turbocharger for internal engine energy saving: centrifugal compressor design
CN114912187B (zh) 一种发动机气动稳定性的符合性验证方法
CN108875154A (zh) 一种气冷涡轮低热应力气热设计方法
Wang et al. Method for evaluating the reliability of compressor impeller of turbocharger for vehicle application in plateau area
CN116702654B (zh) 一种航空发动机防冰引气优化方法
CN114912187A (zh) 一种发动机气动稳定性的符合性验证方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant