CN105466718A - 一种钛铝合金近净成形复杂结构件验收取样方法 - Google Patents

一种钛铝合金近净成形复杂结构件验收取样方法 Download PDF

Info

Publication number
CN105466718A
CN105466718A CN201510815514.7A CN201510815514A CN105466718A CN 105466718 A CN105466718 A CN 105466718A CN 201510815514 A CN201510815514 A CN 201510815514A CN 105466718 A CN105466718 A CN 105466718A
Authority
CN
China
Prior art keywords
titanium
aluminium alloy
structural member
net
complex structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510815514.7A
Other languages
English (en)
Other versions
CN105466718B (zh
Inventor
邰清安
李治华
佗劲红
闵慧娜
徐强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Shenyang Liming Aero Engine Co Ltd
Original Assignee
Shenyang Liming Aero Engine Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Liming Aero Engine Group Co Ltd filed Critical Shenyang Liming Aero Engine Group Co Ltd
Priority to CN201510815514.7A priority Critical patent/CN105466718B/zh
Publication of CN105466718A publication Critical patent/CN105466718A/zh
Application granted granted Critical
Publication of CN105466718B publication Critical patent/CN105466718B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明涉及冶金制造领域,具体为一种钛铝合金近净成形复杂结构件验收取样方法。本发明通过热等静压近净成形技术,获得一种钛铝合金近净成形复杂结构件。通过建立毛坯验收取样方法和指标体系,获得一种密度高、成分均匀、综合机械性能优异的构件,尺寸精度和表面粗糙度可以达到精密铸造零件水平。采用本发明可以建立钛铝合金近净成形复杂结构件质量评价标准,不仅能够提升先进航空发动机相关零件减重或性能提升的制造技术,同时带动其它技术产业的发展,在国内形成高端制造技术产业链,打破国外对我国在该领域的封锁,对国内重点型号研制及发展,促进我国航空事业及国防建设具有重大和深远的意义。

Description

一种钛铝合金近净成形复杂结构件验收取样方法
技术领域
本发明涉及冶金制造领域,具体为一种钛铝合金近净成形复杂结构件验收取样方法。
背景技术
某发动机低压涡轮导向器内环,由于其结构复杂,研制初期用K4169合金代用,采用分体铸造再焊接的结构,盲腔焊接后内表面残留的焊瘤清除不了,造成对空气流量有损失。为了满足发动机减重需求,急需探索新的低压涡轮导向器内环成形、检测及加工方法,生产出合格的零件。近年来Ti2AlNb合金粉末近净成形技术取得了一定进展,使用温度可达到650℃,不但能够满足设计对低压涡轮导向器内环组件的减重及提高使用温度的要求,还可以规避铸件与锻件成形、焊接以及铸件与钣金件焊接的工艺瓶颈。低压涡轮导向器内环结构复杂,热等静压后几乎不加工,数十个孔、斜支管的三维空间尺寸的检测、内部缺陷的控制技术都是前所未有的。
发明内容
本发明的目的在于提供一种钛铝合金近净成形复杂结构件验收取样方法,形成钛铝合金近净成形复杂结构件质量评价标准,提升航空发动机相关零件的制造技术。
本发明的技术方案是:
一种钛铝合金近净成形复杂结构件验收取样方法,具体步骤如下:
1)加工方法
钛铝合金近净成形复杂结构件由钛铝合金粉末经热等静压工艺或其它粉末冶金近净成形方法制造;
2)力学性能:检测室温拉伸性能、高温拉伸性能、冲击韧性、高温持久性能、硬度;
3)高倍、低倍组织
采用扫描电镜、透射电镜等对钛铝合金近净成形复杂结构件的组织进行检查;
4)内部质量
利用X光或荧光对钛铝合金近净成形复杂结构件的内部质量进行评估;
5)非加工尺寸
利用非接触式激光测量方法对钛铝合金近净成形复杂结构件进行尺寸评估;
6)钛铝合金近净成形复杂结构件经最终热处理后,解剖件的检验项目和取样要求如下:
a、化学成分,取样部位:任意,数量:每炉1个;
b、室温拉伸性能、高温拉伸性能、冲击韧性,取样部位:弦向,数量:各2个;
c、高温持久性能,取样部位:弦向,数量:光滑、缺口各2个;
d、低倍组织,取样部位:径轴,数量:对称各1;
e、显微组织或晶粒度,取样部位:径轴面,数量:2个;
f、晶粒度,取样部位:径轴面,数量:2个;
g、β转变温度或密度,取样部位:任意,数量:2个;
h、硬度,取样部位:上下端面,数量:每个制件上下端面90°均布各4点;
i、硬度,取样部位:径轴面,数量:2个。
本发明的优点及有益效果是:
1、本发明通过热等静压近净成形技术,获得一种钛铝合金近净成形复杂结构件。通过建立毛坯验收取样方法和指标体系,获得一种密度高、成分均匀、综合机械性能优异的构件,尺寸精度和表面粗糙度可以达到精密铸造零件水平。
2、采用本发明可以建立钛铝合金近净成形复杂结构件质量评价标准,不仅能够提升先进航空发动机相关零件减重或性能提升的制造技术,同时带动其它技术产业的发展,在国内形成高端制造技术产业链,打破国外对我国在该领域的封锁,对国内重点型号研制及发展,促进我国航空事业及国防建设具有重大和深远的意义。
附图说明
图1为解剖件检验取样示意图。
图2为解剖件检验取样示意图。图中,1显微组织、晶粒度试样;2力学性能试样;3低倍组织试片。
图3为典型高倍组织。
具体实施方式
某发动机低压涡轮导向器内环,研制初期用K4169合金代用,由于其结构复杂,采用分体铸造再焊接的结构,盲腔焊接后内表面残留的焊瘤清除不了,造成对空气流量有损失。本发明钛铝合金近净成形复杂结构件验收取样方法已应用于某发动机低压涡轮导向器内环,可以推广应用到其它钛铝合金近净成形复杂结构件的质量评估。在具体实施过程中,步骤如下:
1)加工方法
钛铝合金近净成形复杂结构件应由钛铝合金粉末经热等静压工艺或其它粉末冶金近净成形方法制造。
2)力学性能:检测室温拉伸性能、高温拉伸性能、冲击韧性、高温持久性能、硬度。
3)高倍、低倍组织
采用扫描电镜、透射电镜等对钛铝合金近净成形复杂结构件的组织进行检查。
4)内部质量
利用X光、荧光对钛铝合金近净成形复杂结构件的内部质量进行评估。
5)非加工尺寸
利用非接触式激光测量方法对钛铝合金近净成形复杂结构件进行尺寸评估。
6)钛铝合金近净成形复杂结构件经最终热处理后,解剖件的检验项目和取样要求见表1。
表1
下面,通过实施例和附图对本发明进一步详细说明。
实施例
以Ti2AlNb合金导叶内环质量评价标准为例具体说明本发明的实施过程。
1)加工方法
导叶内环制件应由Ti2AlNb合金粉末经热等静压工艺成形。
热等静压工艺:在990℃~1040℃之间选定的温度,施加压力不小于120MPa,保持2h~4h成形,炉冷。
2)力学性能
在经最终热处理后的制件上,按图1、图2取样位置切取试样,弦向切取力学性能试样2,测试力学性能应符合表2的规定。
表2
3)高倍、低倍组织
按图1、图2取样位置切取试样,径轴面切取显微组织、晶粒度试样1,径轴切取低倍组织试片3,采用扫描电镜、透射电镜等对低压涡轮导向器内环的高倍、低倍组织进行检测,典型高倍组织图片见图3,高倍组织应为B2+等轴α2+细小O的板条组织。在经热处理的制件横截面上检验低倍组织,不允许有目视可见的裂纹、夹杂、偏析、分层、折叠、空洞及其它冶金缺陷。
4)内部质量
利用X光、荧光对低压涡轮导向器内环的内部质量进行评估。制件内部缺陷采用X射线检查,不允许存在气孔、夹杂和裂纹等缺陷。制件应进行荧光渗透检验,不应有裂纹等缺陷。
5)非加工尺寸
利用非接触式激光测量方法对钛铝合金近净成形复杂结构件进行尺寸评估。低压涡轮导向器内环组件的非加工尺寸(35个倾斜吹气嘴及内腔)满足设计图的要求,表面粗超度达到3.2μm。

Claims (1)

1.一种钛铝合金近净成形复杂结构件验收取样方法,其特征在于,具体步骤如下:
1)加工方法
钛铝合金近净成形复杂结构件由钛铝合金粉末经热等静压工艺或其它粉末冶金近净成形方法制造;
2)力学性能:检测室温拉伸性能、高温拉伸性能、冲击韧性、高温持久性能、硬度;
3)高倍、低倍组织
采用扫描电镜、透射电镜等对钛铝合金近净成形复杂结构件的组织进行检查;
4)内部质量
利用X光或荧光对钛铝合金近净成形复杂结构件的内部质量进行评估;
5)非加工尺寸
利用非接触式激光测量方法对钛铝合金近净成形复杂结构件进行尺寸评估;
6)钛铝合金近净成形复杂结构件经最终热处理后,解剖件的检验项目和取样要求如下:
a、化学成分,取样部位:任意,数量:每炉1个;
b、室温拉伸性能、高温拉伸性能、冲击韧性,取样部位:弦向,数量:各2个;
c、高温持久性能,取样部位:弦向,数量:光滑、缺口各2个;
d、低倍组织,取样部位:径轴,数量:对称各1;
e、显微组织或晶粒度,取样部位:径轴面,数量:2个;
f、晶粒度,取样部位:径轴面,数量:2个;
g、β转变温度或密度,取样部位:任意,数量:2个;
h、硬度,取样部位:上下端面,数量:每个制件上下端面90°均布各4点;
i、硬度,取样部位:径轴面,数量:2个。
CN201510815514.7A 2015-11-20 2015-11-20 一种钛铝合金近净成形复杂结构件验收取样方法 Active CN105466718B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510815514.7A CN105466718B (zh) 2015-11-20 2015-11-20 一种钛铝合金近净成形复杂结构件验收取样方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510815514.7A CN105466718B (zh) 2015-11-20 2015-11-20 一种钛铝合金近净成形复杂结构件验收取样方法

Publications (2)

Publication Number Publication Date
CN105466718A true CN105466718A (zh) 2016-04-06
CN105466718B CN105466718B (zh) 2017-11-28

Family

ID=55604660

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510815514.7A Active CN105466718B (zh) 2015-11-20 2015-11-20 一种钛铝合金近净成形复杂结构件验收取样方法

Country Status (1)

Country Link
CN (1) CN105466718B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107127341A (zh) * 2017-04-10 2017-09-05 西安铂力特激光成形技术有限公司 一种TiAl合金零件的快速成形方法
CN110195172A (zh) * 2019-07-15 2019-09-03 哈尔滨工业大学 一种Ti2AlNb基合金材料及其制备方法
CN111175127A (zh) * 2019-11-27 2020-05-19 中国航发沈阳黎明航空发动机有限责任公司 一种基于零件变形程度控制的tc4合金机匣锻件验收方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102019401A (zh) * 2010-12-30 2011-04-20 哈尔滨工业大学 一种小型钛合金或钛铝合金复杂铸件的铸造成形方法
US20110303387A1 (en) * 2009-03-03 2011-12-15 Questek Innovations Llc. Lead-free, high-strength, high-lubricity copper alloys
EP2488343A1 (en) * 2009-10-16 2012-08-22 Dow Global Technologies LLC Improved process for producing a shaped foam article
CN103586468A (zh) * 2013-11-08 2014-02-19 中国航空工业集团公司北京航空材料研究院 一种TiAl合金粉末近净成型的方法
US20140219854A1 (en) * 2013-02-04 2014-08-07 The Boeing Company Method of Consolidating/Molding Near Net-Shaped Components Made from Powders
CN104162555A (zh) * 2014-05-28 2014-11-26 哈尔滨工业大学(威海) 一种半固态触变-塑变复合成形方法
CN104625059A (zh) * 2015-01-21 2015-05-20 大连理工大学 一种无支撑倾斜结构的激光近净成形方法
CN204629068U (zh) * 2015-03-25 2015-09-09 江苏界达特异新材料股份有限公司 内高压近净成形的高强度汽车管结构零部件
US20150251248A1 (en) * 2011-09-29 2015-09-10 GM Global Technology Operations LLC Near Net Shape Manufacturing Of Rare Earth Permanent Magnets
CN105014062A (zh) * 2014-05-03 2015-11-04 四平市北威金属技术研发有限公司 粉末温压近净成形钼基稀土合金顶头及制备技术

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110303387A1 (en) * 2009-03-03 2011-12-15 Questek Innovations Llc. Lead-free, high-strength, high-lubricity copper alloys
EP2488343A1 (en) * 2009-10-16 2012-08-22 Dow Global Technologies LLC Improved process for producing a shaped foam article
CN102019401A (zh) * 2010-12-30 2011-04-20 哈尔滨工业大学 一种小型钛合金或钛铝合金复杂铸件的铸造成形方法
US20150251248A1 (en) * 2011-09-29 2015-09-10 GM Global Technology Operations LLC Near Net Shape Manufacturing Of Rare Earth Permanent Magnets
US20140219854A1 (en) * 2013-02-04 2014-08-07 The Boeing Company Method of Consolidating/Molding Near Net-Shaped Components Made from Powders
CN103586468A (zh) * 2013-11-08 2014-02-19 中国航空工业集团公司北京航空材料研究院 一种TiAl合金粉末近净成型的方法
CN105014062A (zh) * 2014-05-03 2015-11-04 四平市北威金属技术研发有限公司 粉末温压近净成形钼基稀土合金顶头及制备技术
CN104162555A (zh) * 2014-05-28 2014-11-26 哈尔滨工业大学(威海) 一种半固态触变-塑变复合成形方法
CN104625059A (zh) * 2015-01-21 2015-05-20 大连理工大学 一种无支撑倾斜结构的激光近净成形方法
CN204629068U (zh) * 2015-03-25 2015-09-09 江苏界达特异新材料股份有限公司 内高压近净成形的高强度汽车管结构零部件

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
邰清安等: "航空发动机塑性成形技术的应用与展望", 《航空制造技术》 *
邰清安等: "钛合金叶片流线成因分析", 《G}金属铸锻焊技术》 *
邰清安等: "锻造工艺及热处理参数对GH738合金环形锻件组织均匀性的影响", 《精密成形工程》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107127341A (zh) * 2017-04-10 2017-09-05 西安铂力特激光成形技术有限公司 一种TiAl合金零件的快速成形方法
CN110195172A (zh) * 2019-07-15 2019-09-03 哈尔滨工业大学 一种Ti2AlNb基合金材料及其制备方法
CN110195172B (zh) * 2019-07-15 2021-03-23 哈尔滨工业大学 一种Ti2AlNb基合金材料及其制备方法
CN111175127A (zh) * 2019-11-27 2020-05-19 中国航发沈阳黎明航空发动机有限责任公司 一种基于零件变形程度控制的tc4合金机匣锻件验收方法

Also Published As

Publication number Publication date
CN105466718B (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
Juechter et al. Additive manufacturing of Ti-45Al-4Nb-C by selective electron beam melting for automotive applications
Riemer et al. On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting
HE et al. Formability and microstructure of AA6061 Al alloy tube for hot metal gas forming at elevated temperature
Jiang et al. Additive manufacturing of 316L stainless steel by a printing-debinding-sintering method: effects of microstructure on fatigue property
Caiazzo et al. Experimental analysis of selective laser melting process for Ti-6Al-4V turbine blade manufacturing
CN105466718A (zh) 一种钛铝合金近净成形复杂结构件验收取样方法
Samarov et al. Fabrication of near-net-shape cost-effective titanium components by use of prealloyed powders and hot isostatic pressing
CN104550956A (zh) beta-gamma TiAl预合金粉放电等离子烧结制备构件的方法
CN110977108A (zh) 一种Ti2AlNb基合金结构件的电弧增材制造方法及其所用装置
CN111349804B (zh) 一种Ti2AlNb合金板材制备方法
EP3085472B1 (en) Method of manufacturing a turbine blisk through hot isostatic pressing using a metal core
Weigelt et al. Ceramic Processing for TRIP‐Steel/Mg‐PSZ Composite Materials for Mechanical Applications
CN102886391A (zh) 一种小口径镁合金管件的制备方法
Li et al. Grain size effect on multi-stage micro deep drawing of micro cup with domed bottom
Lin et al. Effect of yttria inclusion on room temperature tensile properties of investment cast TiAl
Zghair et al. Additive repair design approach: case study to repair aluminium base components
JP2017145501A (ja) チタン‐アルミニウム合金
Mao et al. Effect of hot isostatic pressing treatment on porosity reduction and mechanical properties enhancement of 316L stainless steel fabricated by binder jetting
Mosecker et al. Deformation mechanisms of Ti6Al4V sheet material during the incremental sheet forming with laser heating
Kolli et al. Process optimization and characterization of dense pure copper parts produced by paste-based 3D micro-extrusion
Xu et al. Hot compression bonding behavior and constitutive model of spray deposited 2195 Al-Cu-Li alloy
CN107236918B (zh) 含有细小板条状γ再结晶组织的beta-gamma TiAl合金板材的制备方法
Gül et al. The comparative study of conventional and ultra-high frequency induction sintering behavior of pure aluminum
Johnson et al. Fatigue behavior and failure mechanisms of direct laser deposited Inconel 718
CN104551571B (zh) 一种TiAl预合金粉末近等温模锻制备构件的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 110043 Dong TA street, Dadong District, Shenyang, Liaoning Province, No. 6

Patentee after: Chinese Hangfa Shenyang Liming Aero engine limited liability company

Address before: 110043 Dong TA street, Dadong District, Shenyang, Liaoning Province, No. 6

Patentee before: Liming Aeroplane Engine (Group) Co., Ltd., Shenyang City

CP01 Change in the name or title of a patent holder