CN105463269A - 高强、高耐腐蚀铸造铝合金及其压力铸造制备方法 - Google Patents

高强、高耐腐蚀铸造铝合金及其压力铸造制备方法 Download PDF

Info

Publication number
CN105463269A
CN105463269A CN201510868663.XA CN201510868663A CN105463269A CN 105463269 A CN105463269 A CN 105463269A CN 201510868663 A CN201510868663 A CN 201510868663A CN 105463269 A CN105463269 A CN 105463269A
Authority
CN
China
Prior art keywords
aluminium
alloy
master alloy
strength
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510868663.XA
Other languages
English (en)
Other versions
CN105463269B (zh
Inventor
叶兵
丁文江
鲍庆煌
蒋海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201510868663.XA priority Critical patent/CN105463269B/zh
Publication of CN105463269A publication Critical patent/CN105463269A/zh
Application granted granted Critical
Publication of CN105463269B publication Critical patent/CN105463269B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

本发明提供了一种高强、高耐腐蚀铸造铝合金及其压力铸造制备方法,所述合金由按一定重量百分比计的如下元素组成:Si,Mg,Fe,Mg,Zn,Sr,Cu,M,余量为Al,其中M为Ti,Zr,V中至少一种元素或加入RE元素。本发明的高强、高耐腐蚀铸造铝合金经压铸后,未经热处理的合金的室温抗拉强度σb≥315MPa,室温延伸率δ≥3.0%,而且具有良好的耐腐蚀性,无需时效、固溶热处理便可应用于汽车零件,满足汽车轻量化发展的需求。

Description

高强、高耐腐蚀铸造铝合金及其压力铸造制备方法
技术领域
本发明涉及一种高强、高耐腐蚀铸造铝合金及其压力铸造制备方法,属于工业用铝合金及制造领域。
背景技术
Al-Si系合金的流动性好、铸件致密、不易产生铸造裂纹,具有良好的铸造性能、抗蚀性能和中等的切削加工性能,是比较理想的铸造合金,己成为制造业中最受重视的结构材料之一。但目前铸造Al-Si合金的力学性能不尽如人意,强度和硬度一般,韧性较低。A380铝合金是美国牌号的压铸铝合金,也是最广泛使用的Al-Si系合金,其Si含量高达7.5wt%~9.5wt%,有良好的铸造性能,而高的Cu含量(3.0wt%~4.0wt%)可获得高的强度和良好的可加工性,现已被广泛应用于交通运输行业(汽车、摩托车等工业)、航天航空、电子/电器等各个领域。同时,也因为A380中Cu含量高,生成的富Cu相的标准电极电位高,在潮湿或者液体环境中易于腐蚀。A360铝合金也是使用较为广泛的Al-Si系压铸合金,跟A380相比最显著的区别是Cu含量低,最大值为0.6%,形成的富铜相比A380少很多,耐腐蚀性能也略好于A380合金,但由于其熔焊和铜焊性能差,限制了在工业生产中的应用,一般用作盖板和仪器外壳。
因此,开发研制新型能够替代部分铝合金的高强韧铸造铝合金压铸材料及其铸造工艺才是铝合金未来的发展方向
发明内容
针对现有技术中的缺陷,本发明提供一种高强度、耐腐蚀性的铸造铝合金及其压力铸造的制备方法,以解决上述问题。
本发明是通过以下技术方案实现的:
第一方面,本发明提供了一种高强、高耐腐蚀的压铸铝合金,其包括按重量百分数计的如下元素:Si7.0~15%,Mg0.2~0.6%,Mn0.2~1.0%,Zn0~1.0%,Sr0.02~0.1%,Fe0.4~1.0%,Cu0~0.5%,M0.01~1.5%,余量为Al和不可避免的杂质,其中,Al的重量分数不低于78%,M为RE或含有Ti、Zr和V中的至少一种元素的组合元素。
作为优选方案,所述RE选自Gd、La、Y、Nd、Sm、Er、Yb、Ce中的至少一种。
作为优选方案,所述组合元素中,按合金中的所有元素总量计,Ti的重量分数为0~0.5%、Zr的重量分数为0~0.5%、V的重量分数为0~0.5%。
第二方面,本发明还提供了一种如前述的高强、高耐腐蚀的压铸铝合金的制备方法,其包括如下步骤:
将铝源、镁源、锌源和含有硅、锰和锶的至少一种中间合金均去除氧化层并烘干预热至200℃;
将占铝源总质量5~15%的铝源在710~720℃下熔化成熔池后,加入剩余铝源;
待铝源全部熔化后,升温至720℃,将含铝和硅的中间合金分2~4次加入,并保持温度恒定在710~720℃;
待所述含有铝和硅的中间合金全部熔化后,升温至740℃,依次加入含有铝和锰的中间合金、含有铝和锶的中间合金、含有铝和铜的中间合金、含有铝、钛和硼的中间合金、含有铝和锆的中间合金、含有铝和钒的中间合金、含有铝和铁的中间合金及稀土中间合金,待所有中间合金都加入完毕后在740℃保温15~20分钟;
待所有中间合金都熔解完毕,将熔体温度降至695~705℃加入镁源和锌源,待所述镁源和锌源都完全熔化后,在715~725℃时加入精炼剂进行精炼,精炼后静置10~20分钟,在710~730℃撇去表面浮渣,得到铝合金熔体;
将所述铝合金熔体降温至630~680℃之间,以0.5~8m/s的速度压射到预热至240~270℃的模具中,冷却后得到所述高强、高耐腐蚀的压铸铝合金。
作为优选方案,所述含有铝和硅的中间合金为AlSi23,所述含有铝和锰的中间合金为AlMn10,所述含有铝和锶的中间合金为AlSr10、所述含有铝和铜的中间合金为AlCu50、所述含有铝、钛和硼的中间合金为AlTi5B1、所述含有铝和锆的中间合金为AlZr4、所述含有铝和钒的中间合金AlV5、所述含有铝和铁的中间合金为AlFe20,所述稀土中间合金为AlRE10中间合金。
作为优选方案,所述精炼剂的添加量为原料总重量的0.5~1.5%。
作为优选方案,所述精炼剂由按重量百分数计的如下组分组成:碳酸钙为50~70%,氯化钠为10~30%,氯化钾为10~30%。
作为优选方案,所述精炼的温度不超过730℃,搅拌时间不超过10min。
本发明中,其主要原理是对于压力铸造Al-Si系合金而言,Fe作为有害元素会在基体中形成粗大的片状和针状相,使合金的强度和塑性降低,但对于压力铸造Al-Si系合金而言,Fe含量须≥0.4wt.%以防止粘模及提高合金的高温性能,因此在合金中加入适量的Mn元素可以降低Fe对合金的有害影响,且适量的Mn也能提高合金的耐热性和致密性。发明中的合金成分去降低了Cu元素含量,即降低了Cu元素对合金耐腐蚀性能的影响,同时在Al-Si合金中加入Mg等元素,可以形成室温强化相Mg2Si,保证合金的力学性能,在压力铸造在生产过程中,不需要庞大的加工设备,可以浇注成形状复杂的零件,节约金属、降低成本以及减少工时等,提高了中间合金的市场竞争力,适合推广到规模化工业生产中。
与现有技术相比,本发明具有如下的有益效果:
1、合金原料均为纯金属和中间合金,来源广泛,整个制备过程无杂质元素渗入,制备的铝合金杂质含量极低;
2、铸造过程中精炼剂的使用可有效去除铝合金熔液中杂质,有效改善了铝合金的机械性能和耐腐蚀性能;
3、适量的RE可有效提高已有高强铝合金的性能。稀土与Al,Si,Mg等元素形成稀土化合物,大大提高了合金的室温和高温强度。使用稀土处理,细化了初晶硅和共晶硅,延伸率也得到提高。
4、本方法制备的合金材料具有高的抗拉强度,屈服强度和高的延伸率,并具有耐腐蚀性能好等特点,符合汽车铝合金零部件的使用要求,满足汽车轻量化发展的需求;
5、综上所述,采用本工艺制备的铝合金材料力学性能优异,制成的材料无气孔缺陷,且工艺简单,安全可靠,操作方便,具有较高的市场竞争力,适合推广到规模化工业生产中。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为实施例1中制备压铸铝合金铸态金相组织图;
图2为实施例2中制备压铸铝合金铸态金相组织图;
图3为实施例3中制备压铸铝合金铸态金相组织图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
一种高强、高耐腐蚀铸造铝合金的重量百分比为:按理论配比,Si12%,Mg0.4%,Mn0.5%,Zn0.5%,Sr0.04%,Cu0.25%,Ti0.3%,Zr0.3%,V0.3%,Fe0.6%,余量为Al和不可避免的杂质。
其制备方法是(1)将工业纯铝(Al:99.7wt%)、工业纯镁(Mg:99.95wt%)和工业纯锌(Zn:99.9wt%),以及中间合金AlSi23、AlMn10、AlZr4、AlTi5B1、AlV5、AlFe20、AlCu50和AlSr10分别用320目砂纸打磨去除氧化层,分别放入鼓风干燥箱中(200℃)进行烘干预热;(2)使用不锈钢坩埚进行合金铸造,使用前坩埚、扒渣工具、钟罩等表面清洗除锈涂上涂料,该涂料采用25%滑石粉和5%水玻璃再加入适量的水调和而成,再置于200℃烘箱中烘烤过夜除去水分后才能使用,将电阻加热炉温度梯度升温至720℃,将占纯铝质量10%左右的纯铝在720℃下熔化成熔池后,加入剩余纯铝;待纯铝全部熔化后,升温至720℃,将AlSi20中间合金分3次加入,并保持温度恒定在720℃;(3)待Al-Si中间合金全部熔化后,升温至740℃,依次加入Al-Mn中间合金、Al-Sr中间合金、Al-Ti-B中间合金、Al-Zr中间合金、Al-V中间合金、混合稀土中间合金及Al-Fe中间合金,待中间合金都加入完毕后在740℃保温20分钟。(4)待中间合金都熔解完毕后将熔体温度降至700℃时加入工业纯镁和工业纯锌,加入时使用铝箔包裹工业纯镁和工业纯锌并用钟罩压入铝合金熔体中,搅拌使其充分熔化;(5)待所述所有合金成分都完全熔化后,在720℃时加入精炼剂进行精炼,精炼时用钟罩将铝箔包裹的铝合金精炼剂压入铝液中水平迂回运动,精炼后静置15分钟,在720℃撇去表面浮渣,获得铝合金熔体。(6)压铸过程为将铝合金熔体降温至660℃之间,以2m/s的速度压射到预热至260℃的模具中,在空气中自然冷却,获得铝合金铸件。
将制得的压铸铝合金分别进行a.180℃、5小时的T5时效处理,25℃水冷却处理;b.200℃、200小时热暴露处理,最后可分别用于测试高强、高耐腐蚀铸造铝合金的常温和高温力学性能,此外通过在25℃下3.5wt%NaCl溶液中的失重腐蚀实验表征合金的耐腐蚀性能。
本实例中压铸铝合金的铸态室温抗拉强度为315MPa,屈服强度为190MPa,延伸率3.0%;T5态室温抗拉强度为345MPa,屈服强度为256MPa,延伸率2.0%;200℃、200小时热暴露处理后在200℃下高温拉伸抗拉强度为220MPa,屈服强度为156MPa,延伸率4.4%;此外,本实例中铝合金铸态的腐蚀速率为0.14mm/yr。
本发明中最终制备的高强、高耐腐蚀铝合金材料成分准确、无变形、缩凹、无可分辨的裂纹,微观组织分析显示合金无气孔和明显缺陷,如图1所示。因此可得出本发明得到的铝合金材料组织分布均匀,无氧化夹杂和成分偏析现象,且具有较好的力学性能和耐腐蚀性能。
实施例2
一种高强、高耐腐蚀铸造铝合金的重量百分比为:按理论配比,Si7%,Mg0.2%,Mn0.2%,Zn0%,Sr0.02%,Cu0%,Ti0.01%,Fe0.4%,余量为Al和不可避免的杂质。
其制备方法是(1)将工业纯铝(Al:99.7wt%)和工业纯镁(Mg:99.95wt%),以及中间合金AlSi23、AlMn10、AlFe20、AlTi5B1和AlSr10分别用320目砂纸打磨去除氧化层,分别放入鼓风干燥箱中(200℃)进行烘干预热;(2)使用不锈钢坩埚进行合金铸造,使用前坩埚、扒渣工具、钟罩等表面清洗除锈涂上涂料,该涂料采用25%滑石粉和5%水玻璃再加入适量的水调和而成,再置于200℃烘箱中烘烤过夜除去水分后才能使用,将电阻加热炉温度梯度升温至710℃,将占纯铝质量10%左右的纯铝在710℃下熔化成熔池后,加入剩余纯铝;待纯铝全部熔化后,升温至720℃,将AlSi20中间合金分2次加入,并保持温度恒定在710℃;(3)待Al-Si中间合金全部熔化后,升温至740℃,依次加入Al-Mn中间合金、Al-Ti中间合金、Al-Sr中间合金及Al-Fe中间合金,待中间合金都加入完毕后在740℃保温15分钟。(4)待中间合金都熔解完毕后将熔体温度降至695℃时加入工业纯镁和工业纯锌,加入时使用铝箔包裹工业纯镁并用钟罩压入铝合金熔体中,搅拌使其充分熔化;(5)待所述所有合金成分都完全熔化后,在715℃时加入精炼剂进行精炼,精炼时用钟罩将铝箔包裹的铝合金精炼剂压入铝液中水平迂回运动,精炼后静置10分钟,在710℃撇去表面浮渣,获得铝合金熔体。(6)压铸过程为将铝合金熔体降温至630℃之间,以0.5m/s的速度压射到预热至240℃的模具中,在空气中自然冷却,获得铝合金铸件。
将制得的铸造铝合金分别进行a.180℃、5小时的T5时效处理,25℃水冷却处理;b.200℃、200小时热暴露处理,最后可分别用于测试高强、高耐腐蚀铸造铝合金的常温和高温力学性能,此外通过在25℃下3.5wt%NaCl溶液中(240h处理)的失重腐蚀实验表征合金的耐腐蚀性能。
本实例中压铸铝合金的铸态室温抗拉强度为286MPa,屈服强度为165MPa,延伸率4.3%;T5态室温抗拉强度为337MPa,屈服强度为240MPa,延伸率3.2%;200℃、200小时热暴露处理后在200℃下高温拉伸抗拉强度为205MPa,屈服强度为165MPa,延伸率6.6%;此外,本实例中铝合金铸态的腐蚀速率为0.08mm/yr。
本发明中最终制备的高强、高耐腐蚀铝合金材料成分准确、无变形、缩凹、无可分辨的裂纹,微观组织分析显示合金无气孔和明显缺陷,如图2所示。因此可得出本发明得到的铝合金材料组织分布均匀,无氧化夹杂和成分偏析现象,且具有较好的力学性能和耐腐蚀性能。
实施例3
一种高强、高耐腐蚀铸造铝合金及其制备方法的重量百分比为:按理论配比,Si15%,Mg0.6%,Mn1%,Zn1%,Sr0.1%,Cu0.5%,Ti0.5%,Zr0.5%,V0.5%,Fe1%,余量为Al和不可避免的杂质。
其制备方法是(1)将工业纯铝(Al:99.7wt%)、工业纯镁(Mg:99.95wt%)和工业纯锌(Zn:99.9wt%),以及中间合金AlSi23、AlMn10、AlZr4、AlTi5B1、AlV5、AlFe20、AlCu50和AlSr10分别用320目砂纸打磨去除氧化层,分别放入鼓风干燥箱中(200℃)进行烘干预热;(2)使用不锈钢坩埚进行合金铸造,使用前坩埚、扒渣工具、钟罩等表面清洗除锈涂上涂料,该涂料采用25%滑石粉和5%水玻璃再加入适量的水调和而成,再置于200℃烘箱中烘烤过夜除去水分后才能使用,将电阻加热炉温度梯度升温至720℃,将占纯铝质量10%左右的纯铝在720℃下熔化成熔池后,加入剩余纯铝;待纯铝全部熔化后,升温至720℃,将AlSi20中间合金分4次加入,并保持温度恒定在720℃;(3)待Al-Si中间合金全部熔化后,升温至740℃,依次加入Al-Mn中间合金、Al-Sr中间合金、Al-Cu中间合金、Al-Ti-B中间合金、Al-Zr中间合金、Al-V中间合金及Al-Fe中间合金,待中间合金都加入完毕后在740℃保温20分钟。(4)待中间合金都熔解完毕后将熔体温度降至700℃时加入工业纯镁和工业纯锌,加入时使用铝箔包裹工业纯镁和工业纯锌并用钟罩压入铝合金熔体中,搅拌使其充分熔化;(5)待所述所有合金成分都完全熔化后,在725℃时加入精炼剂进行精炼,精炼时用钟罩将铝箔包裹的铝合金精炼剂压入铝液中水平迂回运动,精炼后静置20分钟,在730℃撇去表面浮渣,获得铝合金熔体。(6)压铸过程为将铝合金熔体降温至680℃之间,以8m/s的速度压射到预热至270℃的模具中,在空气中自然冷却,获得铝合金铸件。
将制得的铸造铝合金分别进行a.180℃、5小时的T5时效处理,25℃水冷却处理;b.200℃、200小时热暴露处理,最后可分别用于测试高强、高耐腐蚀铸造铝合金的常温和高温力学性能,此外通过在25℃下3.5wt%NaCl溶液中的失重腐蚀实验表征合金的耐腐蚀性能。
本实例中压铸铝合金的铸态室温抗拉强度为302MPa,屈服强度为180MPa,延伸率2.5%;T5态室温抗拉强度为330MPa,屈服强度为240MPa,延伸率1.4%;200℃、200小时热暴露处理后在200℃下高温拉伸抗拉强度为201MPa,屈服强度为150MPa,延伸率3.8%;此外,本实例中铝合金铸态的腐蚀速率为0.19mm/yr。
本发明中最终制备的高强、高耐腐蚀铝合金材料成分准确、无变形、缩凹、无可分辨的裂纹,微观组织分析显示合金无气孔和明显缺陷,如图3所示。因此可得出本发明得到的铝合金材料组织分布均匀,无氧化夹杂和成分偏析现象,且具有较好的力学性能和耐腐蚀性能。
实施例4
一种高强、高耐腐蚀铸造铝合金的重量百分比为:按理论配比,Si12%,Mg0.4%,Mn0.5%,Zn0.5%,Cu0.1%,Sr0.04%,RE0.1%,Fe0.6%,余量为Al和不可避免的杂质。
其制备方法是(1)将工业纯铝(Al:99.7wt%)、工业纯镁(Mg:99.95wt%)和工业纯锌(Zn:99.9wt%),以及中间合金AlSi23、AlMn10、AlFe20、AlCu50、AlRE10(市售混合稀土中间合金)和AlSr10分别用320目砂纸打磨去除氧化层,分别放入鼓风干燥箱中(200℃)进行烘干预热;(2)使用不锈钢坩埚进行合金铸造,使用前坩埚、扒渣工具、钟罩等表面清洗除锈涂上涂料,该涂料采用25%滑石粉和5%水玻璃再加入适量的水调和而成,再置于200℃烘箱中烘烤过夜除去水分后才能使用,将电阻加热炉温度梯度升温至720℃,将占纯铝质量10%左右的纯铝在720℃下熔化成熔池后,加入剩余纯铝;待纯铝全部熔化后,升温至720℃,将AlSi20中间合金分3次加入,并保持温度恒定在720℃;(3)待Al-Si中间合金全部熔化后,升温至740℃,依次加入Al-Mn中间合金、Al-Sr中间合金、Al-Cu中间合金、Al-RE中间合金及Al-Fe中间合金,待中间合金都加入完毕后在740℃保温20分钟。(4)待中间合金都熔解完毕后将熔体温度降至700℃时加入工业纯镁和工业纯锌,加入时使用铝箔包裹工业纯镁和工业纯锌并用钟罩压入铝合金熔体中,搅拌使其充分熔化;(5)待所述所有合金成分都完全熔化后,在720℃时加入精炼剂进行精炼,精炼时用钟罩将铝箔包裹的铝合金精炼剂压入铝液中水平迂回运动,精炼后静置15分钟,在720℃撇去表面浮渣,获得铝合金熔体。(6)压铸过程为将铝合金熔体降温至660℃之间,以4m/s的速度压射到预热至260℃的模具中,在空气中自然冷却,获得铝合金铸件。
将制得的压铸铝合金分别进行a.180℃、5小时的T5时效处理,25℃水冷却处理;b.200℃、200小时热暴露处理,最后可分别用于测试高强、高耐腐蚀铸造铝合金的常温和高温力学性能,此外通过在25℃下3.5wt%NaCl溶液中的失重腐蚀实验表征合金的耐腐蚀性能。
本实例中压铸铝合金的铸态室温抗拉强度为310MPa,屈服强度为188MPa,延伸率3.1%;T5态室温抗拉强度为338MPa,屈服强度为248MPa,延伸率2.1%;200℃、200小时热暴露处理后在200℃下高温拉伸抗拉强度为225MPa,屈服强度为160MPa,延伸率4.1%;此外,本实例中铝合金铸态的腐蚀速率为0.16mm/yr。
本发明中最终制备的高强、高耐腐蚀铝合金材料成分准确、无变形、缩凹、无可分辨的裂纹。因此可得出本发明得到的铝合金材料组织分布均匀,无氧化夹杂和成分偏析现象,且具有较好的力学性能和耐腐蚀性能。
实施例5
一种高强、高耐腐蚀铸造铝合金的重量百分比为:按理论配比,Si7%,Mg0.2%,Mn0.2%,Zn0%,Sr0.02%,Cu0%,Gd0.1%,La0.1%,Y0.02%,Fe0.4%,余量为Al和不可避免的杂质。
其制备方法是(1)将工业纯铝(Al:99.7wt%)和工业纯镁(Mg:99.95wt%),以及中间合金AlSi23、AlMn10、AlFe20、稀土中间合金和AlSr10分别用320目砂纸打磨去除氧化层,分别放入鼓风干燥箱中(200℃)进行烘干预热;(2)使用不锈钢坩埚进行合金铸造,使用前坩埚、扒渣工具、钟罩等表面清洗除锈涂上涂料,该涂料采用25%滑石粉和5%水玻璃再加入适量的水调和而成,再置于200℃烘箱中烘烤过夜除去水分后才能使用,将电阻加热炉温度梯度升温至710℃,将占纯铝质量10%左右的纯铝在710℃下熔化成熔池后,加入剩余纯铝;待纯铝全部熔化后,升温至720℃,将AlSi20中间合金分2次加入,并保持温度恒定在710℃;(3)待Al-Si中间合金全部熔化后,升温至740℃,依次加入Al-Mn中间合金、Al-Sr中间合金及Al-Fe中间合金和稀土中间合金,待中间合金都加入完毕后在740℃保温15分钟。(4)待中间合金都熔解完毕后将熔体温度降至695℃时加入工业纯镁和工业纯锌,加入时使用铝箔包裹工业纯镁并用钟罩压入铝合金熔体中,搅拌使其充分熔化;(5)待所述所有合金成分都完全熔化后,在715℃时加入精炼剂进行精炼,精炼时用钟罩将铝箔包裹的铝合金精炼剂压入铝液中水平迂回运动,精炼后静置10分钟,在710℃撇去表面浮渣,获得铝合金熔体。(6)压铸过程为将铝合金熔体降温至630℃之间,以0.8m/s的速度压射到预热至240℃的模具中,在空气中自然冷却,获得铝合金铸件。
将制得的铸造铝合金分别进行a.180℃、5小时的T5时效处理,25℃水冷却处理;b.200℃、200小时热暴露处理,最后可分别用于测试高强、高耐腐蚀铸造铝合金的常温和高温力学性能,此外通过在25℃下3.5wt%NaCl溶液中(240h处理)的失重腐蚀实验表征合金的耐腐蚀性能。
本实例中压铸铝合金的铸态室温抗拉强度为280MPa,屈服强度为158MPa,延伸率4.1%;T5态室温抗拉强度为335MPa,屈服强度为251MPa,延伸率3.4%;200℃、200小时热暴露处理后在200℃下高温拉伸抗拉强度为215MPa,屈服强度为166MPa,延伸率6.1%;此外,本实例中铝合金铸态的腐蚀速率为0.10mm/yr。
本发明中最终制备的高强、高耐腐蚀铝合金材料成分准确、无变形、缩凹、无可分辨的裂纹。因此可得出本发明得到的铝合金材料组织分布均匀,无氧化夹杂和成分偏析现象,且具有较好的力学性能和耐腐蚀性能。
实施例6
一种高强、高耐腐蚀铸造铝合金及其制备方法的重量百分比为:按理论配比,Si15%,Mg0.6%,Mn1%,Zn1%,Sr0.1%,Cu0.5%,Gd0.15%,La0.15%Y0.13%,Nd0.12%,Sm0.2%,Er0.1%,Yb0.2%,Fe1%,余量为Al和不可避免的杂质。
其制备方法是(1)将工业纯铝(Al:99.7wt%)、工业纯镁(Mg:99.95wt%)和工业纯锌(Zn:99.9wt%),以及中间合金AlSi23、AlMn10、AlCu50、AlFe20、AlCu50、稀土中间合金和AlSr10分别用320目砂纸打磨去除氧化层,分别放入鼓风干燥箱中(200℃)进行烘干预热;(2)使用不锈钢坩埚进行合金铸造,使用前坩埚、扒渣工具、钟罩等表面清洗除锈涂上涂料,该涂料采用25%滑石粉和5%水玻璃再加入适量的水调和而成,再置于200℃烘箱中烘烤过夜除去水分后才能使用,将电阻加热炉温度梯度升温至720℃,将占纯铝质量10%左右的纯铝在720℃下熔化成熔池后,加入剩余纯铝;待纯铝全部熔化后,升温至720℃,将AlSi20中间合金分4次加入,并保持温度恒定在720℃;(3)待Al-Si中间合金全部熔化后,升温至740℃,依次加入Al-Mn中间合金、Al-Sr中间合金、Al-Cu中间合金、稀土中间合金及Al-Fe中间合金,待中间合金都加入完毕后在740℃保温20分钟。(4)待中间合金都熔解完毕后将熔体温度降至700℃时加入工业纯镁和工业纯锌,加入时使用铝箔包裹工业纯镁和工业纯锌并用钟罩压入铝合金熔体中,搅拌使其充分熔化;(5)待所述所有合金成分都完全熔化后,在725℃时加入精炼剂进行精炼,精炼时用钟罩将铝箔包裹的铝合金精炼剂压入铝液中水平迂回运动,精炼后静置20分钟,在730℃撇去表面浮渣,获得铝合金熔体。(6)压铸过程为将铝合金熔体降温至680℃之间,以6m/s的速度压射到预热至270℃的模具中,在空气中自然冷却,获得铝合金铸件。
将制得的铸造铝合金分别进行a.180℃、5小时的T5时效处理,25℃水冷却处理;b.200℃、200小时热暴露处理,最后可分别用于测试高强、高耐腐蚀铸造铝合金的常温和高温力学性能,此外通过在25℃下3.5wt%NaCl溶液中的失重腐蚀实验表征合金的耐腐蚀性能。
本实例中压铸铝合金的铸态室温抗拉强度为298MPa,屈服强度为175MPa,延伸率2.7%;T5态室温抗拉强度为328MPa,屈服强度为245MPa,延伸率1.1%;200℃、200小时热暴露处理后在200℃下高温拉伸抗拉强度为200MPa,屈服强度为145MPa,延伸率3.9%;此外,本实例中铝合金铸态的腐蚀速率为0.21mm/yr。
本发明中最终制备的高强、高耐腐蚀铝合金材料成分准确、无变形、缩凹、无可分辨的裂纹。因此可得出本发明得到的铝合金材料组织分布均匀,无氧化夹杂和成分偏析现象,且具有较好的力学性能和耐腐蚀性能。
本发明制备的高强、高耐腐蚀铝合金压铸件的性能与现有的A380和A360铝合金压铸件的成分与性能对比分别如表1和表2所示。
表1
表2
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (8)

1.一种高强、高耐腐蚀的铸造铝合金,其特征在于,包括按重量百分数计的如下元素:Si7.0~15%,Mg0.2~0.6%,Mn0.2~1.0%,Zn0~1.0%,Sr0.02~0.1%,Cu0~0.5%,Fe0.4~1.0%,M0.01~1.5%,余量为Al和不可避免的杂质,其中,Al的重量分数不低于78%,M为RE或含有Ti、Zr和V中的至少一种元素的组合元素。
2.如权利要求1所述的高强、高耐腐蚀的铸造铝合金,其特征在于,所述RE选自Gd、La、Y、Nd、Sm、Er、Yb、Ce中的至少一种。
3.如权利要求1所述的高强、高耐腐蚀的压铸造铝合金,其特征在于,所述组合元素中,按合金中的所有元素总量计,Ti的重量分数为0~0.5%、Zr的重量分数为0~0.5%、V的重量分数为0~0.5%。
4.一种如权利要求1~3中任意一项所述的高强、高耐腐蚀的压铸造铝合金的制备方法,其特征在于,包括如下步骤:
将铝源、镁源、锌源和含有硅、锰和锶的至少一种中间合金均去除氧化层并烘干预热至200℃;
将占铝源总质量5~15%的铝源在710~720℃下熔化成熔池后,加入剩余铝源;
待铝源全部熔化后,升温至720℃,将含铝和硅的中间合金分2~4次加入,并保持温度恒定在710~720℃;
待所述含有铝和硅的中间合金全部熔化后,升温至740℃,依次加入含有铝和锰的中间合金、含有铝和锶的中间合金、含有铝和铜的中间合金、含有铝、钛和硼的中间合金、含有铝和锆的中间合金、含有铝和钒的中间合金、含有铝和铁的中间合金及稀土中间合金,待所有中间合金都加入完毕后在740℃保温15~20分钟;
待所有中间合金都熔解完毕,将熔体温度降至695~705℃加入镁源和锌源,待所述镁源和锌源都完全熔化后,在715~725℃时加入精炼剂进行精炼,精炼后静置10~20分钟,在710~730℃撇去表面浮渣,得到铝合金熔体;
将所述铝合金熔体降温至630~680℃之间,以0.5~8m/s的速度压射到预热至240~270℃的模具中,冷却后得到所述高强、高耐腐蚀的压铸铝合金。
5.如权利要求4中所述的高强、高耐腐蚀的铸造铝合金的制备方法,其特征在于,所述含有铝和硅的中间合金为AlSi23,所述含有铝和锰的中间合金为AlMn10,所述含有铝和锶的中间合金为AlSr10、所述含有铝和铜的中间合金为AlCu50、所述含有铝、钛和硼的中间合金为AlTi5B1、所述含有铝和锆的中间合金为AlZr4、所述含有铝和钒的中间合金AlV5、所述含有铝和铁的中间合金为AlFe20,所述稀土中间合金为AlRE10中间合金。
6.如权利要求4所述的高强、高耐腐蚀的铸造铝合金的制备方法,其特征在于,所述精炼剂的添加量为原料总重量的0.5~1.5%。
7.如权利要求4或6所述的高强、高耐腐蚀的铸造铝合金的制备方法,其特征在于,所述精炼剂由按重量百分数计的如下组分组成:碳酸钙为50~70%,氯化钠为10~30%,氯化钾为10~30%。
8.如权利要求4所述的高强、高耐腐蚀的铸造铝合金的制备方法,其特征在于,所述精炼的温度不超过730℃,搅拌时间不超过10min。
CN201510868663.XA 2015-12-01 2015-12-01 高强、高耐腐蚀铸造铝合金及其压力铸造制备方法 Active CN105463269B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510868663.XA CN105463269B (zh) 2015-12-01 2015-12-01 高强、高耐腐蚀铸造铝合金及其压力铸造制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510868663.XA CN105463269B (zh) 2015-12-01 2015-12-01 高强、高耐腐蚀铸造铝合金及其压力铸造制备方法

Publications (2)

Publication Number Publication Date
CN105463269A true CN105463269A (zh) 2016-04-06
CN105463269B CN105463269B (zh) 2018-07-03

Family

ID=55601421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510868663.XA Active CN105463269B (zh) 2015-12-01 2015-12-01 高强、高耐腐蚀铸造铝合金及其压力铸造制备方法

Country Status (1)

Country Link
CN (1) CN105463269B (zh)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106191567A (zh) * 2016-08-31 2016-12-07 清远市顺博铝合金有限公司 一种耐腐蚀压铸铝合金
CN106191568A (zh) * 2016-08-31 2016-12-07 清远市顺博铝合金有限公司 一种易阳极氧化的耐腐蚀压铸铝合金
CN106191566A (zh) * 2016-08-31 2016-12-07 清远市顺博铝合金有限公司 一种压铸铝合金
CN106244865A (zh) * 2016-08-31 2016-12-21 清远市顺博铝合金有限公司 一种表面性能良好的铝合金
CN106756286A (zh) * 2016-11-16 2017-05-31 东北大学 一种6181铝合金板材的制备方法
CN106756284A (zh) * 2016-11-16 2017-05-31 东北大学 一种6111铝合金板材的制备方法
CN106756285A (zh) * 2016-11-16 2017-05-31 东北大学 一种6022铝合金板材的制备方法
CN106756287A (zh) * 2016-11-16 2017-05-31 东北大学 一种6016铝合金板材的制备方法
CN107130152A (zh) * 2017-06-06 2017-09-05 合肥饰界金属制品有限公司 高韧性铝合金材料及其制备方法
CN107236879A (zh) * 2017-07-31 2017-10-10 江苏大学 锆锶复合微合金化和镁合金化的高硬度耐腐蚀铝硅铜系铸造铝合金及制备方法
CN107400810A (zh) * 2017-07-31 2017-11-28 江苏大学 一种Zr和Sr复合微合金化的高强韧耐腐蚀共晶Al‑Si铸造铝合金及制备方法
CN107937770A (zh) * 2017-11-23 2018-04-20 湖州亨达铝业有限公司 一种高耐腐蚀船用铝合金的制备方法
CN108048700A (zh) * 2017-12-29 2018-05-18 南昌大学 一种含镨和铈的耐腐蚀铝合金材料的制备方法
CN108070755A (zh) * 2017-12-29 2018-05-25 江西铃格有色金属加工有限公司 一种含钐和钇的耐腐蚀压铸铝合金的制备方法
CN108504910A (zh) * 2017-06-29 2018-09-07 比亚迪股份有限公司 一种铝合金及其制备方法
CN108588513A (zh) * 2018-08-10 2018-09-28 合肥工业大学 一种改性a356铝合金及其多次时效热处理方法
CN108660346A (zh) * 2018-06-11 2018-10-16 太仓鸿鑫精密压铸有限公司 压铸铝合金
CN108950268A (zh) * 2018-07-26 2018-12-07 湖北金洋资源股份公司 一种高效热传导铝合金锭生产方法
CN109022855A (zh) * 2018-07-26 2018-12-18 湖北金洋资源股份公司 一种制备高导热率铝合金锭的制备方法
CN109022856A (zh) * 2018-07-26 2018-12-18 湖北金洋资源股份公司 一种高导热率铝合金锭生产工艺
CN109136670A (zh) * 2018-08-21 2019-01-04 中南大学 一种6xxx系铝合金及其制备方法
CN109652685A (zh) * 2018-12-05 2019-04-19 华南理工大学 一种高导热高耐蚀铸造铝合金及其制备方法
CN109881056A (zh) * 2019-03-25 2019-06-14 上海永茂泰汽车零部件有限公司 一种高强韧压铸铝合金及其制备方法
CN110079711A (zh) * 2019-05-20 2019-08-02 上海交通大学 耐热高压铸造Al-Si-Ni-Cu铝合金及制备方法
CN110195175A (zh) * 2019-05-29 2019-09-03 广西平果铝合金精密铸件有限公司 一种汽车用耐腐蚀压铸铝合金及其制备方法
CN110317981A (zh) * 2018-03-28 2019-10-11 通用汽车环球科技运作有限责任公司 高强度高耐磨铸造铝合金
CN110373582A (zh) * 2019-08-26 2019-10-25 福建省鼎智新材料科技有限公司 一种铝合金超薄壁精密结构件的生产工艺
CN110453118A (zh) * 2019-09-04 2019-11-15 广东铭利达科技有限公司 一种新型压铸铝合金箱体材料及其制备工艺
CN110699577A (zh) * 2019-11-19 2020-01-17 吉林工程技术师范学院 一种高强度铝合金环锻件的制造方法
CN110952001A (zh) * 2019-12-19 2020-04-03 山东泰来铸铝科技有限公司 一种添加Mn、Zn的高强韧Al-Si-Cu-Mg铸造铝合金及其热处理方法
CN111206171A (zh) * 2020-02-21 2020-05-29 湖南工业大学 一种高强度铝合金的铸造方法
CN111485130A (zh) * 2020-04-29 2020-08-04 江苏华企铝业科技股份有限公司 Al-RE-Y合金细化剂及其连铸连轧制备方法
CN111485142A (zh) * 2019-01-25 2020-08-04 苏州慧驰轻合金精密成型科技有限公司 一种适用于手机中板的高屈服压铸合金材料及其制备方法
CN111485139A (zh) * 2020-04-29 2020-08-04 江苏华企铝业科技股份有限公司 Al-RE-Y合金及其制备方法
CN111690845A (zh) * 2019-03-13 2020-09-22 苏州慧驰轻合金精密成型科技有限公司 一种高导热高屈服手机中板用压铸合金材料及其制备方法
CN111996419A (zh) * 2020-08-25 2020-11-27 吉林大学 一种含铁亚共晶铝硅合金及其制备方法
CN112117024A (zh) * 2020-09-02 2020-12-22 江苏亨通电力电缆有限公司 轻量化耐腐蚀节能型铝导体,其制备方法以及中压电力电缆
CN112159916A (zh) * 2020-08-27 2021-01-01 比亚迪股份有限公司 一种铝合金及其应用
CN112662921A (zh) * 2020-12-04 2021-04-16 成都慧腾创智信息科技有限公司 一种高强韧压铸铝硅合金及其制备方法
CN113385854A (zh) * 2021-06-07 2021-09-14 沈阳育成鑫成果转化技术服务有限公司 一种压铸铝合金用焊丝及其制备方法
CN113462914A (zh) * 2021-07-02 2021-10-01 顺博合金江苏有限公司 耐腐蚀铝锭及其制备方法
CN113913653A (zh) * 2021-09-28 2022-01-11 一汽解放汽车有限公司 铝硅合金及其铸件和制备方法
CN113913652A (zh) * 2021-09-28 2022-01-11 一汽解放汽车有限公司 铝合金及其铸件和制备方法
CN114277271A (zh) * 2021-12-27 2022-04-05 连云港星耀材料科技有限公司 高强度复合改性铝合金制件及其制备方法
CN114411020A (zh) * 2022-01-13 2022-04-29 上海交通大学 一种非热处理强化高强高韧压铸铝硅合金及其制备方法
CN114855033A (zh) * 2022-05-20 2022-08-05 重庆渝江压铸有限公司 一种高延伸率铝合金及其制备方法
CN114855029A (zh) * 2022-04-08 2022-08-05 贵州大学 一种耐腐蚀的铸态Zn-5Al镀层材料及其制备方法
CN115044810A (zh) * 2022-06-17 2022-09-13 大连科天新材料有限公司 一种铝合金及其制备方法、汽车用材料
CN115044809A (zh) * 2022-06-17 2022-09-13 大连科天新材料有限公司 铸造铝硅合金及其制备方法和航空或汽车铸件用铝硅合金
CN115161521A (zh) * 2022-07-14 2022-10-11 山西瑞格金属新材料有限公司 一种免热处理压铸铝硅锌合金
CN115418536A (zh) * 2022-09-27 2022-12-02 杭州福贤新材料有限公司 钇锆改性的高强度耐腐蚀铝硅合金及其制备工艺
CN115418535A (zh) * 2022-08-23 2022-12-02 一汽解放汽车有限公司 铝合金材料及其制备方法和应用、铝合金制品
CN115449730A (zh) * 2022-09-06 2022-12-09 合肥通用机械研究院有限公司 一种有效降低低硅铸造铝合金腐蚀速率的方法
CN115572865A (zh) * 2022-09-27 2023-01-06 杭州福贤新材料有限公司 一种含钇抗氧化高强度铝硅合金及其制备工艺
CN116287891A (zh) * 2023-05-25 2023-06-23 小米汽车科技有限公司 一种免热处理压铸铝合金及其制备方法和应用
CN117248132A (zh) * 2023-11-17 2023-12-19 华劲新材料研究院(广州)有限公司 一种高强高导铝合金手机中板的制备工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925762A (zh) * 2012-11-05 2013-02-13 虞海香 一种高压铸造用铝合金
CN104561691A (zh) * 2015-01-26 2015-04-29 上海交通大学 高塑性铸造铝合金及其压力铸造制备方法
CN104550820A (zh) * 2013-10-09 2015-04-29 上海交通大学深圳研究院 A356铝合金高真空压铸工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925762A (zh) * 2012-11-05 2013-02-13 虞海香 一种高压铸造用铝合金
CN104550820A (zh) * 2013-10-09 2015-04-29 上海交通大学深圳研究院 A356铝合金高真空压铸工艺
CN104561691A (zh) * 2015-01-26 2015-04-29 上海交通大学 高塑性铸造铝合金及其压力铸造制备方法

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106191567A (zh) * 2016-08-31 2016-12-07 清远市顺博铝合金有限公司 一种耐腐蚀压铸铝合金
CN106191568A (zh) * 2016-08-31 2016-12-07 清远市顺博铝合金有限公司 一种易阳极氧化的耐腐蚀压铸铝合金
CN106191566A (zh) * 2016-08-31 2016-12-07 清远市顺博铝合金有限公司 一种压铸铝合金
CN106244865A (zh) * 2016-08-31 2016-12-21 清远市顺博铝合金有限公司 一种表面性能良好的铝合金
CN106756285A (zh) * 2016-11-16 2017-05-31 东北大学 一种6022铝合金板材的制备方法
CN106756284A (zh) * 2016-11-16 2017-05-31 东北大学 一种6111铝合金板材的制备方法
CN106756286A (zh) * 2016-11-16 2017-05-31 东北大学 一种6181铝合金板材的制备方法
CN106756287A (zh) * 2016-11-16 2017-05-31 东北大学 一种6016铝合金板材的制备方法
CN106756285B (zh) * 2016-11-16 2018-04-06 东北大学 一种6022铝合金板材的制备方法
CN106756286B (zh) * 2016-11-16 2018-04-06 东北大学 一种6181铝合金板材的制备方法
CN106756284B (zh) * 2016-11-16 2018-04-06 东北大学 一种6111铝合金板材的制备方法
CN106756287B (zh) * 2016-11-16 2018-04-06 东北大学 一种6016铝合金板材的制备方法
CN107130152B (zh) * 2017-06-06 2019-07-19 合肥饰界金属制品有限公司 高韧性铝合金材料及其制备方法
CN107130152A (zh) * 2017-06-06 2017-09-05 合肥饰界金属制品有限公司 高韧性铝合金材料及其制备方法
CN108504910A (zh) * 2017-06-29 2018-09-07 比亚迪股份有限公司 一种铝合金及其制备方法
US11274358B2 (en) 2017-06-29 2022-03-15 Byd Company Limited Aluminum alloy and preparation method thereof
CN107400810A (zh) * 2017-07-31 2017-11-28 江苏大学 一种Zr和Sr复合微合金化的高强韧耐腐蚀共晶Al‑Si铸造铝合金及制备方法
CN107236879A (zh) * 2017-07-31 2017-10-10 江苏大学 锆锶复合微合金化和镁合金化的高硬度耐腐蚀铝硅铜系铸造铝合金及制备方法
CN107937770A (zh) * 2017-11-23 2018-04-20 湖州亨达铝业有限公司 一种高耐腐蚀船用铝合金的制备方法
CN108048700A (zh) * 2017-12-29 2018-05-18 南昌大学 一种含镨和铈的耐腐蚀铝合金材料的制备方法
CN108070755A (zh) * 2017-12-29 2018-05-25 江西铃格有色金属加工有限公司 一种含钐和钇的耐腐蚀压铸铝合金的制备方法
CN108048700B (zh) * 2017-12-29 2020-03-27 南昌大学 一种含镨和铈的耐腐蚀铝合金材料的制备方法
CN110317981A (zh) * 2018-03-28 2019-10-11 通用汽车环球科技运作有限责任公司 高强度高耐磨铸造铝合金
CN108660346A (zh) * 2018-06-11 2018-10-16 太仓鸿鑫精密压铸有限公司 压铸铝合金
CN109022855A (zh) * 2018-07-26 2018-12-18 湖北金洋资源股份公司 一种制备高导热率铝合金锭的制备方法
CN109022856A (zh) * 2018-07-26 2018-12-18 湖北金洋资源股份公司 一种高导热率铝合金锭生产工艺
CN108950268A (zh) * 2018-07-26 2018-12-07 湖北金洋资源股份公司 一种高效热传导铝合金锭生产方法
CN108588513A (zh) * 2018-08-10 2018-09-28 合肥工业大学 一种改性a356铝合金及其多次时效热处理方法
CN109136670A (zh) * 2018-08-21 2019-01-04 中南大学 一种6xxx系铝合金及其制备方法
CN109652685A (zh) * 2018-12-05 2019-04-19 华南理工大学 一种高导热高耐蚀铸造铝合金及其制备方法
CN109652685B (zh) * 2018-12-05 2019-11-12 华南理工大学 一种高导热高耐蚀铸造铝合金及其制备方法
CN111485142A (zh) * 2019-01-25 2020-08-04 苏州慧驰轻合金精密成型科技有限公司 一种适用于手机中板的高屈服压铸合金材料及其制备方法
CN111690845A (zh) * 2019-03-13 2020-09-22 苏州慧驰轻合金精密成型科技有限公司 一种高导热高屈服手机中板用压铸合金材料及其制备方法
CN109881056A (zh) * 2019-03-25 2019-06-14 上海永茂泰汽车零部件有限公司 一种高强韧压铸铝合金及其制备方法
CN110079711A (zh) * 2019-05-20 2019-08-02 上海交通大学 耐热高压铸造Al-Si-Ni-Cu铝合金及制备方法
CN110195175A (zh) * 2019-05-29 2019-09-03 广西平果铝合金精密铸件有限公司 一种汽车用耐腐蚀压铸铝合金及其制备方法
CN110373582A (zh) * 2019-08-26 2019-10-25 福建省鼎智新材料科技有限公司 一种铝合金超薄壁精密结构件的生产工艺
CN110453118A (zh) * 2019-09-04 2019-11-15 广东铭利达科技有限公司 一种新型压铸铝合金箱体材料及其制备工艺
CN110699577A (zh) * 2019-11-19 2020-01-17 吉林工程技术师范学院 一种高强度铝合金环锻件的制造方法
CN110952001A (zh) * 2019-12-19 2020-04-03 山东泰来铸铝科技有限公司 一种添加Mn、Zn的高强韧Al-Si-Cu-Mg铸造铝合金及其热处理方法
CN111206171A (zh) * 2020-02-21 2020-05-29 湖南工业大学 一种高强度铝合金的铸造方法
CN111206171B (zh) * 2020-02-21 2021-09-07 湖南工业大学 一种高强度铝合金的铸造方法
CN111485139B (zh) * 2020-04-29 2022-04-22 江苏华企铝业科技股份有限公司 Al-RE-Y合金及其制备方法
CN111485139A (zh) * 2020-04-29 2020-08-04 江苏华企铝业科技股份有限公司 Al-RE-Y合金及其制备方法
CN111485130A (zh) * 2020-04-29 2020-08-04 江苏华企铝业科技股份有限公司 Al-RE-Y合金细化剂及其连铸连轧制备方法
CN111996419A (zh) * 2020-08-25 2020-11-27 吉林大学 一种含铁亚共晶铝硅合金及其制备方法
CN112159916B (zh) * 2020-08-27 2021-09-03 比亚迪股份有限公司 一种铝合金及其应用
CN112159916A (zh) * 2020-08-27 2021-01-01 比亚迪股份有限公司 一种铝合金及其应用
CN112117024B (zh) * 2020-09-02 2021-10-26 江苏亨通电力电缆有限公司 轻量化耐腐蚀节能型铝导体,其制备方法以及中压电力电缆
CN112117024A (zh) * 2020-09-02 2020-12-22 江苏亨通电力电缆有限公司 轻量化耐腐蚀节能型铝导体,其制备方法以及中压电力电缆
CN112662921A (zh) * 2020-12-04 2021-04-16 成都慧腾创智信息科技有限公司 一种高强韧压铸铝硅合金及其制备方法
CN113385854A (zh) * 2021-06-07 2021-09-14 沈阳育成鑫成果转化技术服务有限公司 一种压铸铝合金用焊丝及其制备方法
CN113462914A (zh) * 2021-07-02 2021-10-01 顺博合金江苏有限公司 耐腐蚀铝锭及其制备方法
CN113913653A (zh) * 2021-09-28 2022-01-11 一汽解放汽车有限公司 铝硅合金及其铸件和制备方法
CN113913652A (zh) * 2021-09-28 2022-01-11 一汽解放汽车有限公司 铝合金及其铸件和制备方法
CN114277271A (zh) * 2021-12-27 2022-04-05 连云港星耀材料科技有限公司 高强度复合改性铝合金制件及其制备方法
CN114411020B (zh) * 2022-01-13 2022-10-14 上海交通大学 一种非热处理强化高强高韧压铸铝硅合金
CN114411020A (zh) * 2022-01-13 2022-04-29 上海交通大学 一种非热处理强化高强高韧压铸铝硅合金及其制备方法
CN114855029A (zh) * 2022-04-08 2022-08-05 贵州大学 一种耐腐蚀的铸态Zn-5Al镀层材料及其制备方法
CN114855033A (zh) * 2022-05-20 2022-08-05 重庆渝江压铸有限公司 一种高延伸率铝合金及其制备方法
CN115044810A (zh) * 2022-06-17 2022-09-13 大连科天新材料有限公司 一种铝合金及其制备方法、汽车用材料
CN115044809A (zh) * 2022-06-17 2022-09-13 大连科天新材料有限公司 铸造铝硅合金及其制备方法和航空或汽车铸件用铝硅合金
CN115161521A (zh) * 2022-07-14 2022-10-11 山西瑞格金属新材料有限公司 一种免热处理压铸铝硅锌合金
CN115161521B (zh) * 2022-07-14 2023-09-08 山西瑞格金属新材料有限公司 一种免热处理压铸铝硅锌合金
CN115418535A (zh) * 2022-08-23 2022-12-02 一汽解放汽车有限公司 铝合金材料及其制备方法和应用、铝合金制品
CN115449730A (zh) * 2022-09-06 2022-12-09 合肥通用机械研究院有限公司 一种有效降低低硅铸造铝合金腐蚀速率的方法
CN115418536A (zh) * 2022-09-27 2022-12-02 杭州福贤新材料有限公司 钇锆改性的高强度耐腐蚀铝硅合金及其制备工艺
CN115572865A (zh) * 2022-09-27 2023-01-06 杭州福贤新材料有限公司 一种含钇抗氧化高强度铝硅合金及其制备工艺
CN116287891A (zh) * 2023-05-25 2023-06-23 小米汽车科技有限公司 一种免热处理压铸铝合金及其制备方法和应用
CN116287891B (zh) * 2023-05-25 2023-08-08 小米汽车科技有限公司 一种免热处理压铸铝合金及其制备方法和应用
CN117248132A (zh) * 2023-11-17 2023-12-19 华劲新材料研究院(广州)有限公司 一种高强高导铝合金手机中板的制备工艺

Also Published As

Publication number Publication date
CN105463269B (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
CN105463269A (zh) 高强、高耐腐蚀铸造铝合金及其压力铸造制备方法
CN105441737A (zh) 高强、高耐腐蚀铸造铝合金及其重力铸造制备方法
Yıldırım et al. The effects of Mg amount on the microstructure and mechanical properties of Al–Si–Mg alloys
CN110029250B (zh) 高延伸率耐热铸造铝合金及其压力铸造制备方法
CN104630578A (zh) 高塑性铸造铝合金及其重力铸造制备方法
Birol Impact of grain size on mechanical properties of AlSi7Mg0. 3 alloy
JP6376665B2 (ja) アルミニウム合金
CN108642336B (zh) 一种挤压铸造铝合金材料及其制备方法
CN104561690A (zh) 高塑性铸造铝合金及其挤压铸造制备方法
CN109972003B (zh) 适于重力铸造的高延伸率耐热铝合金及其制备方法
Seetharaman et al. Effect of erbium modification on the microstructure, mechanical and corrosion characteristics of binary Mg–Al alloys
KR20060110292A (ko) 주조용 마그네슘 합금
CN109881062B (zh) 一种高强韧高模量挤压铸造镁合金及其制备方法
JP6229130B2 (ja) 鋳造用アルミニウム合金及びそれを用いた鋳物
CN108486441B (zh) 一种砂型重力铸造铝合金材料及其制备方法
CN104561691A (zh) 高塑性铸造铝合金及其压力铸造制备方法
WO2011035652A1 (zh) Li-RE高强耐热铝合金材料及其制备方法
CN104561688A (zh) 一种耐热铸造铝合金及其重力铸造方法
CN103343272A (zh) 一种添加钙、铈的阻燃镁合金及其制备方法
CN110952002A (zh) 一种应用于5g手机中板的非热处理强化高强高韧铝合金材料及其制备方法
CN115961186A (zh) 压铸铝合金材料及其制备方法和应用
Kammer Aluminum and aluminum alloys
CN117026023A (zh) 一种免热处理高强高韧压铸铝合金及其制备方法
Mondol et al. Microstructure-strength correlations in Al-Si-Cu alloys micro-alloyed with Zr
Gökçe Metallurgical assessment of novel Mg–Sn–La alloys produced by high-pressure die casting

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant