CN105463251A - 一种稀土增强钛合金材料的制备方法 - Google Patents

一种稀土增强钛合金材料的制备方法 Download PDF

Info

Publication number
CN105463251A
CN105463251A CN201510936046.9A CN201510936046A CN105463251A CN 105463251 A CN105463251 A CN 105463251A CN 201510936046 A CN201510936046 A CN 201510936046A CN 105463251 A CN105463251 A CN 105463251A
Authority
CN
China
Prior art keywords
powder
titanium alloy
preparation
laser
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510936046.9A
Other languages
English (en)
Inventor
毛培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201510936046.9A priority Critical patent/CN105463251A/zh
Publication of CN105463251A publication Critical patent/CN105463251A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/68Cleaning or washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种稀土增强钛合金材料的制备方法,包括粉体制备、激光3D打印、真空退火和电化学抛光步骤。通过钛合金粉末原料的元素成分选择,明显改善钛合金的抗拉强度、延伸率和断面收缩率;采用球磨-烧结-再球磨的方式获得成分均匀、粒度较好的3D打印原料;将3D打印技术与真空退火相结合,改善打印后的钛合金性能;并利用电化学抛光解决了3D打印成品粗糙度较高的问题。

Description

一种稀土增强钛合金材料的制备方法
技术领域
本发明涉及钛合金材料领域,具体的说,是涉及一种稀土增强钛合金材料的制备方法。
背景技术
钛合金具有轻质、高强、耐腐蚀、无磁等诸多突出优点,在航空、航天、航海、汽车、化工、生物医学等领域具有广泛的应用。然而,钛合金与其它常用金属相比,也具有价格高、难加工等不足,特别形状复杂构件,采用去材机械加工方式不仅加工困难,而且原料浪费严重。采用铸造方法制备不仅成品率低而且铸造缺陷多且性能不高。采用锻造方法制备,只能制备形状简单以及变形量不大的构件。
3D打印技术是一种累积制造技术,即通过逐层打印的方式来构造物体。它是一种以数字模型文件为基础,运用特殊蜡材、粉末状金属或塑料等可粘合材料,通过打印一层层的粘合材料来制造三维物体。现阶段三维打印机被用来制造产品,3D打印机的原理是把数据和原料放进3D打印机中,机器会按照程序把产品一层层造出来,如此循环直至工件完成,再经过后处理得到成形制件。与传统的去除材料加工技术不同,因此又称为添加制造。
采用3D打印成型制得的材料经常由于选择的材质不同、成型时选择的粘结剂等不恰当以及工艺参数控制不好,会导致制得的坯体表面模糊、翘曲变形、尺寸变形、阶梯状表面、微细结构缺陷、破碎、错层等缺陷,这对于3D打印技术用于制造医用器件是致命的危害。虽然通过后续热处理可以一定程度上改善其性能,但由于热处理过程中容易形成粗大组织,从而降低力学性能。另外,由于激光3D打印钛合金产品的表面粗糙度较差,而很多的结构件表面粗糙度要求是很严格的,因此,产品粗糙度的问题也是目前有待进一步解决的。
发明内容
为了解决上述技术问题,本发明提供了一种稀土增强钛合金材料的制备方法,使用该方法能够获得高强度低粗糙度的3D打印钛合金材料。本发明采用的技术方案是:一种La、Nd掺杂钛合金材料的制备方法,所述方法包括以下步骤:粉体制备、激光3D打印、真空退火和电化学抛光步骤;其中,
所述激光3D打印步骤中,通过3D打印技术制备成坯件,3D打印的扫描方式采用正交扫描,激光加工参数为:激光功率200-250W,扫描速度为1250-1350mm/s,将激光打印成型的坯料超声波清洗10~15mins,在120~150℃烘干坯体。
所述粉体制备步骤的钛合金粉末原料包含以下元素组成:Al:3.00-3.50%,Co:0.05-0.10%,Zr:0.85-0.95%,Hf:0.20-0.40%,V:1.50-2.50%,Sn:0.20-0.40%,Ce:0.25-0.35%,Cr:0.10-0.20%,La:1.00-1.50%,余量为Ti,上述百分比为质量百分比。
所述粉体制备步骤为:先将钛合金粉末原料进行球磨至粒度为200目以下,然后进行烧结,烧结温度为1200-1250℃,保温时间为2-3h,得到钛合金烧结块,将所述烧结块体再次进行球磨,在200-250r/min转速下,球磨10-12小时,最后筛选出粒度为15-25μm的合金粉体,以其作为激光3D打印原料。
所述真空退火步骤中,加热温度为800-850℃,保温时间为1~2h,真空度为1.0×10-3~10-4Pa。
所述电化学抛光步骤中,采用电化学抛光进行后处理,得到表面粗糙度为0.6μm~0.7μm的成品。
所述成品的抗拉强度为800~850MPa,延伸率和断面收缩率分别为20%和18%。
优选地,所述粉体制备的钛合金粉末原料包含以下元素组成:Al:3.50%,Co:0.05%,Zr:0.85%,Hf:0.40%,V:1.50%,Sn:0.25%,Ce:0.25%,Cr:0.10%,La:1.20%,余量为Ti,上述百分比为质量百分比。
本发明的优点是:通过钛合金粉末原料的元素成分选择,明显改善钛合金的抗拉强度、延伸率和断面收缩率;采用球磨-烧结-再球磨的方式获得成分均匀、粒度较好的3D打印原料;将3D打印技术与真空退火相结合,改善打印后的钛合金性能;并利用电化学抛光解决了3D打印成品粗糙度较高的问题。
具体实施方式
下面结合实施例和对比例对本发明进一步详细说明。
实施例1:
本发明的制备方法包括以下步骤:粉体制备、激光3D打印、真空退火和电化学抛光步骤。其中,通过3D打印技术制备成坯件,采用正交扫描,激光加工参数为:激光功率200W,扫描速度为1250mm/s,将激光打印成型的坯料超声波清洗10mins,在120℃烘干坯体。采用包含以下元素组成的原料作为粉体制备步骤的钛合金粉末原料:Al:3.50%,Co:0.05%,Zr:0.85%,Hf:0.40%,V:1.50%,Sn:0.25%,Ce:0.25%,Cr:0.10%,La:1.20%,余量为Ti,上述百分比为质量百分比。先将钛合金粉末原料进行球磨至粒度为200目以下,然后进行烧结,烧结温度为1200℃,保温时间为3h,得到钛合金烧结块,将所述烧结块体再次进行球磨,在200r/min转速下,球磨10小时,最后筛选出粒度为15μm的合金粉体,以其作为激光3D打印原料。真空退火步骤加热温度为820℃,保温时间为1h,真空度为1.0×10-3Pa。采用电化学抛光进行后处理,得到表面粗糙度为0.6μm的成品。成品的抗拉强度为850MPa,延伸率和断面收缩率分别为20%和18%。
实施例2:
本发明的制备方法包括以下步骤:粉体制备、激光3D打印、真空退火和电化学抛光步骤。其中,通过3D打印技术制备成坯件,采用正交扫描,激光加工参数为:激光功率250W,扫描速度为1350mm/s,将激光打印成型的坯料超声波清洗15mins,在150℃烘干坯体。采用包含以下元素组成的原料作为粉体制备步骤的钛合金粉末原料:Al:3.00%,Co:0.10%,Zr:0.95%,Hf:0.40%,V:1.50%,Sn:0.15%,Ce:0.35%,Cr:0.20%,La:1.50%,余量为Ti,上述百分比为质量百分比。先将钛合金粉末原料进行球磨至粒度为200目以下,然后进行烧结,烧结温度为1230℃,保温时间为2.5h,得到钛合金烧结块,将所述烧结块体再次进行球磨,在250r/min转速下,球磨12小时,最后筛选出粒度为25μm的合金粉体,以其作为激光3D打印原料。真空退火步骤加热温度为830℃,保温时间为1.5h,真空度为1.0×10-4Pa。采用电化学抛光进行后处理,得到表面粗糙度为0.7μm的成品。成品的抗拉强度为830MPa,延伸率和断面收缩率分别为20%和18%。
实施例3:
本发明的制备方法包括以下步骤:粉体制备、激光3D打印、真空退火和电化学抛光步骤。其中,通过3D打印技术制备成坯件,采用正交扫描,激光加工参数为:激光功率250W,扫描速度为1300mm/s,将激光打印成型的坯料超声波清洗15mins,在130℃烘干坯体。采用包含以下元素组成的原料作为粉体制备步骤的钛合金粉末原料:Al:3.20%,Co:0.10%,Zr:0.85%,Hf:0.40%,V:1.50%,Sn:0.25%,Ce:0.50%,Cr:0.50%,La:1.00%,余量为Ti,上述百分比为质量百分比。先将钛合金粉末原料进行球磨至粒度为200目以下,然后进行烧结,烧结温度为1250℃,保温时间为3h,得到钛合金烧结块,将所述烧结块体再次进行球磨,在230r/min转速下,球磨11小时,最后筛选出粒度为20μm的合金粉体,以其作为激光3D打印原料。真空退火步骤加热温度为850℃,保温时间为2h,真空度为1.0×10-4Pa。采用电化学抛光进行后处理,得到表面粗糙度为0.7μm的成品。成品的抗拉强度为800MPa,延伸率和断面收缩率分别为20%和18%。
对比例1:
将不掺杂稀土元素Ce和La,其他元素含量与实施例1相同的钛合金粉末原料,采用同样的粉体制备、激光3D打印、真空退火和电化学抛光步骤后,所得到的钛合金产品的抗拉强度最高仅为600MPa。
对比例2:
将元素成分和含量与实施例1相同的铜合金,采用同样粉体制备、激光3D打印和电化学抛光步骤,但改变真空退火过程的工艺参数,当加热温度过高或过低时,其所得到的钛合金产品的抗拉强度最高只有500MPa,延伸率为15%。
由实施例1-3和对比例1和2可以看出,通过利用根据本发明实施例的一种稀土增强钛合金材料的制备方法,通过钛合金粉末原料的元素成分选择,明显改善钛合金的抗拉强度、延伸率和断面收缩率;采用球磨-烧结-再球磨的方式获得成分均匀、粒度较好的3D打印原料;将3D打印技术与真空退火相结合,改善打印后的钛合金性能;并利用电化学抛光解决了3D打印成品粗糙度较高的问题。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (7)

1.一种稀土增强钛合金材料的制备方法,其特征在于:所述方法包括以下步骤:粉体制备、激光3D打印、真空退火和电化学抛光步骤;
其中,所述激光3D打印步骤中,通过3D打印技术制备成坯件,3D打印的扫描方式采用正交扫描,激光加工参数为:激光功率200-250W,扫描速度为1250-1350mm/s,将激光打印成型的坯料超声波清洗10~15mins,在120~150℃烘干坯体。
2.所述粉体制备步骤的钛合金粉末原料包含以下元素组成:Al:3.00-3.50%,Co:0.05-0.10%,Zr:0.85-0.95%,Hf:0.20-0.40%,V:1.50-2.50%,Sn:0.20-0.40%,Ce:0.25-0.35%,Cr:0.10-0.20%,La:1.00-1.50%,余量为Ti,上述百分比为质量百分比。
3.根据权利要求1所述的制备方法,其特征在于:所述粉体制备步骤为:先将钛合金粉末原料进行球磨至粒度为200目以下,然后进行烧结,烧结温度为1200-1250℃,保温时间为2-3h,得到钛合金烧结块;将所述烧结块体再次进行球磨,在200-250r/min转速下,球磨10-12小时,最后筛选出粒度为15-25μm的合金粉体,以其作为激光3D打印原料。
4.根据权利要求1所述的制备方法,其特征在于:所述真空退火步骤中,所述加热温度为800-850℃,保温时间为1~2h,真空度为1.0×10-3~10-4Pa。
5.根据权利要求1所述的制备方法,其特征在于:所述电化学抛光步骤中,采用电化学抛光进行后处理,得到表面粗糙度为0.6μm~0.7μm的成品。
6.根据权利要求1至4所述的制备方法,其特征在于:所述成品的抗拉强度为800~850MPa,延伸率和断面收缩率分别为20%和18%。
7.根据权利要求1至5所述的制备方法,其特征在于:所述粉体制备的钛合金粉末原料包含以下元素组成:Al:3.50%,Co:0.05%,Zr:0.85%,Hf:0.40%,V:1.50%,Sn:0.25%,Ce:0.25%,Cr:0.10%,La:1.20%,余量为Ti。
CN201510936046.9A 2015-12-15 2015-12-15 一种稀土增强钛合金材料的制备方法 Pending CN105463251A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510936046.9A CN105463251A (zh) 2015-12-15 2015-12-15 一种稀土增强钛合金材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510936046.9A CN105463251A (zh) 2015-12-15 2015-12-15 一种稀土增强钛合金材料的制备方法

Publications (1)

Publication Number Publication Date
CN105463251A true CN105463251A (zh) 2016-04-06

Family

ID=55601403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510936046.9A Pending CN105463251A (zh) 2015-12-15 2015-12-15 一种稀土增强钛合金材料的制备方法

Country Status (1)

Country Link
CN (1) CN105463251A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106041084A (zh) * 2016-08-17 2016-10-26 西北有色金属研究院 基于电子束选区熔化技术的三维点阵材料及其制备方法
CN106361455A (zh) * 2016-10-13 2017-02-01 成都优材科技有限公司 牙科金属修复体的3d打印成型方法
CN108201473A (zh) * 2016-12-19 2018-06-26 天津市杰冠医疗科技有限公司 齿科激光熔铸齿科件的抛光方法
CN110499438A (zh) * 2019-09-30 2019-11-26 广东省航空航天装备技术研究所 材料组合物、钛合金制品及其制备方法
CN111113901A (zh) * 2020-01-03 2020-05-08 燕山大学 一种基于往复直线运动的3d打印零件内部粉末清理装置
CN115011838A (zh) * 2022-06-09 2022-09-06 北京科技大学广州新材料研究院 稀土改性钛合金及其制备方法、应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0202791A1 (en) * 1985-04-25 1986-11-26 Daido Tokushuko Kabushiki Kaisha Titanium alloys
CN101289717A (zh) * 2007-04-17 2008-10-22 李世琼 一种α+β型钛合金
CN101343705A (zh) * 2008-08-26 2009-01-14 沈阳铸造研究所 一种高硬度铸造用钛合金及制备方法
CN101514404A (zh) * 2009-04-03 2009-08-26 西北有色金属研究院 一种粉末冶金法制备合金的工艺
CN102120261A (zh) * 2011-04-20 2011-07-13 林锦新 一种制备钛制品的方法
CN104055592A (zh) * 2013-08-01 2014-09-24 广州中国科学院先进技术研究所 一种牙种植体及其3d打印制作方法
CN104259459A (zh) * 2014-09-29 2015-01-07 飞而康快速制造科技有限责任公司 一种采用选区激光熔化技术制备钛合金工艺品的方法
CN104928513A (zh) * 2015-07-09 2015-09-23 哈尔滨工业大学 一种钛合金激光3d打印改进方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0202791A1 (en) * 1985-04-25 1986-11-26 Daido Tokushuko Kabushiki Kaisha Titanium alloys
CN101289717A (zh) * 2007-04-17 2008-10-22 李世琼 一种α+β型钛合金
CN101343705A (zh) * 2008-08-26 2009-01-14 沈阳铸造研究所 一种高硬度铸造用钛合金及制备方法
CN101514404A (zh) * 2009-04-03 2009-08-26 西北有色金属研究院 一种粉末冶金法制备合金的工艺
CN102120261A (zh) * 2011-04-20 2011-07-13 林锦新 一种制备钛制品的方法
CN104055592A (zh) * 2013-08-01 2014-09-24 广州中国科学院先进技术研究所 一种牙种植体及其3d打印制作方法
CN104259459A (zh) * 2014-09-29 2015-01-07 飞而康快速制造科技有限责任公司 一种采用选区激光熔化技术制备钛合金工艺品的方法
CN104928513A (zh) * 2015-07-09 2015-09-23 哈尔滨工业大学 一种钛合金激光3d打印改进方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张喜燕等: "《钛合金及应用》", 31 March 2005 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106041084A (zh) * 2016-08-17 2016-10-26 西北有色金属研究院 基于电子束选区熔化技术的三维点阵材料及其制备方法
CN106361455A (zh) * 2016-10-13 2017-02-01 成都优材科技有限公司 牙科金属修复体的3d打印成型方法
CN108201473A (zh) * 2016-12-19 2018-06-26 天津市杰冠医疗科技有限公司 齿科激光熔铸齿科件的抛光方法
CN110499438A (zh) * 2019-09-30 2019-11-26 广东省航空航天装备技术研究所 材料组合物、钛合金制品及其制备方法
CN111113901A (zh) * 2020-01-03 2020-05-08 燕山大学 一种基于往复直线运动的3d打印零件内部粉末清理装置
CN111113901B (zh) * 2020-01-03 2021-05-25 燕山大学 一种基于往复直线运动的3d打印零件内部粉末清理装置
CN115011838A (zh) * 2022-06-09 2022-09-06 北京科技大学广州新材料研究院 稀土改性钛合金及其制备方法、应用

Similar Documents

Publication Publication Date Title
CN105463251A (zh) 一种稀土增强钛合金材料的制备方法
CN105483433A (zh) 一种稀土掺杂钛合金材料
Atzeni et al. Abrasive fluidized bed (AFB) finishing of AlSi10Mg substrates manufactured by direct metal laser sintering (DMLS)
CN105252000B (zh) 一种超高压惰性气体保护下金属粉末增材制造方法
CN101122018A (zh) 激光快速成形专用铁基粉料
CN105401038A (zh) 一种多主元合金粉末及其用于在模具钢上激光熔覆制备涂层的方法
CN110983106B (zh) 一种抑制3d打印成形tc4合金组织中针状马氏体相形成的方法
CN105463252A (zh) 一种La、Nd掺杂钛合金材料的制备方法
CN107127343A (zh) 一种镍基合金结构件的电子束增材制造方法
CN108339984A (zh) 基于丝材3d打印的铸锻件表面生长复杂结构的方法
KR101995377B1 (ko) 텅스텐-몰리브덴 합금 제조방법
CN102773479A (zh) 一种难熔金属零部件的近净成形方法
CN105642892B (zh) 激光增材制造in718合金成形固溶强化方法
CN104923727A (zh) 带有异形内孔的钛或钛合金铸件砂型铸造方法
CN107058826B (zh) 一种精密机床夹具用合金及其制备方法
CN111318692A (zh) 一种高效率生产硬质合金棒材的冷等静压成型工艺
CN110216815A (zh) 一种3D打印pvd模具及其方法
CN104014116A (zh) 高尔夫球杆头上盖的制造方法
JP2006002251A (ja) 金属がコーティングされた非晶質粉末の製造方法(MethodforManufac−turingMetal−CoatedAmorphousPowder)
CN107511485A (zh) 空心体金属零件的加工方法
CN102133698B (zh) 一种飞机金属整体结构制造方法
CN105506370A (zh) 一种Ce、Nd增强钛合金材料
CN103600087B (zh) 一种溶胶喷雾—还原法制备超细钨银复合粉末的方法
CN1060981C (zh) 缝纫机用精密中梭的制法
CN107855523A (zh) 一种钨合金零部件的快速近净成形制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160406