CN105446056A - 自动对焦装置及方法 - Google Patents

自动对焦装置及方法 Download PDF

Info

Publication number
CN105446056A
CN105446056A CN201410827420.7A CN201410827420A CN105446056A CN 105446056 A CN105446056 A CN 105446056A CN 201410827420 A CN201410827420 A CN 201410827420A CN 105446056 A CN105446056 A CN 105446056A
Authority
CN
China
Prior art keywords
frequency response
focusing
lens
response results
original image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410827420.7A
Other languages
English (en)
Other versions
CN105446056B (zh
Inventor
胡毅
王浩
王微
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Ziguang Zhanrui Communication Technology Co Ltd
Original Assignee
Beijing Spreadtrum Hi Tech Communications Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Spreadtrum Hi Tech Communications Technology Co Ltd filed Critical Beijing Spreadtrum Hi Tech Communications Technology Co Ltd
Priority to CN201410827420.7A priority Critical patent/CN105446056B/zh
Priority to US14/958,591 priority patent/US10122909B2/en
Publication of CN105446056A publication Critical patent/CN105446056A/zh
Application granted granted Critical
Publication of CN105446056B publication Critical patent/CN105446056B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

本发明涉及一种自动对焦装置及方法。所述自动对焦装置包括:透镜、透镜驱动部件及对焦控制模块,基于所述透镜对被摄体的光导可产生原始图像;所述对焦控制模块适于获取原始图像中感兴趣像素点的频率响应结果,所述透镜驱动部件适于驱动所述透镜以求得所期待的频率响应结果,并将达到所述所期待的频率响应结果时的透镜位置作为对焦位置而驱动所述透镜。本发明能够在低反差的弱纹理及弱光情况下提高被摄体的对焦准确性和对焦速度。

Description

自动对焦装置及方法
技术领域
本发明涉及成像领域,特别涉及一种自动对焦装置及自动对焦方法。
背景技术
摄像设备,比如相机及集成照相功能的手机,通常能够实施自动对焦。
自动对焦(AutoFocus)利用了被摄物体光反射的原理,被摄物体反射的光被相机等摄像设备的图像传感器(比如CCD/CMOS传感器)接受,通过计算机处理,带动电动对焦装置进行对焦。
完整的自动对焦装置可包括:至少一个成像透镜,至少一个调焦透镜,一个感光器件,一个焦距调节机构。
从基本原理来说,自动对焦方法可以分成两大类:一类是基于镜头与被拍摄目标之间距离测量的测距自动对焦,另一类是基于对焦屏上成像清晰的聚焦检测自动对焦,也即主动式对焦方法及被动式对焦方法。
主动式对焦方法的对焦方式如下:
摄像设备上具有的红外线发生器(或超声波发生器),红外线发生器(或超声波发生器)发出红外光(或超声波)到被摄体;
摄像设备上的接受器接受反射回来的红外光(或超声波)进行对焦,其光学原理类似三角测距对焦法,可用于低档普及型相机(比如各种平视取景相机)的自动对焦。
主动式对焦方法的缺点如下:
由于发出的红外光或超声波可能会被反射到其它方向,或达不到被摄体,摄像设备上接收器接受的光波有限,特别是对斜面或光滑面,对焦效果比较差,对于亮度大且距离远的被摄体也会发生对焦困难的问题;主动式对焦方法在摄像设备主动发出光波的情况下,还可能存在光波的低反差,导致弱光线下对焦的问题,在对细线条的被摄体及运动的被摄体进行对焦时还会发生被摄体能吸收光波的情况,另外,光波在透过玻璃时会被玻璃反射,因而透过玻璃对被摄体进行对焦会发生困难。
被动式对焦方法的对焦方式如下:
直接接收分析来自被摄物体自身的反光,从而自动对焦。
被动式自动对焦方法相较于主动式自动对焦的优点是:自身不要发射系统,因而耗能少,有利于小型化,可适用于手机等小型手持设备;对具有一定亮度的被摄体能较为理想地进行自动对焦,在逆光下也能良好的对焦,对远处亮度大的物体能自动对焦,也能透过玻璃对焦,且上述对焦效果较为良好。
被动式自动对焦方法有其自身缺点:
对细线条且仅具有弱纹理的被摄体无法进行良好对焦,容易造成对焦错误及对焦时间过长;在低反差及弱光情况下,对焦性能也无法达到良好;此外,对运动的被摄体、含偏光的被摄体、黑色被摄体或具有镜面的被摄体,都无法准确对焦。
现有技术的对焦系统及对焦方法都无法获取较佳的对焦效果,从而影响摄像设备的成像性能。
发明内容
本发明技术方案所解决的技术问题为,如何在低反差纹理及弱光情况下提高被摄体的对焦准确性。
为了解决上述技术问题,本发明技术方案提供了一种自动对焦装置,包括:透镜、透镜驱动部件及对焦控制模块,基于所述透镜对被摄体的光导可产生原始图像;
所述对焦控制模块适于获取原始图像中感兴趣像素点的频率响应结果,所述透镜驱动部件适于驱动所述透镜以求得所期待的频率响应结果,并将达到所述所期待的频率响应结果时的透镜位置作为对焦位置而驱动所述透镜。
可选的,所述频率响应结果为各感兴趣像素点图像数据的频率响应值之和。
可选的,所述频率响应结果为各感兴趣像素点图像数据的频率响应值之均值。
可选的,所述对焦控制模块包括滤波单元,所述滤波单元适于对所述感兴趣像素点图像数据依据如下滤波函数表达式进行处理以获取所述感兴趣像素点图像数据频率响应值:
H ( z ) = b 1 + b 2 z - 1 + . . . + b m + 1 z - m a 1 + a 2 z - 1 + . . . + a n + 1 z - n
其中,m、n为所述滤波单元的阶数,a1至an+1、b1至bm+1为所述滤波单元的可调参数,所述可调参数与历史原始图像有关。
可选的,所述滤波单元为四阶滤波器。
可选的,所述可调参数基于若干历史原始图像的频率响应曲线而定,所述历史原始图像至少包括一幅正确对焦位置图像及一幅非正确对焦位置图像。
可选的,基于各历史原始图像的频率响应曲线确定所述滤波单元通带及阻带的频率,从而生成所述可调参数。
可选的,所述滤波单元为带通滤波器或高通滤波器。
可选的,所述对焦控制模块还包括:统计单元;所述统计单元适于根据所述感兴趣像素点图像数据频率响应值输出所述频率响应结果。
可选的,所述装置还包括:对焦位置搜索模块:所述对焦位置搜索模块适于在所述透镜驱动部件驱动所述透镜的过程中不断获得所述频率响应结果,搜索透镜位置与所述频率响应结果的对应关系,并基于所述对应关系识别出所述所期待的频率响应结果。
可选的,所述对焦位置搜索模块集成于所述对焦控制模块。
可选的,所述装置还包括:图像传感模块;
所述图像传感模块适于接收来自透镜对被摄体的光导而产生图像信号,所述原始图像基于所述图像信号被产生。
可选的,所述图像传感模块由作为摄像元件的C-MOS传感器构成。
为了解决上述技术问题,本发明技术方案还提供了一种自动对焦方法,适用于具有透镜的成像设备,包括:
基于所述透镜对被摄体的光导输入原始图像;
获取所述原始图像中感兴趣像素点的频率响应结果;
驱动所述透镜以求得所期待的频率响应结果,并将达到所述所期待的频率响应结果时的透镜位置作为对焦位置而驱动所述透镜。
可选的,所述驱动所述透镜以求得所期待的频率响应结果包括:
在驱动所述透镜的过程中不断获得所述频率响应结果,搜索透镜位置与所述频率响应结果的对应关系;
基于所述对应关系识别出所述所期待的频率响应结果。
本发明技术方案的有益效果至少包括:
本发明技术方案提供了一种新的自动对焦装置,其不同于现有对焦控制模块的对焦机制,使用原始图像中感兴趣像素点的频率响应结果作为对焦统计值,所述频率响应结果可用于筛选图像所需频率段的信息,故而可用于识别透镜被驱动时所产生的多个原始图像,基于所期待的频率响应结果获得最终的筛选图像,从而获得准确的对焦位置。
不同于现有技术的对焦装置,本发明技术方案提供的自动对焦装置能够为自动对焦过程配置更稳定的对焦统计信息,也即所述频率响应结果,从图像数据的频域上对图像的有效数据进行处理,受外界光线等因素的影响较小,对焦控制模块本身就能够滤除图像噪声,能够提取精确的对焦统计数据,获得更良好的对焦结果。
本发明技术方案提供的自动对焦方法可以提升自动对焦装置在低照度下的对焦速度和准确性,也可以解决拍摄目标为弱纹理情况下无法对焦或对焦时间长的问题。
本发明技术方案可使用滤波单元实现对焦控制模块,可根据历史图像对焦的情况对滤波单元的可调参数作灵活的配置,使滤波单元以相同的硬件结构形式,而实现不同的通带功能(带通或高通),从而可对原始图像数据作不同的滤波处理,使原始图像数据依据历史对焦情况产生更有利于校正对焦准确度的频率响应结果,从而获得更好的图像降噪效果及更有效的图像频率信息。
基于本发明技术方案对焦控制模块(滤波单元)参数调节的灵活性,可进一步有利于对弱纹理目标进行对焦的准确性,且减少由于对焦位置不能快速收敛而造成的图像抖动,在弱光下对焦也更为稳定,对焦过程在整体上收敛速度更快,对焦整体的耗时得以显著减少。
附图说明
图1为本发明技术方案提供的一种摄像设备的结构示意图;
图2为本发明技术方案所提供摄像设备中镜头系统及摄像主体装置的具体结构的示意图;
图3为本发明技术方案提供的一种自动对焦装置的结构示意图;
图4为本发明技术方案提供的一种滤波单元的具体实现结构示意图;
图5为本发明技术方案提供的一种采用历史原始图像的频率响应曲线来获得滤波单元通带及阻带的频率过程示意图;
图6为本发明技术方案提供的一种实例下输出对焦统计曲线的结构示意图;
图7为本发明技术方案提供的另一种自动对焦装置的结构示意图;
图8为本发明技术方案提供的又一种自动对焦装置的结构示意图;
图9为本发明技术方案提供的再一种自动对焦装置的结构示意图;
图10为本发明技术方案提供的一种自动对焦方法的流程示意图。
具体实施方式
为了使本发明的目的、特征和效果能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的方式来实施,因此本发明不受下面公开的具体实施例的限制。
本发明技术方案描述的自动对焦装置及自动对焦方法可用于实现于如下摄像设备。
参考图1,摄像设备1可以是一种手机摄像头模组或相机,其包括镜头系统(LensSystem)10及摄像主体装置20,其中,摄像主体装置20可基于镜头系统10的光导获得被摄体的图像数据。
结合图2,镜头系统10中配置有包括由光轴L上多个摄影透镜的透镜组11及透镜驱动部件12,所述多个摄影透镜包括用于实现对焦控制的透镜(以下称为对焦透镜),透镜驱动部件12包括语音线圈(VoiceCoil)13及弹簧14。其中,语音线圈13可被对焦信号(对焦电压或对焦电流)驱动,能通过自身旋转从而带动镜头系统中的透镜沿光轴L移动以发生透镜之间物理位置的改变;语音线圈13与弹簧14的配合,可使透镜驱动部件12完成由所述对焦信号精确控制透镜组物理位置的动作。所述控制透镜组透镜物理位置的改变可以仅对对焦透镜进行物理位置的改变。
继续参考图1及图2,摄像主体装置20中包括取景器(LVF,LiveViewFinder)21及图像传感器22(ImageSensor,可以用C-MOS传感器实现),通过镜头系统10的透镜组11可将来自被摄体的光导向图像传感器22,从而可以获得关于被摄体的原始图像信号。通过图像传感器22获得的原始图像信号可生成用于记录的原始图像,所述原始图像适用于自动对焦,为本发明技术方案所述的原始图像。
实施例一
如图3所示的一种自动对焦装置a1,适于摄像设备(结构类似摄像设备1),包括:透镜101、透镜驱动部件102及对焦控制模块103。
透镜101设于镜头系统10内,泛指摄像设备1在同一光轴L上的多个透镜,透镜101中包括用于实现自动对焦控制的透镜,也称为对焦透镜。对焦透镜可沿透镜的光轴前后移动,通过透镜驱动部件102对与对焦结果有关的信号(即所述对焦信号)所作的响应而被驱动,从而移动对焦透镜,变化透镜位置,透镜位置可通过自动对焦装置内或外的透镜位置检测件进行检测,有利于后续对焦透镜的再次驱动。基于透镜100对被摄体的光导可产生所述原始图像。
继续参考图3所示的自动对焦装置,
对焦控制模块103适于获取原始图像中感兴趣像素点的频率响应结果。
对焦控制模块103能够从频域角度去筛选原始图像中感兴趣像素点图像数据(可以是像素值)的有效频率段信息,对弱纹理和弱光情况下导致的频率段图像噪声进行滤除,从而输出有效频率段的图像信息。
所述感兴趣像素点的选取可以是任意的,也可以基于被摄体对象区域所选定的若干个像素点的集合区域。
具体的,在对焦控制模块103中获取所述频率响应结果可以依据如下过程执行:
求取所述原始图像的频率响应值,所述频率响应值可以是图像在频域上幅度谱的数据表达;
基于滤波器的通带特性选取原始图像的有效频率段,并输出有效频率段的频率响应值;
根据所述感兴趣像素点对应的频率响应值输出所述频率响应结果。
所述频率响应结果在本实施例为一个有关对焦情况的评价值,也即用于评价在某一透镜位置下,所形成的原始图像是否具有良好的对焦性能,符合可接受的对焦准确的要求。
所述频率响应结果仅是基于在某一透镜位置下,原始图像感兴趣像素点对应的频率响应值情况是否具备可接受的对焦准确的要求,因而频率响应结果可以用于反映所述感兴趣像素点的频率响应值的输出情况即可,本实施例不限定二者进一步的演算关系,但可给出以下两种较为简单的演算关系以供参考:
所述频率响应结果可为各感兴趣像素点图像数据的频率响应值之和;
所述频率响应结果也可为各感兴趣像素点图像数据的频率响应值之均值。
无论是各感兴趣像素点图像数据的频率响应值之和还是之均值,感兴趣像素点的频率响应值与最终用于评价对焦准确性的所述频率响应结果符合唯一对应的关系,故而,只要二者的演算关系能够基于感兴趣像素点对应的频率响应值输出演算关系下唯一映射的频率响应结果即可。
在其他实施例中,对焦控制模块103获取所述频率响应结果还可以基于如下过程执行,即直接获取感兴趣像素点的频率响应值,而非先获取原始图像像素点的频率响应值,再从中选择感兴趣像素点的频率响应值部分:
求取原始图像感兴趣像素点的频率响应值,所述频率响应值可以是感兴趣像素点在频域上幅度谱的数据表达;
基于滤波器的通带特性选取感兴趣像素点的有效频率段,并输出有效频率段的频率响应值;
根据所述感兴趣像素点对应的频率响应值输出所述频率响应结果。
在本实施例中,可以在对焦控制模块103中设置一个滤波单元来实现上述像素点的频率响应过程:所述滤波单元适于对所述图像或感兴趣像素点图像数据依据如下滤波函数表达式进行处理以获取像素点图像数据频率响应值:
H ( z ) = b 1 + b 2 z - 1 + . . . + b m + 1 z - m a 1 + a 2 z - 1 + . . . + a n + 1 z - n
其中,m、n为所述滤波单元的阶数,a1至an+1、b1至bm+1为所述滤波单元的可调参数。
所述滤波单元使用双二阶滤波器(dualbiquadfilter)形式的IIR滤波器来实现,即为四阶滤波器,m及n的具体取值可为4。
图4示意了一种利用MATLAB工具设计的通用双二阶滤波器形式IIR滤波器的具体实现结构,其包括:
信号求和(SUM)模块、信号截断(CLIP)模块、信号延迟(Z-1)模块及可调式信号增益模块(GAIN),包含可调增益系数为c0~c10,调整增益系数c0~c10模块与可调参数a1至an+1、b1至bm+1是等效的,即已确定的可调参数a1至an+1、b1至bm+1的数值,则确定调整系数c0~c10的数值;或者,已确定调整系数c0~c10的数值,则确定可调参数a1至an+1、b1至bm+1的数值。
在使用MATLAB工具时,可利用滤波器的设计工具箱支持所述IIR滤波器性能设计及参数生成,可通过调整系数c0-c10来改变滤波器通带频率及截止频率,c0~c10参数具体设计方式可参考MATLAB工具常规所使用的滤波器设计方法来进行设计。
无论是对可调参数a1至an+1、b1至bm+1的数值确定,还是对c0~c10参数的设计,其都是与原始图像的频率响应情况相关的。原始图像的频率响应情况则与所述图像传感器22相关,考虑到所述原始图像的产生基于图像传感器接收的光导而输出的图像信号,本实施例利用摄像设备基于图像传感器获得的图像信号而记录的原始图像数据,来获得原始图像数据的频率响应情况,从而确定在对焦控制模块103中像素点频率响应值所依据的滤波参数。
上述摄像设备基于图像传感器获得图像信号而记录的原始图像也可以称之为历史原始图像。
基于历史原始图像而确定的滤波参数,主要涉及滤波单元通带及阻带的频率:
要确定滤波单元通带及阻带的频率实际是为了获得有效频率段的范围,所谓有效频率段实际是本发明技术方案可评价对焦准确度的一个指标,像素点有效频率段的信息量情况可有助于反映对焦统计,且有效频率段本身滤除了图像噪声频段及其他无效频段信息,有助于对焦准确度及对焦效率。
本实施例具体采用历史原始图像的频率响应曲线来获得滤波单元通带及阻带的频率,所采用的历史原始图像至少包括一幅正确对焦位置图像及一幅非正确对焦位置图像,结合图5,以仅使用两张图像来确定滤波单元通带及阻带的频率为例,其获取过程如下:
输入来自图像传感器22的图像数据(图像信号,也即摄像设备所记录的原始图像、或历史原始图像);
使用已认定为正确对焦位置所产生的第一图像及已认定为最为模糊对焦位置所产生的第二图像;
对第一图像及第二图像分别作二维快速傅里叶变换,将第一图像及第二图像转化至频域;
取第一图像及第二图像二维傅立叶变换结果矩阵的对角线上数据,作为所述第一图像及第二图像图频率响应曲线,将第一图像及第二图像的频率响应曲线绘制在一起;
基于上述频率响应曲线,可通过分析第一图像及第二图像频率响应的不同确定滤波器通带及阻带的频率;
最后使用典型的滤波器设计方法(巴特沃斯滤波器设计/其他,可用MATLAB工具箱实现)来生成所需阶数的滤波器系数(可以是上述可调参数或调整系数)。
在其他实施例中,可依照上述获取过程的方法进行扩展:如可使用多张图像,也可以添加其他类型的参考图像进行输入,上述图像均可体现对焦正确位置上的图像情况及对焦模糊位置上的图像情况。获得输入图像后,对各张图像分别做二维快速傅立叶变换,将图像转换到频域;取一幅图像二维傅立叶变换结果矩阵的对角线上数据,作为该幅图像频率响应曲线,将多张图的频率响应曲线绘制在一起;通过分析各张图频率响应的不同就可以确定滤波器通带阻带的频率;最后使用典型的滤波器设计方法来生成所需阶数的滤波器系数。
依据本实施例获取上述滤波器参数的系数特性,适用于本实施例的滤波器为带通滤波器或高通滤波器。
本实施例所述的滤波单元使用所述双二阶滤波器形式的IIR滤波器来实现,结合图4可见滤波单元有两个输出,即第一级二阶滤波器的第一输出端及第二级二阶滤波器的第二输出端,本实施例使用第二输出端作为所述滤波单元的输出端,也即输出所述像素点图像数据的频率响应值。但是在其他实施例中,根据不同滤波函数表达式,也可以使用第一输出端作为所述滤波单元的输出端,也即根据选择参数的不同,使滤波单元的输出端在第一输出端及第二输出端之间进行切换。
在透镜驱动部件102驱动对焦透镜的过程中,透镜位置被不断变化,透镜101中多个透镜之间的位置也得到改变,从而图像传感器22持续接收来自被摄体的光中来自相关透镜光导,获得持续不同的图像信号,故而产生用于记录的多个原始图像。
本实施例中,对焦控制模块103最终将多个原始图像中感兴趣点的频率响应值之和(在其他实施例中还可以使用频率响应值之均值或其他具有唯一函数关系的处理方式,作为所述频率响应结果)作为最终的频率响应结果输出,各原始图像对应的频率响应结果为对焦统计信息,用于对焦评价,对焦统计信息,也即各图的频率响应结果,可用对焦统计曲线(FV曲线)的方式进行直观示意。
图6给出了本实施例一种对焦情况下输出的对焦统计曲线的示意图,其中,横坐标为透镜驱动部件102驱动下对焦位置变化(或理解为对焦透镜位置变化)情况(单位,mm),纵坐标为某对焦位置下产生的原始图像上感兴趣像素点的频率响应值之和(单位,无,可理解为是标量,纵坐标的数值之间以数据量为比较)。
基于图6可知,能够从对焦统计曲线,也即各原始图像对应频率响应结果中搜索到所期待的频率响应结果,基于该对焦统计曲线而言,所述所期待的频率响应结果可为所述对焦统计曲线的全局最大值。该所期待的频率响应结果所对应的透镜位置即为最终所认定的对焦位置。透镜驱动部件102接收根据所认定的对焦位置而发出的所述对焦信号,从而驱动对焦透镜,完成对焦。在图6中,对焦统计曲线上,点o对应的横坐标值17mm为所述对焦位置。
本实施例的自动对焦装置使用滤波器单元实现对焦控制模块103,采用滤波单元的带通及高通特性,直接生成自动对焦统计信息,可以提升自动对焦系统在低照度下的对焦速度和准确性,也可以解决拍摄目标为弱纹理情况下无法对焦或对焦时间长的问题。
从图6生成的对焦统计曲线来看,本实施例自动对焦装置产生的对焦统计曲线具备良好的稳定性,基本不存在曲线抖动的情况,并且曲线本身的陡峭程度更适于弱纹理被摄体的对焦,使对焦位置更容易被搜索获取。
本实施例的滤波单元的滤波系数(可调参数及调整系数)还可以针对不同的图像传感器及历史原始图像的对焦情况进行优化,使滤波单元通带频率的选择更具有灵活性,能够大大提升对焦装置的对焦准确性及适应性。
本实施例透镜驱动部件102的结构和透镜驱动部件12是一致的。
实施例二
如图7所示的一种自动对焦装置a2,不同于实施例一,对焦控制模块103’还包括:统计单元;所述统计单元适于根据所述感兴趣像素点图像数据频率响应值输出所述频率响应结果。
所述统计单元输出的是原始图像上感兴趣像素点的频率响应值与其对应频率响应结果的一一对应关系,所述对应关系的不同的函数映射下可以为多种,比如实施例一所涉及的求和或求均值。
统计单元对于一次对焦过程来说,其输出的频率响应结果可以以实施例一所述的对焦统计曲线的形式输出。
实施例三
如图8所示的一种自动对焦装置a3,不同于实施例一,还包括:对焦位置搜索模块104。
对焦位置搜索模块104适于在所述透镜驱动部件102驱动所述对焦透镜的过程中不断获得对焦控制模块103输出的频率响应结果,搜索透镜位置与所述频率响应结果的对应关系,并基于所述对应关系识别出所述所期待的频率响应结果。
对应于实施例一的对焦统计曲线,对焦位置搜索模块104识别所期待的频率响应结果的过程就是求取对焦统计曲线全局最大值的过程,将全局最大值对应的对焦位置输出,则可发出相应信号至透镜驱动部件102,使透镜驱动部件102驱动对焦透镜至所述对焦位置。
在其他实施例中,对焦位置搜索模块104还可以集成于对焦控制模块103。
实施例四
本实施例不同于实施例一,其给出了一种并行处理原始图像感兴趣像素点图像数据的方法,其中,感兴趣像素点数据是以对焦检测窗的形式采集的,假设对焦检测窗所采集的原始图像感兴趣像素点是以n×m大小获取的,n、m为大于或等于1的自然数。本实施例的自动对焦装置的对焦控制模块可使用n个滤波单元并行处理对焦检测窗列上的m个感兴趣像素点,或者,对焦控制模块使用了m个滤波单元并行处理对焦检测窗行上的n个感兴趣像素点。图9示意了对焦检测窗可捕捉3×3原始图像像素点的一种情况,自动对焦装置a4的对焦控制模块103”包括3个可用于并行计算3行像素点频率响应值的滤波单元,每一个滤波单元适于处理一行输入的像素点,各滤波单元的输出则一同被统计,以输出所述频率响应结果。
实施例五
本实施例基于实施例一至四任一种自动对焦装置,提供了一种自动对焦方法,如图10所示,包括如下步骤:
步骤S100,基于所述透镜对被摄体的光导输入原始图像;
步骤S101,获取所述原始图像中感兴趣像素点的频率响应结果;
步骤S102,驱动所述透镜以求得所期待的频率响应结果,并将达到所述所期待的频率响应结果时的透镜位置作为对焦位置而驱动所述透镜。
其中,步骤S101的获取方式可使用实施例一至实施例四中任一种对焦控制单元内公开的方式进行实现,步骤S103的透镜驱动及统计、搜索频率响应结果过程,也可参考上述实施例的相关内容。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (20)

1.一种自动对焦装置,其特征在于,包括:透镜、透镜驱动部件及对焦控制模块,基于所述透镜对被摄体的光导可产生原始图像;
所述对焦控制模块适于获取原始图像中感兴趣像素点的频率响应结果,所述透镜驱动部件适于驱动所述透镜以求得所期待的频率响应结果,并将达到所述所期待的频率响应结果时的透镜位置作为对焦位置而驱动所述透镜。
2.如权利要求1所述的装置,其特征在于,所述频率响应结果为各感兴趣像素点图像数据的频率响应值之和。
3.如权利要求1所述的装置,其特征在于,所述频率响应结果为各感兴趣像素点图像数据的频率响应值之均值。
4.如权利要求2或3所述的装置,其特征在于,所述对焦控制模块包括滤波单元,所述滤波单元适于对所述感兴趣像素点图像数据依据如下滤波函数表达式进行处理以获取所述感兴趣像素点图像数据频率响应值:
H ( z ) = b 1 + b 2 z - 1 + . . . + b m + 1 z - m a 1 + a 2 z - 1 + . . . + a n + 1 z - n
其中,m、n为所述滤波单元的阶数,a1至an+1、b1至bm+1为所述滤波单元的可调参数,所述可调参数与历史原始图像有关。
5.如权利要求4所述的装置,其特征在于,所述滤波单元为四阶滤波器。
6.如权利要求4所述的装置,其特征在于,所述可调参数基于若干历史原始图像的频率响应曲线而定,所述历史原始图像至少包括一幅正确对焦位置图像及一幅非正确对焦位置图像。
7.如权利要求6所述的装置,其特征在于,基于各历史原始图像的频率响应曲线确定所述滤波单元通带及阻带的频率,从而生成所述可调参数。
8.如权利要求4所述的装置,其特征在于,所述滤波单元为带通滤波器或高通滤波器。
9.如权利要求4所述的装置,其特征在于,所述对焦控制模块还包括:统计单元;所述统计单元适于根据所述感兴趣像素点图像数据频率响应值输出所述频率响应结果。
10.如权利要求1所述的装置,其特征在于,还包括:对焦位置搜索模块:所述对焦位置搜索模块适于在所述透镜驱动部件驱动所述透镜的过程中不断获得所述频率响应结果,搜索透镜位置与所述频率响应结果的对应关系,并基于所述对应关系识别出所述所期待的频率响应结果。
11.如权利要求10所述的装置,其特征在于,所述对焦位置搜索模块集成于所述对焦控制模块。
12.如权利要求1所述的装置,其特征在于,还包括;图像传感模块;
所述图像传感模块适于接收来自透镜对被摄体的光导而产生图像信号,所述原始图像基于所述图像信号被产生。
13.如权利要求12所述的装置,其特征在于,所述图像传感模块由作为摄像元件的C-MOS传感器构成。
14.一种自动对焦方法,适用于具有透镜的成像设备,其特征在于,包括;
基于所述透镜对被摄体的光导输入原始图像;
获取所述原始图像中感兴趣像素点的频率响应结果;
驱动所述透镜以求得所期待的频率响应结果,并将达到所述所期待的频率响应结果时的透镜位置作为对焦位置而驱动所述透镜。
15.如权利要求14所述的方法,其特征在于,所述频率响应结果为各感兴趣像素点图像数据的频率响应值之和。
16.如权利要求14所述的方法,其特征在于,所述频率响应结果为各感兴趣像素点图像数据的频率响应值之均值。
17.如权利要求15或16所述的方法,其特征在于,所述获取所述原始图像中感兴趣像素点图像数据的频率响应结果包括:
对所述感兴趣像素点图像数据依据如下滤波函数表达式进行处理以获取所述感兴趣像素点图像数据频率响应值:
H ( z ) = b 1 + b 2 z - 1 + . . . + b m + 1 z - m a 1 + a 2 z - 1 + . . . + a n + 1 z - n
其中,m、n为所述滤波单元的阶数,a1至an+1、b1至bm+1为所述滤波单元的可调参数,所述可调参数与历史原始图像有关。
18.如权利要求17所述的方法,其特征在于,所述可调参数基于若干历史原始图像的频率响应曲线而定,所述历史原始图像至少包括一幅正确对焦位置图像及一幅非正确对焦位置图像;基于各历史原始图像的频率响应曲线确定所述滤波单元通带及阻带的频率,从而生成所述可调参数。
19.如权利要求17所述的方法,其特征在于,所述滤波函数为带通滤波函数或高通滤波函数。
20.如权利要求14所述的方法,其特征在于,所述驱动所述透镜以求得所期待的频率响应结果包括:
在驱动所述透镜的过程中不断获得所述频率响应结果,搜索透镜位置与所述频率响应结果的对应关系;
基于所述对应关系识别出所述所期待的频率响应结果。
CN201410827420.7A 2014-12-25 2014-12-25 自动对焦装置及方法 Active CN105446056B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201410827420.7A CN105446056B (zh) 2014-12-25 2014-12-25 自动对焦装置及方法
US14/958,591 US10122909B2 (en) 2014-12-25 2015-12-03 Auto-focus apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410827420.7A CN105446056B (zh) 2014-12-25 2014-12-25 自动对焦装置及方法

Publications (2)

Publication Number Publication Date
CN105446056A true CN105446056A (zh) 2016-03-30
CN105446056B CN105446056B (zh) 2018-08-10

Family

ID=55556416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410827420.7A Active CN105446056B (zh) 2014-12-25 2014-12-25 自动对焦装置及方法

Country Status (2)

Country Link
US (1) US10122909B2 (zh)
CN (1) CN105446056B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686313A (zh) * 2017-01-18 2017-05-17 广东欧珀移动通信有限公司 控制方法、控制装置和电子装置
CN107613216A (zh) * 2017-10-31 2018-01-19 广东欧珀移动通信有限公司 对焦方法、装置、计算机可读存储介质和电子设备
CN111294504A (zh) * 2018-12-20 2020-06-16 展讯通信(上海)有限公司 一种反差对焦过程中对比度反差值的计算方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI768126B (zh) * 2018-09-21 2022-06-21 先進光電科技股份有限公司 光學成像模組、成像系統及光學成像模組製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098405A (zh) * 2006-06-30 2008-01-02 索尼株式会社 自聚焦装置、图像捕获装置和自聚焦方法
US20080012977A1 (en) * 2006-06-30 2008-01-17 Yujiro Ito Auto-focus apparatus, image capture apparatus, and auto-focus method
US20080131109A1 (en) * 2005-02-07 2008-06-05 Kenichi Honjo Imaging Device
US20090047010A1 (en) * 2007-07-31 2009-02-19 Akihiro Yoshida Imaging device and imaging method
JP2009260724A (ja) * 2008-04-17 2009-11-05 Sony Corp 画像処理装置、撮像装置、画像処理方法、及びプログラム
CN102708564A (zh) * 2012-05-04 2012-10-03 哈尔滨工业大学 基于小波包变换的红外显微图像聚焦评价方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475429A (en) * 1991-07-25 1995-12-12 Olympus Optical Co., Ltd. In-focus sensing device for sensing an in-focus condition using a ratio of frequency components at different positions
JPH07199052A (ja) * 1993-12-28 1995-08-04 Olympus Optical Co Ltd 焦点検出方法および距離測定方法
US10250793B2 (en) * 2011-06-29 2019-04-02 Nikon Corporation Focus adjustment device having a control unit that drives a focus adjustment optical system to a focused position acquired first by either a contrast detection system or a phase difference detection system
CN105103537B (zh) * 2013-02-27 2018-11-06 株式会社尼康 成像元件及电子设备
US10194074B2 (en) * 2014-01-17 2019-01-29 Sony Corporation Imaging system, warning generation device and method, imaging device and method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080131109A1 (en) * 2005-02-07 2008-06-05 Kenichi Honjo Imaging Device
CN101098405A (zh) * 2006-06-30 2008-01-02 索尼株式会社 自聚焦装置、图像捕获装置和自聚焦方法
US20080012977A1 (en) * 2006-06-30 2008-01-17 Yujiro Ito Auto-focus apparatus, image capture apparatus, and auto-focus method
US20090047010A1 (en) * 2007-07-31 2009-02-19 Akihiro Yoshida Imaging device and imaging method
JP2009260724A (ja) * 2008-04-17 2009-11-05 Sony Corp 画像処理装置、撮像装置、画像処理方法、及びプログラム
CN102708564A (zh) * 2012-05-04 2012-10-03 哈尔滨工业大学 基于小波包变换的红外显微图像聚焦评价方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106686313A (zh) * 2017-01-18 2017-05-17 广东欧珀移动通信有限公司 控制方法、控制装置和电子装置
CN106686313B (zh) * 2017-01-18 2020-03-27 Oppo广东移动通信有限公司 控制方法、控制装置和电子装置
CN107613216A (zh) * 2017-10-31 2018-01-19 广东欧珀移动通信有限公司 对焦方法、装置、计算机可读存储介质和电子设备
CN107613216B (zh) * 2017-10-31 2019-10-18 Oppo广东移动通信有限公司 对焦方法、装置、计算机可读存储介质和电子设备
CN111294504A (zh) * 2018-12-20 2020-06-16 展讯通信(上海)有限公司 一种反差对焦过程中对比度反差值的计算方法及装置
CN111294504B (zh) * 2018-12-20 2022-02-18 展讯通信(上海)有限公司 一种反差对焦过程中对比度反差值的计算方法及装置

Also Published As

Publication number Publication date
US20160191785A1 (en) 2016-06-30
US10122909B2 (en) 2018-11-06
CN105446056B (zh) 2018-08-10

Similar Documents

Publication Publication Date Title
CN110691193B (zh) 摄像头切换方法、装置、存储介质及电子设备
CN101660946B (zh) 热像仪自动聚焦方法及装置
CN103139469B (zh) 利用多分辨率过程生成鲁棒深度图的系统和方法
CN102113017A (zh) 使用边缘检测产生深度数据的系统及方法
CN108076278A (zh) 一种自动对焦方法、装置及电子设备
US20170064184A1 (en) Focusing system and method
CN105204270B (zh) 一种拍照终端对焦距离的调整方法和装置
CN104618640A (zh) 一种拍照方法及装置
CN105635565A (zh) 一种拍摄方法及设备
CN104506762A (zh) 光场采集控制方法和装置、光场采集设备
CN105446056A (zh) 自动对焦装置及方法
CN102036005A (zh) 处理捕获图像的成像器
CN102903073B (zh) 一种图像清晰度计算方法及装置
Wang et al. Intelligent autofocus
Martel et al. Real-time depth from focus on a programmable focal plane processor
CN106993130A (zh) 采集图像的方法、装置及移动设备
Martel et al. High-speed depth from focus on a programmable vision chip using a focus tunable lens
TWI325087B (en) Automatic focus for image sensors
CN113325439B (zh) 一种深度相机及深度计算方法
CN105791666A (zh) 自动对焦装置
CN107124547B (zh) 双摄像头拍照方法及装置
JP6149717B2 (ja) 撮像装置及び撮像方法
CN105163036A (zh) 一种镜头自动聚焦的方法
CN107462967A (zh) 一种激光测距的定焦方法和系统
CN105791668A (zh) 自动对焦装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 100089 18 / F, block B, Zhizhen building, No.7, Zhichun Road, Haidian District, Beijing

Patentee after: Beijing Ziguang zhanrui Communication Technology Co.,Ltd.

Address before: 100084, Room 516, building A, Tsinghua Science Park, Beijing, Haidian District

Patentee before: BEIJING SPREADTRUM HI-TECH COMMUNICATIONS TECHNOLOGY Co.,Ltd.

CP03 Change of name, title or address