CN105439803A - 一种合成多取代炔烃的方法 - Google Patents

一种合成多取代炔烃的方法 Download PDF

Info

Publication number
CN105439803A
CN105439803A CN201610000698.6A CN201610000698A CN105439803A CN 105439803 A CN105439803 A CN 105439803A CN 201610000698 A CN201610000698 A CN 201610000698A CN 105439803 A CN105439803 A CN 105439803A
Authority
CN
China
Prior art keywords
synthesize
catalyst
terminal alkyne
polysubstituted
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610000698.6A
Other languages
English (en)
Other versions
CN105439803B (zh
Inventor
俞磊
韩哲
杨成根
陈天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201610000698.6A priority Critical patent/CN105439803B/zh
Publication of CN105439803A publication Critical patent/CN105439803A/zh
Application granted granted Critical
Publication of CN105439803B publication Critical patent/CN105439803B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/88Growth and elimination reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • C07C17/266Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions of hydrocarbons and halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/18Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms by condensation involving halogen atoms of halogenated compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4266Sonogashira-type, i.e. RY + HC-CR' triple bonds, in which R=aryl, alkenyl, alkyl and R'=H, alkyl or aryl

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

一种合成多取代炔烃的方法,涉及多取代炔烃的合成技术领域,本发明提供了一种由聚苯胺负载纳米钯催化剂催化的末端炔烃与sp2型碳的卤化物合成多取代炔烃的方法。该方法以聚苯胺负载纳米钯为催化剂,以二异丙基-2-乙氧基乙基胺做碱,通过交叉偶联一步直接合成。与传统方法相比,本发明提供的方法原料简单易得,成本低廉,催化剂温和,绿色环保,丰富,溶剂清洁,对环境友好。因此,本发明为合成这类重要化合物提供了清洁而实用的合成方法。

Description

一种合成多取代炔烃的方法
技术领域
本发明涉及多取代炔烃的合成技术领域。
背景技术
芳炔和共轭烯炔是合成天然产物、生物活性分子和有机分子材料的重要前体。早期的Sonogashira反应需要高温、无氧和有机胺溶剂,要得到高产率往往需要的钯催化剂的量较大,使反应成本较高。此外,由于铜的存在而产生大量副产物。在通常条件下Sonogashira反应对于活泼卤代烃(如碘代烃和溴代烃)具有较好的反应活性;但对于氯代烃其活性通常较低,从而要求的反应条件较为苛刻。而且,当炔烃上取代基为强吸电子基团(如CF3)时,即使对于活泼卤代Sonogashira反应活性也将明显降低。其次,Sonogashira反应通常要求严格除氧,以防止炔烃化合物自身氧化偶联反应的发生,从而有利于反应向所期待的方向进行。此外,Sonogashira反应复合催化剂中的Pd化合物价格通常较为昂贵,限制了该反应在一些较大规模合成中的应用。
纳米催化剂具有很高的催化活性并且可回收利用。使用纳米催化剂催化的反应往往不需要配体并且可在生态友好的溶剂中和温和条件下进行。在这一系列纳米金属催化剂中,聚苯胺负载的纳米催化剂格外引人注目。聚苯胺上的氮原子,可以牢牢固定住催化剂金属,同时起到配体的作用,因此,聚苯胺负载的纳米金属催化剂无需使用含磷配体,从而更加环保。虽然苯胺有毒,但是其聚合物毒性会显著降低。因此,利用聚苯胺负载纳米金属来开发设计纳米金属催化剂,对环境友好,符合绿色化学精神。
发明内容
本发明的目的在于提供一种新型的合成多取代炔烃的清洁方法。
本发明无氧条件下,于乙腈溶液中,在聚苯胺负载纳米钯催化剂的催化下,以二异丙基-2-乙氧基乙基胺为碱,催化末端炔烃与sp2卤代烃反应,合成取代炔烃。
本发明以聚苯胺负载纳米钯为催化剂,在乙腈溶液中、二异丙基-2-乙氧基乙基胺为碱,由末端炔烃与sp2型碳的卤化物通过交叉偶联合成多取代炔烃,此方法相较之前的合成方法有着很多优点。首先,反应条件温和、具有良好的安全性、易于操作、稳定性高、腐蚀性小、有较高的活性和选择性;其次,本方法使用了绿色的溶剂和碱,从而以此种形式进行的反应活性较高,产物易于分离,且反应后催化剂可以循环多次使用。因此本方法对生态友好,绿色环保,易操作,符合环境友好原则。
与传统Sonogashira反应相比,本方法具有产率高、反应条件较温和、不使用铜盐和配体、催化剂用量低、催化剂可回收等优点,适合应用于制药工业。
进一步地,本发明所述sp2卤代烃与末端炔烃的混合体积比为1.0~1.2∶1,优选1.05∶1。在此比例下,可充分利用价格较贵的末端炔烃。
所述合成多取代炔烃的方法,其特征在于,二异丙基-2-乙氧基乙基胺用量相对于末端炔烃的量为1~3当量,优选为1.5当量。在此比例下,可充分提高催化剂活性。
所述聚苯胺负载纳米钯催化剂中的钯与末端炔烃的摩尔比为0.06∶1。此比例下催化剂活性最高。
所述催化反应在60~140℃条件下进行,优选80℃。此温度下反应产率最高。
具体实施方式
下面的实施例对本发明进行更详细的阐述,而不是对本发明的进一步限定。
实施例1
1、催化剂制备
量取4.659g苯胺与0.2g氯化钯溶于100mL的1mol/L的盐酸溶液中。室温下搅拌20分钟,再将其静置48小时后,缓慢用1mol/L氢氧化钠溶液将PH值调至7.0,静置24小时。离心分离,固体,用去离子水洗3次,得聚合物固体,室温下晾干。、
2、实验步骤
在一个35毫升试管中,加入1mmol苯乙炔(1毫摩尔)、1.05mmol碘苯、1.5mmol二异丙基-2-乙氧基乙基胺,1.5mL乙腈,0.6mg聚苯胺负载钯催化剂,在氮气氛围下,80℃,反应24小时;反应液用板层析分离(展开剂:石油醚),得到产物二苯乙炔158mg,产率89%。
实施例2
其他条件同实施例1,检验不同碘苯与苯乙炔摩尔比,实验结果见表1。
表1碘苯与苯乙炔摩尔比的影响
由上表可知,碘苯与苯乙炔摩尔比为1.05∶1时效果最好。
实施例3
其他条件同实施例1,检验二异丙基-2-乙氧基乙基胺用量的影响,实验结果见表2。
表2二异丙基乙氧基乙基胺用量的影响
由上表可知,二异丙基-2-乙氧基乙基胺摩尔用量为炔烃用量的1.5倍时,效果最好。
实施例4
其他条件同实施例1,检验不同反应温度的效果,实验结果见表3。
表3反应温度的影响
由上表可知,反应温度80℃效果最好。
实施例5
其他条件同实施例1,检验不同碱的效果,实验结果见表4。
表4碱的影响
由上述结果可知,使用二异丙基乙氧基乙基胺效果最好。使用其它无机碱或有机碱,都几乎不反应(编号1-8)。而三级胺中除了二异丙基乙氧基乙基胺之外,其它待选化合物,活性都非常低。
实施例6
不同反应底物研究,实验结果见表5。
表5催化剂用量效果的检验
由上述可知,反应有着广泛的应用范围。
实施例7
将反应后催化剂通过离心分离回收,再次投入使用,其他条件同实施例1,实验结果见表6。
表6催化剂循环实用实验
由上述结果可知,该催化剂可多次回收利用。

Claims (8)

1.一种合成多取代炔烃的方法,其特征在于,无氧条件下,于乙腈溶液中,在聚苯胺负载纳米钯催化剂的催化下,以二异丙基-2-乙氧基乙基胺为碱,催化末端炔烃与sp2卤代烃反应,合成取代炔烃。
2.根据权利要求1所述合成多取代炔烃的方法,其特征在于,所述sp2卤代烃与末端炔烃的混合体积比为1.0~1.2∶1。
3.根据权利要求2所述合成多取代炔烃的方法,其特征在于,所述sp2卤代烃与末端炔烃的混合体积比为1.05∶1。
4.根据权利要求1所述合成多取代炔烃的方法,其特征在于,二异丙基-2-乙氧基乙基胺用量相对于末端炔烃的量为1~3当量。
5.根据权利要求4所述合成多取代炔烃的方法,其特征在于,二异丙基-2-乙氧基乙基胺用量相对于末端炔烃的量为1.5当量。
6.根据权利要求1所述合成多取代炔烃的方法,其特征在于,所述聚苯胺负载纳米钯催化剂中的钯与末端炔烃的摩尔比为0.06∶1。
7.根据权利要求1所述合成多取代炔烃的方法,其特征在于,所述催化反应在60~140℃条件下进行。
8.根据权利要求7所述合成多取代炔烃的方法,其特征在于,所述催化反应在80℃条件下进行。
CN201610000698.6A 2016-01-04 2016-01-04 一种合成多取代炔烃的方法 Active CN105439803B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610000698.6A CN105439803B (zh) 2016-01-04 2016-01-04 一种合成多取代炔烃的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610000698.6A CN105439803B (zh) 2016-01-04 2016-01-04 一种合成多取代炔烃的方法

Publications (2)

Publication Number Publication Date
CN105439803A true CN105439803A (zh) 2016-03-30
CN105439803B CN105439803B (zh) 2017-09-15

Family

ID=55550507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610000698.6A Active CN105439803B (zh) 2016-01-04 2016-01-04 一种合成多取代炔烃的方法

Country Status (1)

Country Link
CN (1) CN105439803B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109926090A (zh) * 2019-03-13 2019-06-25 扬州大学 一种用于合成伊马替尼的催化剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003827A (zh) * 2014-06-16 2014-08-27 厦门大学 一种端炔的合成方法
CN104341254A (zh) * 2014-10-28 2015-02-11 扬州大学 一种合成多取代烯烃的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003827A (zh) * 2014-06-16 2014-08-27 厦门大学 一种端炔的合成方法
CN104341254A (zh) * 2014-10-28 2015-02-11 扬州大学 一种合成多取代烯烃的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LEI YU ET AL.: "Gram-Scale Preparation of Pd@PANI: A Practical Catalyst Reagent for Copper-Free and Ligand-Free Sonogashira Couplings", 《ORG. PROCESS RES. DEV.》 *
LINJUN SHAO ET AL.: "Supported Palladium Nanoparticles on Preoxidated Polyacrylonitrile Fiber Mat for Coupling Reactions", 《FIBERS AND POLYMERS》 *
MARC LAMBLIN ET AL.: "Recyclable Heterogeneous Palladium Catalysts in Pure Water:Sustainable Developments in Suzuki, Heck, Sonogashira and Tsuji-Trost Reactions", 《ADV. SYNTH. CATAL. 》 *
刘杰等: "负载型过渡金属催化剂在碳-碳键偶联反应中的应用研究进展", 《有机化学》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109926090A (zh) * 2019-03-13 2019-06-25 扬州大学 一种用于合成伊马替尼的催化剂及其制备方法
CN109926090B (zh) * 2019-03-13 2021-09-28 扬州大学 一种用于合成伊马替尼的催化剂及其制备方法

Also Published As

Publication number Publication date
CN105439803B (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
Yu et al. Gold‐Catalyzed Reductive Transformation of Nitro Compounds Using Formic Acid: Mild, Efficient, and Versatile
Tang et al. Rh‐Catalyzed Direct Amination of Unactivated C (sp3)− H bond with Anthranils Under Mild Conditions
Chen et al. Hantzsch ester as a photosensitizer for the visible‐light‐induced debromination of vicinal dibromo compounds
Fu et al. Calcium‐Catalyzed Carboarylation of Alkynes
Sobhani et al. A hydrophilic heterogeneous cobalt catalyst for fluoride-free Hiyama, Suzuki, Heck and Hirao cross-coupling reactions in water
Pedrajas et al. Efficient and Selective N‐Methylation of Nitroarenes under Mild Reaction Conditions
Sabbatani et al. Gold‐Catalyzed Intermolecular Synthesis of Alkylidenecyclopropanes through Catalytic Allene Activation
Wu et al. Sulfonato–Cu (salen) Complex Catalyzed N‐Arylation of Aliphatic Amines with Aryl Halides in Water
Khalafi-Nezhad et al. Immobilized palladium nanoparticles on silica–starch substrate (PNP–SSS): As a stable and efficient heterogeneous catalyst for synthesis of p-teraryls using Suzuki reaction
Jiang et al. Cu (II)-promoted oxidative homocoupling reaction of terminal alkynes in supercritical carbon dioxide
Dong et al. Palladium supported on N-Heterocyclic carbene functionalized hydroxyethyl cellulose as a novel and efficient catalyst for the Suzuki reaction in aqueous media
Liu et al. Synthesis of 1, 3‐Diynes Using Calcium Carbide as an Alkyne Source
CN105037176A (zh) 含羟基的季铵盐型双子表面活性剂的制备方法及在三次采油中的应用
Luo et al. pH-Mediated Selective Synthesis of N-Allylic Alkylation or N-Alkylation Amines with Allylic Alcohols via an Iridium Catalyst in Water
CN108997440A (zh) 新型二茂铁双齿配体,配体与铜盐配位制备催化剂的方法
Li et al. Palladium nanoparticles encapsulated in MIL-101-NH2 catalyzed one-pot reaction of Suzuki-Knoevenagel reaction
Lv et al. Efficient Copper‐Catalyzed Ullmann Reaction of Aryl Bromides with Imidazoles in Water Promoted by a pH‐Responsive Ligand
Bukowska et al. Polymer supported copper (II) amine‐imine complexes in the C‐N and A3 coupling reactions
Wu et al. Copper‐Catalyzed Three‐Component Reactions of 2‐Iodo‐2, 2‐difluoroacetophenones, Alkynes, and Trimethylsilyl Cyanide
Sobarzo et al. New efficient tetraphenyl silylated poly (azomethine) s based on “pincer-like” bis (imino) pyridine iron (III) complexes as heterogeneous catalysts for CO2 conversion
CN110483791A (zh) 单分散多孔有机金属聚合物材料及其制备方法和应用
CN105439803A (zh) 一种合成多取代炔烃的方法
Han et al. Direct Stereoconvergent Allylation of Chiral Alkylcopper Nucleophiles with Racemic Allylic Phosphates
Li et al. Palladium-phosphinous acid complexes catalyzed Suzuki cross-coupling reaction of heteroaryl bromides with phenylboronic acid in water/alcoholic solvents
Rathod et al. Solvent‐free synthesis of propargylamines via A3 coupling reaction and organic pollutant degradation in aqueous condition using Cu/C catalyst

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant