CN105431451A - 突变型因子viii组合物和方法 - Google Patents

突变型因子viii组合物和方法 Download PDF

Info

Publication number
CN105431451A
CN105431451A CN201480035965.2A CN201480035965A CN105431451A CN 105431451 A CN105431451 A CN 105431451A CN 201480035965 A CN201480035965 A CN 201480035965A CN 105431451 A CN105431451 A CN 105431451A
Authority
CN
China
Prior art keywords
mutant
factor
factor viii
sequence
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480035965.2A
Other languages
English (en)
Inventor
肖卫东
曹文静
董飚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN105431451A publication Critical patent/CN105431451A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • C07K14/755Factors VIII, e.g. factor VIII C (AHF), factor VIII Ag (VWF)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

在一个方面,本发明提供一种相比野生型因子VIII具有增加的表达和/或分泌的重组突变型人因子VIII。在某些实施方式中,所述重组因子VIII包括选自I86、Y105、A108、D115、Q117、F129、G132、H134、M147和L152中的一个或多个氨基酸取代。在其它方面,本发明提供编码FVIII的核酸、FVIII表达载体以及在如血友病A的FVIII缺乏的治疗中使用所述修饰的FVIII基因的方法。

Description

突变型因子VIII组合物和方法
技术领域
本申请要求享有于2013年6月24日提交的顺序号为61/838867的美国临时专利申请的优先权。上述申请的全部内容在此通过引用的方式并入本文。
本发明涉及相比相应的野生型人因子VIII显示出更高的表达水平的重组人因子VIII突变体。本发明还涉及制备和使用重组人因子VIII突变体的方法。
政府许可权
本发明是在美国国立卫生研究院授予的授权号HL084381的美国政府支持下作出的。美国政府因此对本发明具有一定许可权利。
背景技术
血友病A,是最常见的严重的遗传性出血性疾病,由血浆蛋白因子VIII的缺乏或缺陷引起。在患有血友病A的患者中,当血友病患者受伤时,血液不正常凝结导致出血过多。治疗方法由使用(纯化的)血浆或重组蛋白制品的替代疗法组成。
当血小板附着到受伤血管的切口壁时,在受损部位凝血开始。随后,在酶调节的反应的级联中,可溶性纤维蛋白原分子通过酶凝血酶被转变为使血小板聚集在血栓中的纤维蛋白的不溶性丝。在级联中的每一步,蛋白前体被转变为在系列中切割下一个前体蛋白的蛋白酶。在大多数步骤中需要辅因子。
因子VIII作为非活性的非共价的金属离子依赖性异源二聚体前体在血液中循环,紧密和非共价地结合vonWillebrand因子。蛋白质的这种procofactor形式包含由A1(a1)A2(a2)B结构域组成的重链(HC)和由(a3)A3C1C2结构域组成的轻链(LC),小写字体a代表酸性残基中富含的短(~30-40个残基)片段。因子VIII是在由凝血酶或因子Xa催化的A1A2、A2B和A3A3结点通过溶蛋白性裂解而蛋白水解活化的,这用来使其与vonWillebrand因子分离并在级联中活化其促凝血功能。在其活性形式,所述蛋白质因子VIIIa是在酶原因子X向丝氨酸蛋白酶(因子Xa)的膜依赖性转变中将丝氨酸蛋白酶因子IXa的催化效率以几个数量级增加的辅因子。
基因疗法已经被提出作为治疗方式用于补充在血友病患者中的凝血因子缺乏,并且已经尝试设计适合于治疗人类的FVIII构建体。例如,Connelly等人报道用编码人FVIII的腺病毒载体治疗FVIII缺乏小鼠导致生物活性的人FVIII的表达(Connelly等人,Blood,第91卷,第9期(1998),第3273-3281页)。Sarkar等人报道在小鼠模型中与FVIII组合使用AAV8血清型修正血浆FVIII活性(Sarkar等人,Blood,第103卷,第4期(2004),第1253至1260页)。
然而,如在基因疗法的许多方面中,理论要比成功有效的实施简单得多。实施基因疗法技术的困难包括在使用病毒作为基因载体和FVIII的表达水平不足所遇到的问题。例如,人FVIII分泌非常低效且产率相比相似的蛋白质(如因子V)以对数形式降低。此外,虽然病毒作为基因载体是有效的,因为它们可以用于转导细胞导致体内蛋白质表达,但是包被病毒颗粒的蛋白质可以激活机体的免疫系统。
因此,鉴于上述情况,需要可以有效地表达足够量的靶FVIII蛋白以将病毒载体的所需剂量减少到可接受的水平。
发明内容
概要
本发明提供修饰的因子VIII(FVIII)蛋白、编码FVIII的核酸和FVIII表达载体,以及在FVIII缺乏(如血友病A)的治疗中使用所述修饰的FVIII基因的方法。
在一个方面,本发明提供了一种相比野生型因子VIII具有增加的表达或分泌的突变型人因子VIII。
在一个实施方式中,所述重组突变型人因子VIII包括选自I86、Y105、A108、D115、Q117、F129、G132、H134、M147、L152和其组合中的一个或多个氨基酸取代。
在另一个实施方式中,所述重组突变型人因子VIII包括选自I86V、Y105F、A108S、D115E、Q117H、F129L、G132K、H134Q、M147T、L152P和其组合中的一个或多个氨基酸取代。
在另一个实施方式中,所述重组突变型人因子VIII包括I86、Y105、A108、D115、Q117、F129、G132、H134、M147和L152各氨基酸的氨基酸取代。
在另一个实施方式中,所述重组突变型人因子VIII包括I86V、Y105F、A108S、D115E、Q117H、F129L、G132K、H134Q、M147T和L152P氨基酸取代。
在另一个实施方式中,所述重组突变型人因子VIII包括选自I86、A108、G132、M147、L152和其组合中的一个或多个氨基酸取代。
在另一个实施方式中,所述重组突变型人因子VIII包括选自I86V、A108S、G132K、M147T、L152P和其组合中的一个或多个氨基酸取代。
在另一个实施方式中,所述重组突变型人因子VIII包括I86V、A108S、G132K、M147T和L152P各自的氨基酸取代。
在另一个实施方式中,所述重组突变型人因子VIII包括氨基酸取代I86V、A108S、G132K、M147T和L152P。
在其他实施方式中,所述人因子VIII突变体还包括在人因子VIII的B结构域中的缺失。
在其他实施方式中,所述人因子VIII突变体还包括人因子VIII的a2和/或a3结构域。
在另一个方面,本发明提供了分离的多核苷酸序列,其编码本文描述的人因子VIII突变体。
在又一个方面,本发明提供了可操作地连接编码本文描述的人因子VIII突变体的多核苷酸的表达载体。
在进一步的方面,本发明提供了一种药物组合物,其包含可操作地连接编码本文描述的人因子VIII突变体的多核苷酸的表达载体。
在另一个方面,本发明提供了一种用于治疗患有因子VIII缺乏的患者的方法,其包括向有此需要的患者施用对治疗所述因子VIII缺乏有效量的含有可操作地连接编码本文描述的人因子VIII突变体的多核苷酸的表达载体的药物组合物。
在另一个方面,本发明提供了一种表达人因子VIII多肽突变体的方法,其包括:(a)用可操作地连接编码根据本发明的人因子VIII突变体的多核苷酸的表达载体转化宿主细胞;(b)在适合表达人因子VIII多肽突变体的条件下使宿主细胞生长;和(c)从表达所述突变体的宿主细胞中纯化人因子VIII多肽突变体。
附图说明
图1示出了人因子VIII重和轻链的结构域,包括本发明中所用的几个重链结构。
图2是显示与具有10个示例性的取代以增强分泌的经修饰的因子VIII并排的分泌的人因子VIII重链的前200个氨基酸的排列的图。
图3是显示与具有5个示例性的取代以增强分泌的经修饰的人因子VIII并排的分泌的人因子VIII重链的前200个氨基酸的排列的图。
图4总结了确定为影响人因子VIII分泌的示例性氨基酸。
图5和图6描绘了示例性的用于表达B结构域缺失的人因子VIII突变体或人因子VIII重链的AAV载体。
图7显示了在BHK细胞(图A)或293细胞(图B)中不同的人因子VIII突变体的分泌的比较。
图8显示了在体内就分泌而言不同的人因子VIII突变体的分泌的比较。将质粒pAAV-CB-hBDDF8(携带B结构域缺失的人因子VIII)、质粒pAAV-CB-hBDDF8-X10(携带具有10个取代的hF8-BDD)、质粒pAAV-CB-hBDD-F8-X5(携带具有5个取代的hBDDF8)或质粒pAAV-CB-hBDD-F8-G312K(具有G132K取代的hF8)注射于因子VIII双基因敲除Blab/c小鼠。
图9显示了在293细胞中不同的人因子VIII突变体分泌的比较。hBDD-F8-X10中的氨基酸被恢复到其相应的野生型氨基酸。在hBDD-F8-X10-6p中,不同于野生型F8的hBDD-F8-X10中的10个氨基酸中的6个被恢复到它们的野生型氨基酸。
图10显示了在AAV载体构建体中的突变体因子VIII(F8)重链(HC1690-X10)与野生型hF8-HC1690AAV载体构建体(AAV/hF8HC1690)在体内的表达和分泌的比较。
图11显示了在293细胞中不同的G132因子VIII重链突变体的分泌的比较。
图12显示了在因子VIII双基因敲除Blab/c小鼠中就表达/分泌而言不同的因子VIII的重链突变体的分泌的比较。
图13显示了在293细胞中不同的L152因子VIII重链突变体的分泌的比较。
图14显示了在293细胞中不同的A108因子VIII重链突变体的分泌的比较。
图15显示了在293细胞中不同的M147因子VIII重链突变体的分泌的比较。
图16显示了在F8-/-大鼠模型中没有形成针对5个突变氨基酸的中和抗体。
具体实施方式
详细说明
有关本发明的生物分子的各种术语的定义同上,也可用于整个说明书和权利要求书。
短语“分泌增强因子VIII(seFVIII,seF8)”是指一种修饰的FVIII(F8),其已被遗传改变使得所编码的蛋白质在与未经修饰的FVIII相比时表现出至少10%或20%或50%或100%的在分泌方面的增长。本文描述的核苷酸序列可容易地从GenBank中获得。对于人FVIII,请见登录号NG-011403.1。
短语“BDD”指的是缺少B结构域的“无B结构域”因子VIII(F8或FVIII)突变体。
短语“一个或多个”,后跟要素或种类的列表,旨在包含列表中的要素或种类的任何排列。因此,例如,短语“选自A、B、C、D、E和F中的一个或多个取代突变”可以包括含有A、B、C、D、E和/或F的取代突变的任何组合。
如本文所用,范围可以表示为从一个特定整数值至另一个特定整数值。在表达这样的范围时,应当理解的是,在此范围内的任一和全部整数值定义了根据本发明的单独的实施方式,并且实施方式的全部范围包括在所述范围内进一步包括在最初范围中的整数值的任何配对之间的任一和全部子范围。
关于本发明的核酸,术语“分离的核酸”,在应用于DNA时,指的是一种DNA分子,所述DNA分子与其从中起源的生物体的天然存在的基因组中的与它紧邻的(在5'和3'方向)序列分离。例如,“分离的核酸”可以包括插入到载体(如质粒或病毒载体)中的DNA或cDNA分子,或整合到原核生物或真核生物的DNA。核酸密码子可被最优化以增强在哺乳动物细胞中的表达。
对于本发明的RNA分子,术语“分离的核酸”主要是指由如上定义的分离的DNA分子编码的RNA分子。或者,该术语可以指的是一种RNA分子,所述RNA分子已充分地与在天然状态下(即,在细胞或组织中)将会与它相关的RNA分子分离,使得它以“基本上纯的”的形式存在(术语“基本上纯的”在下面定义)。
对于蛋白质,术语“分离的蛋白质”或“分离和纯化的蛋白质”有时也用于本发明。此术语主要是指由本发明的分离的核酸分子的表达产生的蛋白质。或者,该术语可指已充分地与会与它天然相关的其它蛋白质分离以便以“基本上纯的”形式存在的蛋白质。
术语“启动子区域”是指基因的转录调节区,其可在编码区的5'或3'侧、或在编码区内、或内含子中找到。
术语“载体”是指一种小载体DNA分子,DNA序列可被插入其中以引入到宿主细胞中,在宿主细胞中其将被复制。“表达载体”是包含具有在宿主细胞中表达所需要的必要调节区的基因或核酸序列的专用载体。
术语“可操作地连接”是指编码序列表达所必需的调节序列置于相对于所述编码序列的适当位置上的DNA分子中,以便实现编码序列的表达。此相同的定义有时应用于表达载体中的编码序列和转录控制元件(例如,启动子、增强子和终止元件)的排列。此定义有时也应用于第一和第二核酸分子的核酸序列的排列,其中产生杂种核酸分子。
术语“基本上纯的”是指包含至少50-60重量%的目的化合物(例如,核酸、寡核苷酸、蛋白质等)的制品。更优选地,所述制品包含至少75重量%且最优选90-99重量%的目的化合物。纯度通过适合于所述目的化合物的方法(例如,色谱法、琼脂糖或聚丙烯酰胺凝胶电泳、HPLC分析等)测定。
“基本上由…组成”一词,在指特定核苷酸序列或氨基酸序列时,指的是具有给定序列号(SEQIDNO)的属性的序列。例如,在用于参照氨基酸序列时,该词包括序列本身和将不会影响序列的基本和新颖特征的分子修饰。
本文所用术语“寡核苷酸”是指本发明的引物和探针,并且被定义为由两个或多个核糖核苷酸或脱氧核糖核苷酸(优选超过三个)组成的核酸分子。寡核苷酸的准确尺寸将取决于各种因素,并且取决于使用寡核苷酸的特定应用。如本文所用的术语“探针”是指寡核苷酸、多核苷酸或核酸,无论是RNA或DNA,无论是如在纯化的限制性酶消化中自然存在的或是合成产生的,所述探针能够与具有与所述探针互补的序列的核酸退火或特异性杂交。探针可以是单链的或双链的。探针的确切长度将取决于许多因素,包括温度、探针的来源和使用方法。例如,对于诊断应用,根据靶序列的复杂性,寡核苷酸探针通常含有15-25个或更多个核苷酸,尽管它可含有更少的核苷酸。
本文所用术语“百分比相同”参考核酸或氨基酸序列之间的比较。核酸和氨基酸序列的比较通常使用通过比对核酸或氨基酸的序列从而定义两者之间的差异的计算机程序。核酸序列的比较可以购自威斯康星州麦迪逊的遗传学计算机组(GeneticsComputerGroup)的GCG威斯康星软件包版本9.1(GCGWisconsinPackageversion9.1)进行。为方便起见,由该程序规定的默认参数(空位产生罚分=12,空位延伸罚分=4)旨在用于本发明以比较序列同一性。另外,可以使用有默认参数的空位排列的由国家生物技术信息中心提供的Blastn2.0程序(在环球网ncbi.nlm.nih.gov/blast/上找到;Altschul等人,1990,JMolBiol215:403-410)来确定核酸序列和氨基酸序列之间的同一性和相似性的水平。
如本文所用,“相应的”核酸或氨基酸或二者之一的序列是存在于因子VIII或杂种因子VIII分子或其片段中的位点的,其与另一个物种的因子VIII分子中的位点具有相同的结构和/或功能,尽管核酸或氨基酸标号可能不相同。“对应于”另一因子VIII序列的序列基本对应于这样的序列,并且在严格条件下与SEQIDNO:1指定的人因子VIIIDNA序列杂交。“对应于”另一因子VIII序列的序列也包括导致因子VIII或权利要求保护的促凝血杂交因子VIII或其片段的表达并将会与含有SEQIDNO:1的核酸分子杂交但为遗传密码冗余的序列。
如本文所用,“独特的”氨基酸残基或序列是指在一个物种的因子VIII分子中的氨基酸序列或残基,其不同于另一个物种的因子VIII分子的同源残基或序列。
如本文所用,“特异性活性”指的是将修正人因子VIII缺乏的血浆的凝血缺陷的活性。特异性活性以在标准测定法(其中将人因子VIII缺乏的血浆的凝血时间与正常人血浆的凝血时间相比较)中每毫克总因子VIII蛋白的凝血活性的单位来测量。一个单位的因子VIII活性是在一毫升正常人血浆中存在的活性。在测定中,凝块形成的时间越短,被测定的因子VIII的活性越大。在人因子VIII测定中杂种人/猪因子VIII具有凝血活性。该活性,以及与其他杂种或杂种等效因子VIII分子或其片段的活性,可以小于、等于或大于血浆衍生的或重组人因子VIII的活性。
如本文所用,人类或动物因子VIII的“亚单位”是该蛋白质的重链和轻链。因子VIII的重链含有三个结构域,A1、A2和B。因子VIII的轻链也包含三个结构域,A3、C1、C2。
如本文所用,术语“表位”、“抗原基”和“抗原决定簇”同义使用,并且被定义为由抗体特异性识别的人类、动物、杂种或杂种等效因子VIII或其片段的部分。它可以由任何数目的氨基酸残基组成,并且它可以依赖于蛋白质的一级、二级或三级结构。根据本公开内容,可以使用包括至少一个表位的杂种因子VIII、杂种因子VIII等效物、或二者任一片段作为在下面所述的诊断测定法中的试剂。在一些实施方式中,与人或猪因子VIII相比,杂种或杂种等效因子VIII或其片段与所有天然存在的抑制因子VIII的抗体没有交叉反应或者少有交叉反应。
如本文所用,术语“免疫原性位点”被定义为人或动物因子VIII、杂种或杂种等效因子VIII、或其片段的区域,如通过常规方案(如免疫测定法,例如,如本文所述的,ELISA或Bethesda测定法)所测定的,其特异性引发在人或动物中产生因子VIII、杂种、杂种等效或其片段的抗体。它可以由任何数目的氨基酸残基组成,并且它可以依赖于蛋白质的一级、二级或三级结构。在一些实施方式中,与人或猪因子VIII相比,杂种或杂种等效因子VIII或其片段在动物或人类中没有免疫原性或免疫原性更低。
如本文所用,“因子VIII缺乏”包括由缺陷型因子VIII的产生、由因子VIII生产不足或不产生、或由因子VIII被抑制剂部分或完全抑制而引起的凝血活性的缺乏。血友病A是由X连锁基因的缺陷以及其编码的因子VIII蛋白的缺失或缺乏引起的因子VIII缺乏的一种类型。
在一个方面,本发明涉及重组因子VIII突变体分子(如蛋白质或核酸),其特征在于,相比野生型因子VIII增加的表达和/或分泌。
示例性的人因子VIII的cDNA(核苷酸)和预测的氨基酸序列分别示于SEQIDNO:1和SEQIDNO:2。人因子VIII是被合成且分泌为约300kDa的具有内部序列同源性的2332个氨基酸的单链蛋白质,其定义了一系列的结构“域”如下:NH2-A1-a1-A2-a2-B-a3-A3-C1-C2-COOH(图4)。如本文所使用,因子VIII“结构域”由特征在于例如结构相关的结构域的内部氨基酸序列同一性和凝血酶的溶蛋白性裂解位点的氨基酸的连续序列所定义。此外,术语“无结构域的”或“缺乏结构域的”应被理解为是指该结构域的至少95%或100%已被缺失。除非另有规定,因子VIII结构域由以下的在如SEQIDNO:2所述的人因子VIII的氨基酸序列中的氨基酸残基所定义:
A1,残基Ala1-Arg372
A2,残基Ser373-Arg740
B,残基Ser741-Arg1648;
a3,残基P1640-Arg1649;
A3,残基Ser1690-Ile2032;
C1,残基Arg2033-Asn2172;和
C2,残基Ser2173-Tyr2332
A3-C1-C2序列包括残基Ser1690-Tyr2332。剩余序列,残基Glu1649-Arg1689,通常称为因子VIII轻链激活肽(图1)。因子VIII是由凝血酶或因子Xa蛋白水解活化的,其使因子VIII与从vonWillebrand因子分离,形成因子VIIIa,其具有促凝血功能。因子VIIIa的生物学功能是将因子IXa向因子X活化的催化效率以几个数量级增加。凝血酶激活的因子VIIIa是160kDa的A1/A2/A3-C1-C2异源三聚体,其在的血小板或单核细胞的表面上与因子IXa和因子X形成复合物。
编码野生型人因子VIII的cDNA序列具有如SEQIDNO:1所述的核苷酸序列。在SEQIDNO:1中,因子VIII开放读框的前57个核苷酸编码通常从SEQIDNO:2所述的成熟因子VIII蛋白切除的信号肽序列。
优选的重组因子VIII突变体包括或编码SEQIDNO:2所述的野生型人因子VIII氨基酸序列的氨基酸86至氨基酸152的区域中的一个或多个氨基酸取代。这些位置中的任意位置的取代可以采用其他19个氨基酸中任何一个。
参照在此描述的突变体,由“(氨基酸a)-(SEQIDNO:2氨基酸#b)-(氨基酸c)”表示的概念应被理解为在SEQIDNO:2的氨基酸标号b的野生型氨基酸a(单字母代码)已突变为氨基酸c。
在某些优选的实施方式中,人因子VIII多肽突变体包括选自I86、Y105、A108、D115、Q117、F129、G132、H134、M147和L152中的SEQIDNO:2中的一个或多个氨基酸取代。此外,人因子VIII突变体包括含有这十个氨基酸位点的突变的任意排列。图4中显示了示例性的人因子VIII突变体。
本发明的示例性重组因子VIII包括涉及在SEQIDNO:2的I86位置处的取代的点突变。优选的取代包括缬氨酸(即,I86V)。进一步优选的取代包括亮氨酸(I86L)和蛋氨酸(I86M)。
另一个示例性重组因子VIII包括涉及在SEQIDNO:2的Y105位置处的取代的点突变。所述取代可以包括其他19个氨基酸中的任何一个。优选的取代包括Y105F和Y105W。
另一个示例性重组因子VIII包括涉及在SEQIDNO:2的A108位置处的取代的点突变。优选的取代包括:A108S。进一步优选的取代包括A108S、A108G、A108T和A108P。
另一个示例性重组因子VIII包括涉及在SEQIDNO:2的D115位置处的取代的点突变。优选的取代包括:D115E。进一步优选的取代包括D115N、D115H、D115Q、D115R和D115K。
另一个示例性重组因子VIII包括涉及在SEQIDNO:2的Q117位置处的取代的点突变。优选的取代包括:Q117H。进一步优选的取代包括Q117N、Q117E、Q117D、Q117R和Q117K。
另一个示例性重组因子VIII包括涉及在SEQIDNO:2的F129位置处的取代的点突变。优选的取代包括:F129L。进一步优选的取代包括F129V、F129I、F129M、F129P、F129T和F129K。
另一个示例性重组因子VIII包括涉及在SEQIDNO:2的G132位置处的取代的点突变。优选的取代包括:G132K。进一步优选的取代包括G132E、G132D、G132R、G132T、G132M、G132N、G132S和G132W。
另一个示例性重组因子VIII包括涉及在SEQIDNO:2的H134位置处的取代的点突变。优选的取代包括:H134Q。进一步优选的取代包括H134G、H134Y、H134N、H134E、H134D、H134R和H134K。
另一个示例性重组因子VIII包括涉及在SEQIDNO:2的M147位置处的取代的点突变。优选的取代包括:M147T。进一步优选的取代包括M147A、M147G、M147S和M147P。
另一个示例性重组因子VIII包括涉及在SEQIDNO:2的L152位置处的取代的点突变。优选的取代包括:L152P。进一步优选的取代包括L152S、L152G和L152T。
另一个示例性重组因子VIII包括在SEQIDNO:2的I86、A108、G132、M147、L152位置处的一个或多个氨基酸残基的多个取代。所述取代可以包括含有这五个氨基酸位点的突变的任意排列。具体实施方式可包括在选自I86V、A108S、G132K、M147T、L152P中的一个或多个取代突变处的突变。进一步优选的实施方式包括2、3、4或5个取代,包括选自I86V、A108S、G132K、M147T和L152P中的取代的任意组合(或排列)。
示例性的重组因子VIII突变体包括涉及在选自I86、Y105、A108、D115、Q117、F129、G132、H134、M147和L152中的SEQIDNO:2中的一个或多个氨基酸残基处的取代的点突变。所述取代可以包括含有这十个氨基酸位点的突变的任意排列。具体实施方式可包括在选自I86V、Y105F、A108S、D115E、Q117H、F129L、G132K、H134Q、M147T和L152P中的一个或多个取代突变处的突变。进一步优选的实施方式包括2、3、4或高至9个取代,包括选自I86V、Y105F、A108S、D115E、Q117H、F129L、G132K、H134Q、M147T和L152P中的取代的任意组合(或排列)。
编码上述提及的因子VIII取代的核酸被包括在本发明中并且包括编码本文中所描述的取代突变体的广度的所有可能的核酸。
相比于野生型因子VIII的生产(在细胞系或在体内),上述的因子VIII突变体可以表现出因子VIII分泌的5%至10000倍、10%至2000倍、50%最高至500倍、2至200倍、5至100倍、10至50倍、至少2倍、至少5倍、至少10倍、至少20倍、至少50倍、至少100倍、至少200倍、至少500倍、至少2000倍或至少10000倍的增加。
在某些实施方式中,合适的突变型因子VIII序列可被进一步修饰以包括、缺失或修饰其他因子VIII序列以赋予关于其他属性的性质,包括,但不限于,抗原性、循环半衰期、蛋白分泌、对因子IXa和/或因子X的亲合力、改变的因子VIII失活裂解位点、激活的因子VIII的形式的稳定性、免疫原性和保存期限。
在某些具体实施方式中,所述突变型因子VIII可以被修饰以产生B结构域缺失(BDD)的或“无B结构域”的因子VIII产品。图1显示了示例性的含有SEQIDNO:2的氨基酸残基1-740和1690-2332的BDD因子VIII实施方式。优选地,所述重组无B结构域的因子VIII包含如本文所述的在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147、L152处的一个或多个取代。
在一个实施方式中,所述无B结构域的重组因子VIII被生成,由此B结构域被替换为DNA接头部分并且至少一个密码子被替换为编码与猪因子VIII的相应残基具有相同的电荷的氨基酸残基的密码子(参见,例如,Hauser等人的第2004/0197875号美国专利申请公开)。
在另一个实施方式中,所述无B结构域的重组因子VIII被生成在一个或多个位置中插入有截短的因子IX内含子1(参见,例如,Negrier的第6800461号美国专利和Negrier的第6780614号美国专利)。此重组因子VIII可用于在体外获得较高的重组因子VIII的产生以及用于基因治疗的转移载体(参见,例如,Negrier的第6800461号美国专利)。在一个具体的实施方式中,所述重组因子VIII可以由在两个位置中插入有截短的因子IX内含子1并且具有适合于在造血细胞系中(特别在血小板中)驱动表达的启动子的核苷酸序列来编码(参见,例如,Negrier的第6780614号美国专利)。
可以根据本发明修饰的合适的突变型因子VIII的第二个例子是含有一种或多种动物氨基酸残基作为对引起人因子VIII的抗原性的人氨基酸残基的取代的嵌合人/动物因子VIII。尤其是,动物(例如,猪)残基取代可以包括,但不限于,以下一种或多种:R484A、R488G、P485A、L486S、Y487L、Y487A、S488A、S488L、R489A、R489S、R490G、L491S、P492L、P492A、K493A、G494S、V495A、K496M、H497L、L498S、K499M、D500A、F501A、P502L、1503M、L504M、P505A、G506A、E507G、1508M、1508A、M2199I、F2200L、L2252F、V2223A、K2227E和/或L2251(Lollar的第5859204号美国专利、Lollar的第6770744号美国专利和Lollar的第2003/0166536号美国专利申请公开)。优选地,所述重组嵌合因子VIII包含如本文所述的在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147和L152处的一个或多个取代。
在进一步的实施方式中,所述突变型因子VIII被修饰以凭借融合的A2和A3结构域赋予活化的因子VIII更大的稳定性。特别是,因子VIII可以通过在位置664和1826处置换半胱氨酸残基(即,Y664C、T1826C)导致形成共价连接A2和A3结构域的Cys664-Cys1826二硫键的突变型因子VIII来修饰(Gale等人,"AnEngineeredInterdomainDisulfideBondStabilizesHumanBloodCoagulationFactorVIIIa,"J.ThrombosisandHaemostasis1(9):1966-1971(2003))。优选地,所述重组融合域(A2-A3)因子VIII包含如本文所述的在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147和L152处的一个或多个取代。
在进一步的实施方式中,根据本发明的突变型因子VIII(例如,含有在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147和/或L152处的一个或多个取代)进一步被修饰以赋予改变的失活裂解位点。例如,Arg336或Arg562可被取代用于降低突变型因子VIII的对通常使野生型因子VIII失活的裂解酶的易感性(参见,例如,Amano等人,"MutationatEitherArg336orArg562inFactorVIIIisInsufficientforCompleteResistancetoActivatedProteinC(APC)-MediatedInactivation:implicationsfortheAPCResistanceTest,"Thrombosis&Haemostasis79(3):557-63(1998))。
在进一步的实施方式中,根据本发明的突变型因子VIII(例如,含有在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147和/或L152处的一个或多个取代)进一步被修饰以赋予对因子IXa(参见,例如,Fay等人,"FactorVIIIaA2SubunitResidues558-565RepresentaFactorIXaInteractiveSite,"J.Biol.Chem.269(32):20522-7(1994);Bajaj等人,"FactorIXa:FactorVIIIaInteraction.Helix330-338ofFactorIXaInteractswithResidues558-565andSpatiallyAdjacentRegionsoftheA2SubunitofFactorVIIIa,"J.Biol.Chem.276(19):16302-9(2001);andLenting等人,"TheSequenceGlu1811-Lys1818ofHumanBloodCoagulationFactorVIIIComprisesaBindingSiteforActivatedFactorIX,"J.Biol.Chem.271(4):1935-40(1996))和/或因子X(参见,例如,Lapan等人,"LocalizationofaFactorXInteractiveSiteintheA1SubunitofFactorVIIIa,"J.Biol.Chem.272:2082-88(1997))的增强的亲合力。
在又一进一步的实施方式中,根据本发明的突变型因子VIII(例如,含有在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147和/或L152处的一个或多个取代)被进一步修饰以进一步提高因子VIII的分泌(参见,例如,Swaroop等人,"MutagenesisofaPotentialImmunoglobulin-BindingProtein-BindingSiteEnhancesSecretionofCoagulationFactorVIII,"J.Biol.Chem.272(39):24121-4(1997))。
在进一步的实施方式中,根据本发明的突变型因子VIII(例如,含有在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147和/或L152处的一个或多个取代)进一步修饰以赋予增加的循环半衰期。这可以通过各种方法来实现,所述方法包括,但不限于,通过减少与硫酸乙酰肝素的相互作用(Sarafanov等人,"CellSurfaceHeparanSulfateProteoglycansParticipateinFactorVIIICatabolismMediatedbyLowDensityLipoproteinReceptor-RelatedProtein,"J.Biol.Chem.276(15):11970-9(2001))和/或低密度脂蛋白受体相关蛋白(“LRP”)(Saenko等人,"RoleoftheLowDensityLipoprotein-RelatedProteinReceptorinMediationofFactorVIIICatabolism,"J.Biol.Chem.274(53):37685-92(1999);和"TheLightChainofFactorVIIIComprisesaBindingSiteforLowDensityLipoproteinReceptor-RelatedProtein,"J.Biol.Chem.274(34):23734-9(1999))。
可以根据本发明修饰的合适的突变型因子VIII的第八个例子是由修饰成编码在已知的现有的表位中的氨基酸以产生用于在天冬酰胺残基处糖基化的识别序列的核苷酸序列来编码的修饰的因子VIII(参见,例如,Lollar的第6759216号美国专利)。此修饰能够有效地逃避现有抑制性抗体的检测(低抗原性因子VIII)并减少出现抑制性抗体的可能性(低免疫原性因子VIII)。在一个代表性的实施方式中,修饰的因子VIII被突变引入用于N-连接糖基化的共有氨基酸序列,如N--X--S/T(见Lollar的第6759216号美国专利)。
可以根据本发明修饰的合适的突变型因子VIII的第九个例子是作为具有各种突变的促凝血活性的因子VIII的修饰的因子VIII(参见,例如,Kaufman等人的第2004/0092442号美国专利申请公开)。该实施方式的一个例子涉及已被修饰成(i)使vonWillebrand因子结合位点缺失,(ii)在Arg740处加入突变,和(iii)在A2结构域和A3结构域之间加入氨基酸序列间隔区(其中氨基酸间隔区是足够长的,使得在活化时促凝血活性的因子VIII蛋白变为异源二聚体)的修饰的因子VIII(见Kaufman等人的第2004/0092442号美国专利申请公开)。
此外,所述突变型因子VIII可以被修饰成利用通常有关重组凝血因子的各种进步(参见,例如,Saenko等人,"TheFutureofRecombinantCoagulationFactors,"J.ThrombosisandHaemostasis1:922-930(2003))。
本发明的重组因子VIII可以在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147、L152处被修饰,以及可以被修饰成无B结构域的、嵌合的、具有融合的A2-A3结构域、具有改变的失活裂解位点、具有增强的因子IXa和/或因子X的亲合力、具有增强的特异性活性、具有增加的循环半衰期、具有突变型糖基化位点、或除了在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147和/或L152处的修饰之外还具备这样的修饰的任何两个或更多个。
本发明的另一个方面涉及制备相比于野生型因子VIII的特异性活性具有增加的特异性活性的重组因子VIII的方法。此方法包括改变野生型因子VIII的氨基酸序列以得到重组因子VIII。野生型因子VIII的氨基酸序列的改变可以包括,例如,在野生型因子VIII的至少一个钙结合位点中或者在野生型因子VIII的至少一个钙结合位点附近引入至少一个点突变。然后,利用本领域众所周知的蛋白质分析技术,能够确定重组因子VIII是否相比于野生型因子VIII的特异性活性具有增加的特异性活性。
重组因子VIII优选以基本上纯的形式产生。在一个具体的实施方式中,基本上纯的重组因子VIII为至少约80%纯的,更优选至少90%纯的,最优选至少95%纯的,98%纯的,99%纯的或99.9%纯的。基本上纯的重组因子VIII可以通过本领域中公知的常规技术获得。通常,基本上纯的重组因子VIII被分泌到重组宿主细胞的生长培养基中。或者,基本上纯的重组因子VIII被产生但不分泌到生长培养基中。在这样的情况下,为了分离基本上纯的重组因子VIII,使携带重组质粒的宿主细胞增殖,通过超声处理、加热或化学处理裂解,以及将匀浆离心以除去细胞碎片。然后对上清液进行连续的硫酸铵沉淀。使含有基本上纯的重组因子VIII的级分在合适尺寸的葡聚糖或聚丙烯酰胺柱中进行凝胶过滤以分离重组因子VIII。如果需要的话,蛋白质级分(含有基本上纯的重组因子VIII)可以进一步用高效液相色谱(“HPLC”)进行纯化。
本发明的另一个方面涉及一种分离的核酸分子,其编码如本文所述的重组突变型因子VIII。所述编码重组突变型因子VIII的分离的核酸分子可以是RNA或DNA。核酸密码子可被进一步优化以增强表达。
在一个实施方式中,所述分离的核酸分子可以具有编码用在本发明鉴定的位置处的取代之一修饰的SEQIDNO:2的氨基酸序列的核苷酸序列(即,在SEQIDNO:1(前57个核苷酸不计,因为它们编码信号肽)的86位密码子(nt256-258)、105位密码子(nt:313-315)、108位密码子(nt:322-324)、115位密码子(nt:343-345)、117位密码子(nt:349-351)、129位密码子(nt:385-387)、132位密码子(nt:394-396)、134位密码子(nt:400-402)、147位密码子(nt:439-441)和/或密码子152(nt:454-456)中具有一至三个核苷酸取代)。分离的核酸分子可以任何组合形式在这些位置中具有一个或多个电荷。
在另一个实施方式中,所述分离的核酸分子可以具有编码如用在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147和/或L152处的一个或多个取代修饰的如上所述的类型的无B结构域因子VIII的核苷酸序列。
在另一个实施方式中,所述分离的核酸分子可以具有编码如用在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147和/或L152处的一个或多个取代修饰的嵌合人/猪的上述类型的核苷酸序列。
在进一步的实施方式中,所述分离的核酸分子可以具有编码如用在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147和/或L152处的一个或多个取代修饰的如上所述的类型的融合的A2-A3结构域因子VIII的核苷酸序列。
在另一个实施方式中,所述分离的核酸分子可以具有编码如用在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147和/或L152处的一个或多个取代进一步修饰的失活位点已被如上所述修饰的因子VIII的核苷酸序列。
在又一个实施方式中,所述分离的核酸分子可以具有编码连同在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147和/或L152处的一个或多个取代一起的对因子IXa和/或因子X的亲合力已被增强的因子VIII的核苷酸序列。
在更进一步的实施方式中,所述分离的核酸分子可以具有编码对各种血清结合蛋白的亲合力已被改变以增加其循环半衰期且用在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147和/或L152处的一个或多个取代进一步修饰的因子VIII的核苷酸序列。
在进一步的实施方式中,所述分离的核酸分子可以具有编码如用在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147和/或L152处的一个或多个取代进一步修饰的已增加了在培养基中的分泌的因子VIII的核苷酸序列。
在进一步的实施方式中,所述分离的核酸分子可以具有编码连同在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147和/或L152处的一个或多个取代一起的具有一个或多个非天然发生的糖基化位点的因子VIII的核苷酸序列。
在又一个实施方式中,所述分离的核酸分子编码用在位置I86、Y105、A108、D115、Q117、F129、G132、H134、M147和/或L152处的一个或多个取代修饰并且进一步修饰成具有下列修饰中的任何组合的重组因子VIII:修饰成无B结构域的、修饰成嵌合的、修饰成具有融合的A2-A3结构域、修饰成具有一个或多个改变的失活裂解位点的、修饰成具有增强的因子IXa和/或因子X的亲合力的、修饰成具有提高的分泌的、修饰成具有增加的循环半衰期的以及修饰成具有一个或多个非天然发生的糖基化位点的。
本发明的另一个方面涉及一种用于表达本文描述的突变型因子VIII多核苷酸的表达载体。如本文所用,术语“表达载体”是指一种病毒或非病毒载体,其以适合于在宿主细胞中表达多核苷酸的形式包含编码本发明的新肽的多核苷酸。一种类型的非病毒的载体是“质粒”,质粒包括可以连接另外的DNA片段到其中的环状双链DNA环。另外,在本说明书中,“质粒”和“载体”可以互换使用,因为质粒是最常用的载体形式。
当制备表达载体时,可以将转基因序列插入到含有用于在细菌以及真核细胞中复制的合适细菌序列的质粒。可以使用任何方便的质粒,所述质粒可以包括允许在细菌中选择的标记以及通常一个或多个独特的、便利的定位的限制性位点。载体的选择将取决于优选的转化技术和转化用的靶宿主。
用于表达突变型因子VIII多肽的表达载体包括一个或多个可操作地连接到待表达的多核苷酸序列的调节序列。本领域的技术人员将理解,表达载体的设计可取决于如待转化的宿主细胞的选择、所需的蛋白质的表达水平等的这样的因素。本发明的表达载体可以被引入宿主细胞,从而制得本文描述的突变型因子VIII蛋白。
如本文所使用的,术语“控制序列”或“调节序列”指可操作连接的编码序列在特定宿主生物体中的表达所必需的DNA序列。术语“控制/调节序列”旨在包括启动子、增强子和其他表达控制元件(例如,多腺苷酸化信号)。控制/调节序列包括在许多类型的宿主细胞中指导核苷酸序列的组成型表达的那些和仅在某些宿主细胞中指导核苷酸序列的表达的那些(例如,组织特异性调节序列)。
当将一个核酸序列置于与另一个核酸序列的功能关系中时,所述一个核酸序列“可操作地连接”到所述另一个核酸序列。例如,将前序列或分泌前导肽的DNA可操作地连接到多肽的DNA,如果它表达为参与该多肽的分泌的前蛋白;将启动子或增强子可操作地连接到编码序列,如果它影响序列的转录;或者将核糖体结合位点可操作地连接到编码序列,如果它被定位以便促进翻译。通常,“可操作连接”意味着被连接的DNA序列是邻接的,并且在分泌前导的情况下是邻接的且处于阅读状态。然而,增强子不必是邻接的。连接是通过在方便的限制性位点连接来完成。如果此类位点不存在,依照常规实践使用合成的寡核苷酸接头或连接体。
用于指导在哺乳动物细胞中表达的合适的表达载体通常包括启动子,以及本领域中已知的其它转录和翻译控制序列。在某些实施方式中,哺乳动物表达载体能够指导多核苷酸优先在特定细胞类型中表达(例如,组织特异性调节元件用于表达多核苷酸)。组织特异性调节元件是本领域已知的并且可以包括,例如,肝细胞特异性启动子和/或增强子(例如,白蛋白启动子、α-1抗胰蛋白酶启动子、载脂蛋白E增强子)。或者,可以使用在几乎任何细胞类型中都有活性的组成型启动子(例如,人巨细胞病毒)。
在某些优选的实施方式中,表达载体是病毒载体。病毒载体的一个或多个病毒基因通常已被移除,并且病毒载体包括插入到用于插入外源转基因(包括本文描述的突变型因子VIII)的病毒基因组插入位点的基因/启动子盒。被移除的基因的必要的功能可以由已被工程化以表达的转基因中早期基因的基因产物的细胞系提供。示例性的病毒载体包括,但不限于,腺相关病毒(AAV)载体,逆转录病毒载体,包括慢病毒载体、腺病毒载体、疱疹病毒载体和甲病毒载体。其他病毒载体包括星状病毒、冠状病毒、正粘病毒、乳多空病毒、副粘病毒、细小病毒、微小核糖核酸病毒、痘病毒、披膜病毒载体等。病毒载体可包括任何合适的核酸构建体,如DNA或RNA构建体,并且可以是单链、双链或双螺旋。
一旦在本发明的DNA构建体已被制备,它已准备好被引入到宿主细胞中。因此,本发明的另一个方面涉及制备包含因子VIII核酸的重组细胞的方法。基本上,这需要通过转化、转导、电穿孔、磷酸钙沉淀、脂质体等将DNA构建体引入到细胞,以及选择已引入的DNA以游离型或整合到宿主基因组中的细胞。
因此,本发明的另一个方面涉及包含编码本发明的重组因子VIII的分离的核酸分子的宿主细胞。所述宿主细胞可以包含分离的核酸分子作为以游离质粒或稳定整合到宿主细胞基因组中的形式的DNA分子。此外,宿主细胞可以构成用于产生重组突变型因子VIII蛋白质的表达系统。合适的宿主细胞可以是,但不限于,动物细胞(例如,幼仓鼠肾(“BHK”)细胞)、中国仓鼠卵巢细胞(“CHO”)、细菌细胞(如大肠杆菌)、昆虫细胞(例如,Sf9细胞)、真菌细胞、酵母细胞(例如,酵母属(Saccharomyces)或裂殖酵母属(Schizosaccharomyces))、植物细胞(例如,拟南芥属或烟草细胞)、藻类细胞等。
本发明的另一个方面涉及制备本发明的重组因子VIII的方法。此方法包括使本发明的宿主细胞在由此所述宿主细胞表达重组因子VIII的条件下生长。然后,将所述重组因子VIII分离。在一个实施方式中,宿主细胞在生长培养基中于体外生长。在一个具体的实施方式中,合适的生长培养基可以包括,但不限于,含有vonWillebrand因子的(本文中称为“VWF”)的生长培养基。在这个实施方式中,宿主细胞可以包含编码VWF的转基因,或者可以将VWF引入到生长培养基中作为补充。在生长培养基中的VWF将允许重组因子VIII的更高表达水平。一旦重组因子VIII被分泌到生长培养基中,可以利用相关的重组DNA和蛋白质领域中的普通技术人员公知的技术(包括本文所述的那些)将其从生长培养基中分离。在另一个实施方式中,制备本发明的重组因子VIII的方法进一步包括在分离所述重组因子VIII之前破坏宿主细胞。在此实施方式中,从细胞碎片中分离重组因子VIII。
当重组产生时,所述因子VIII蛋白质或多肽(或其片段或突变体)在重组宿主细胞(典型地,但不是排他地,真核生物)中表达。在某些优选的实施方式中,真核宿主细胞(如哺乳动物细胞)用于产生如本文所述的突变型因子VIII多肽。适合用于实施本发明的哺乳动物细胞包括,但不限于:COS细胞(例如,ATCCNo.CRL1650或1651),BHK细胞(例如,ATCCNo.CRL6281),CHO细胞(ATCCNo.CCL61),HeLa细胞(如,ATCCNo.CCL2),293细胞(ATCCNo.1573),CHOP细胞和NS-1细胞。
本发明的另一个方面涉及用于治疗患有因子VIII缺乏的患者的方法。在一个实施方式中,这涉及向有此需要的患者施用对治疗所述因子VIII缺乏有效量的(如本文所述的)重组突变型因子VIII。
在一个具体的实施方式中,根据相同的用于注入人或动物因子VIII的程序,将重组因子VIII单独地或者以药物组合物的形式(即,与稳定剂、递送赋形剂和/或载体组合)静脉内注入患者体内。重组因子VIII的合适的有效量可以包括,但不限于,约10至约500单位/千克患者体重。
在另一个实施方式中,治疗患有因子VIII缺乏的患者的方法包括向有此需要的的患者施用对治疗所述因子VIII缺乏有效量的包含编码突变型因子VIII或其功能片段的表达载体的药物组合物。在某些实施方式中,重组因子VIII可以通过移植经遗传改造以产生重组因子VIII的细胞(通常经由含有这样的细胞的装置的植入)来施用。这种移植通常包括使用重组皮肤成纤维细胞的非病毒方法(Roth等人,NewEngl.J.Med.344:1735-1742(2001))。
向因子VIII缺乏的患者施用编码FVIII的表达载体可导致FVIII多肽的足够的表达以在功能上重建凝血连锁。表达载体可以单独使用或与在药学上可接受的或生物相容的组合物中的其它治疗剂组合使用。
所述编码FVIII的多核苷酸可以用作含有重链和轻链部分的单链分子(图10)或在用于递送到患者的宿主细胞的病毒或非病毒载体中分成两个或多个分子(如,重链和轻链;图11)。
在本发明的一个优选实施方式中,包含编码突变型FVIII突变体的核酸序列的表达载体是病毒载体。可在本发明中使用的病毒载体包括,但不限于,腺病毒载体(具有或不具有组织特异性启动子/增强子),多种血清型的腺相关病毒(AAV)载体(例如AAV-1至AAV-12等)和杂种AAV载体,慢病毒载体和伪类型慢病毒载体[例如,埃博拉病毒、水泡性口炎病毒(VSV)和猫免疫缺陷病毒(FIV)],单纯疱疹病毒载体,牛痘病毒载体,逆转录病毒载体,慢病毒载体,非病毒载体等。
在某些优选的实施方式中,提供了用于施用包含编码突变型FVIII或其功能片段核酸序列的病毒载体的方法,其包括使用AAV载体或慢病毒载体。最优选地,分别仅包括载体的主要部分(例如,ITR和LTR元件)。直接递送载体或离体转导人类细胞接着注入体内将导致突变型FVIII的表达,从而通过增强促凝血活性发挥对止血的有益治疗效果。
重组AAV载体和慢病毒载体已发现对各种基因治疗应用具有广泛的效用。其对这些应用的效用主要是由于在各种器官背景下取得的体内基因转移的高效率。AAV和慢病毒颗粒可有利地使用作为进行有效的基因递送的载体。这样的病毒粒子对于这样的应用具有许多理想的特性,包括分裂和不分裂细胞的向性。用这些载体的早期临床经验还没有表现出持续的毒性,并且免疫反应甚微或测不出。已知AAV通过受体介导的胞吞作用或通过胞转而感染体内和体外的各种各样的细胞类型。这些载体系统已在靶向人类的视网膜上皮、肝、骨骼肌、呼吸道、脑、关节和造血干细胞中进行了测试。它很可能是基于质粒DNA或小环的非病毒载体也将是对于如编码FVIII的大基因合适的基因转移载体。
所期望的是引入能够提供,例如,期望的基因的足够表达和最小的免疫原性的载体。改良的AAV和慢病毒载体和生产这种载体的方法已经详细描述在许多参考文献、专利和专利申请中,包括描述生产临床级载体的WrightJ.F.(HumGeneTher20:698-706,2009)。慢病毒载体可以在CHOP生产,并且其他载体可以购自NHLBI基因治疗资源计划(GTRP)-慢病毒载体生产核心实验室的慢病毒载体生产核心实验室。
对于一些应用,表达构建体可以进一步包括用于驱动在特定细胞或组织类型中表达的调节元件。这样的调节元件对本领域技术人员来说是公知的并且在Sambrook等人(1989)和Ausubel等人(1992)中深度讨论。在本发明的表达构建体中引入组织特异性调控元件提供了至少部分的用于表达突变型FVIII或其功能片段的组织嗜性。例如,编码在巨细胞病毒(CMV)启动子控制下的突变型FVIII的核酸序列可用于骨骼肌表达或用于肝特异性表达的hAAT-ApoE等。在慢病毒载体中的造血特异性启动子也可以有利地用于本发明的方法。
在一个优选的实施方式中,提供突变型FVIII序列作为在衣壳中包装的病毒载体的组分。在一个特别优选的实施方式中,AAV载体用于在体内递送突变型FVIII(Gnatenko等人,Br.J.Haematol.104:27-36(1999))。在这种情况下,AAV载体包括至少一个突变型FVIII和用于控制该突变型FVIII序列的表达的相关表达控制序列。如图10和图11所示,示例性的用于表达突变型FVIII序列AAV载体可包括用于FVIII表达的启动子-增强子调节区和起到确保促进复制以及将突变型FVIII核酸包装入AAV衣壳并将突变型FVIII核酸整合到靶细胞基因组中的作用的顺式作用的ITR。优选地,所述AAV载体具有rep和cap基因缺失,并由突变型hFVIII序列和与其相关的表达控制序列代替。如图10和图11所示,所述突变型FVIII序列通常被插入与对病毒复制足够的一个或两个(即,侧翼的)AAVTR或TR元件相邻。也可以包括其他的适合于促进突变型hFVIII序列在靶细胞中的组织特异性表达的调节序列。
包装的病毒载体的病毒衣壳组分可以是细小病毒衣壳。AAVCap和嵌合衣壳是优选的。合适的细小病毒病毒衣壳组分的实例是来自细小病毒家族(例如,自主性细小病毒或依赖病毒)的衣壳组件。例如,病毒衣壳可以是AAV衣壳(例如,AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11或AAV12衣壳;本领域技术人员将知道存在有可能执行相同或相似功能的尚未确定的其它变体)或者可以包括来自两个或更多个AAV衣壳的组分。AAVCap蛋白质的完整补体包括VP1、VP2和VP3。包含编码AAVVP衣壳蛋白的核苷酸序列的ORF可包含小于完整补体AAVCap蛋白,或者可以提供AAVCap蛋白的完整补体。
如在Rabinowitz等人的第6491907号美国专利中所述,在一个或多个所述AAVCap蛋白可以是嵌合蛋白,包括来自两个或更多个病毒(优选两个或更多个AAV)的氨基酸序列AAVCap。例如,嵌合病毒衣壳可以包括AAV1Cap蛋白或亚单位和至少一个AAV2Cap或亚单位。嵌合衣壳可以,例如,包括具有一个或多个B19Cap亚单位的AAV衣壳,例如,AAVCap蛋白或亚单位可由B19Cap蛋白或亚单位替换。例如,AAV衣壳的Vp3亚单位可由B19的Vp2亚单位替换。
可以培养包装细胞以产生本发明的包装的病毒载体。包装细胞可以包括异源的(1)病毒载体功能、(2)包装功能和(3)助手功能。病毒载体功能一般包括细小病毒基因组(如AAV基因组)的一部分,具有rep和cap缺失并且由如上所述的突变型FVIII序列和与其相关的表达控制序列替代。
在某些实施方式中,如Samulski等人的第2004/0029106号美国专利公开所描述的,病毒载体功能可以合适地被提供为双链体载体模板。双链体载体是二聚自身互补(sc)的多核苷酸(通常是DNA)。例如,双链体载体的DNA可以被选择从而由于链内碱基配对形成双链发夹结构。双链体DNA载体的两条链可以被包装在病毒衣壳内。双链体载体提供了可与双链DNA病毒载体相媲美的功能,并且能够减轻靶细胞合成通常由病毒壳体化的单链基因组的互补DNA的需要。
选择用于病毒载体的TR(可分解的和不可分解的)优选是AAV序列(来自任何AAV血清型)。可分解的AAVITR不必具有野生型TR序列(例如,野生型序列可通过插入、缺失、截短或错义突变而改变),只要TR介导所期望的功能(例如,病毒包装、整合和/或原病毒拯救等)即可。TR可以是起到AAV反向末端重复的作用的合成序列,例如,如在Samulski等人的第5478745号美国专利中描述的“双D序列”。典型地,但不是必须的,所述TR来自相同的细小病毒,例如,两个TR序列均来自AAV2。
包装功能包括衣壳组分。衣壳组分优选来自细小病毒衣壳,如AAV衣壳或嵌合AAV衣壳功能。合适的细小病毒病毒衣壳组分的实例是来自细小病毒病科(例如,自主性细小病毒或依赖病毒)的衣壳组分。例如,衣壳组分可以选自AAV衣壳(例如,AAV1-AAV12)和尚未鉴定的或来自非人灵长类动物来源的其它新衣壳。衣壳组分可以包括来自两个或更多个AAV衣壳的组分。
在某些实施方式中,如在Rabinowitz等人的第6491907号美国专利中所述,一个或多个VP衣壳蛋白可包含嵌合蛋白,包括来自两个或更多个病毒(优选两个或更多个AAV)的氨基酸序列。例如,嵌合病毒衣壳可包括来自腺相关病毒(AAV)的衣壳区域和至少一个来自B19病毒的衣壳区域。嵌合衣壳可以,例如,包括具有一个或多个B19衣壳亚单位的AAV衣壳,例如,AAV衣壳亚单位可由B19衣壳亚单位替代。例如,AAV衣壳的VP1、VP2或VP3亚单位可由B19的VP1、VP2或VP3亚单位替代。作为另一个例子,嵌合衣壳可以包括2型AAV衣壳,其中,2型VP1亚单位已被来自1型、3型、4型、5型或6型AAV衣壳(优选3型、4型或5型衣壳)的VP1亚单位替代。或者,嵌合细小病毒具有2型AAV衣壳,其中,2型VP2亚单位已被来自1型、3型、4型、5型或6型AAV衣壳(优选3型、4型或5型衣壳)的VP2亚单位替代。同样,优选的是嵌合体细小病毒,其中,用来自1型、3型、4型、5型或6型AAV衣壳(优选3型、4型或5型衣壳)的VP3亚单位代替2型AAV衣壳的VP3亚单位。作为进一步的选择,优选的是嵌合体细小病毒,其中,2型AAV亚单位中的两个被来自不同血清型的AAV(例如,1型、3型、4型、5型或6型AAV衣壳)的亚单位替代。在根据该实施方式的示例性的嵌合细小病毒中,2型AAV衣壳的VP1和VP2,或者VP1和VP3,或者VP2和VP3亚单位由不同血清型的AAV(例如,1型、3型、4型、5型或6型AAV)的相应亚单位代替。同样地,在其它优选实施方式中,嵌合细小病毒具有1型、3型、4型、5型或6型AAV衣壳(优选2型、3型或5型衣壳),其中,如以上针对2型AAV所描述的,一个或两个亚单位已替换为来自不同血清型的AAV的那些。
包装病毒载体通常包括突变型FVIII序列和足以导致载体DNA的包装和随后的突变型FVIII序列在转导细胞中的表达的TR元件的侧翼的表达控制序列。病毒载体功能可以,例如,被提供给细胞作为质粒或扩增子的组成部分。病毒载体功能可以以染色体外的形式存在于细胞系内和/或可被整合到细胞的染色体DNA中。
在一个优选的实施方式中,本文所述的突变型FVIII被用于FVIII相关病症(如血友病A)的基因治疗中。在这种情况下的,突变型FVIII转基因的表达可以增强同时患有由于因子VIII缺乏导致的无法控制的出血(如关节内、颅内或胃肠道出血)的受试者的凝血,包括已出现了针对人因子VIII的抗体的血友病患者。载体的靶细胞是能够表达具有FVIII活性的多肽的细胞,如哺乳动物的肝脏系统的那些,内皮细胞,和具有用于加工前体的合适的细胞结构(cellularmachinery)以产生具有FVIII活性的蛋白质的其他细胞。
在具体实施方式中,本发明提供了一种药物组合物,其包含在药学上可接受的载体和/或其它医药剂、药剂、载体、佐剂、稀释剂等中的本发明的包括FVIII的修饰基因的载体。
应当向需要这种治疗的患者施用的重组因子VIII的治疗剂量将根据因子VIII缺乏的严重程度变化。一般地,剂量水平在符合每个患者的出血事件的严重性和持续时间的情况下以调整频率、持续时间和单位调节。因此,如通过标准凝血测定法所测定的,重组因子VIII以足以向患者递送治疗有效量的蛋白质以止血的量被包括在药学上可接受的载体、递送赋形剂或稳定剂中。
因子VIII被经典定义为修正存源自患有A型血友病的个体的血浆中的凝血缺陷的存在于正常血浆中的物质。因子VIII的纯化的和部分纯化的形式的体外凝血活性被用于计算用于人类患者注入的重组因子VIII的剂量,并且是从患者血浆恢复的活性和修正体内出血缺陷的可靠指标。根据Lusher等人.,NewEngl.J.Med.328:453-459(1993);Pittman等人,Blood79:389-397(1992);和Brinkhous等人,Proc.Natl.Acad.Sci.82:8752-8755(1985),在新的因子VIII分子的体外标准测定和其在狗注入模型中或在人患者中的行为之间没有报道差异。
通常,通过施用重组因子VIII在患者中实现的所需的血浆因子VIII活性水平在正常的30-200%的范围内。在一个实施方式中,治疗性重组因子VIII的施用是以优选剂量在约5至500单位/kg体重的范围内,且特别是在10-100单位/kg体重的范围内的剂量,且更特别是在20-40单位/kg体重的剂量,静脉内给予;间隔频率是在约8至24小时的范围(就严重受影响的血友病患者而言);以天计的处理持续时间在1至10天或直到出血事件得以解决的范围内。参见,例如,Roberts,H.R.和M.R.Jones的“HemophiliaandRelatedConditions--CongenitalDeficienciesofProthrombin(FactorII,FactorV,andFactors)Ch.153,1453-1474,1460,由Williams,W.J.等人编辑的血液学(1990)”。具有抑制剂的患者可能需要与其以前形式的因子VIII相比不同量的重组因子VIII。例如,因重组因子VIII比野生型VIII更高的特异性活性及其降低的抗体反应性,患者可能需要较少的重组因子VIII。如在用人或源自血浆的因子VIII的治疗中,注入的治疗性重组因子VIII的量由一级因子VIII凝血测定法定义,并且在选择的情况下,体内恢复是通过测量注入后患者的血浆中的因子VIII而确定的。应当理解,对于任何特定受试者,特定的剂量方案应根据个体需要和施用或监督组合物施用的人的专业判断随着经过的时间而调节,且本文阐述的浓度范围仅是示范性的并不意欲限制权利要求保护的重组因子VIII的范围或实践。
治疗可以视需要采取重组因子VIII的单次静脉内给药的形式或在一段长时间内定期或连续给药。或者,治疗性重组因子VIII可以在不同的时间间隔以一个或数个剂量与脂质体一起皮下或口服给药。
对于注射,载体典型地是液体。对于给药的其它方法,载体可以是固体或液体。对于吸入给药,载体将是可吸入,并且优选是以固体或液体颗粒的形式。作为注射介质中,优选使用包含通常用于注射溶液的添加剂(如稳定剂,盐或盐水,和/或缓冲剂)的水。
示例性的药学上可接受的载体包括无菌、无热原的水和无菌、无热原的磷酸缓冲盐水。生理学上可接受的载体包括药学上可接受的载体。药学可接受的载体是那些不是生物学或其它方面不理想的,即,该材料可被施用于受试者,而不会引起胜过该材料的有利的生物效应的不希望的生物效应。(例如,在离体细胞转染时或者在直接向受试者施用病毒载体或细胞时)可以使用一种药物组合物。
包含修饰的FVIII的基因的重组病毒载体优选以生物学有效量施用到细胞中。如果将病毒载体施用到体内细胞(例如,如下所述将病毒施用于受试者),病毒载体的生物有效量是足以导致转基因在靶细胞中转导和表达的量。
用病毒载体转导的细胞优选以与药物载体组合的“治疗有效量”施用于受试者。本领域技术人员将理解,治疗效果不必是完全的或治愈的,只要向受试者提供一些益处即可。
向受试者施用的细胞的剂量将随着受试者的年龄、身体状况和种类,细胞类型、由细胞表达的核酸、给药方式等变化。通常,将每剂量施用至少约102至约108,优选约103至约108个细胞。优选地,所述细胞将以治疗有效量施用。
向有此需要的人受试者或动物施用所述载体可以通过本领域中已知的用于施用病毒载体的任何方法。示例性的施用方式包括直肠、经粘膜、局部、透皮、吸入、肠胃外(例如,静脉内、皮下、皮内、肌肉内和关节内)施用等,以及直接的组织或器官注射,或者,鞘内、直接肌内、心室内、静脉内、腹膜内、鼻内或眼内注射。注射剂可以常规形式制备,可以作为液体溶液或悬浮液、适于在注射前用于溶液或液体悬浮液的固体形式。或者,可以在局部而非全身方式施用病毒,例如,以储库或缓释制剂。
在其它优选的实施方式中,本发明的包含突变型FVIII基因的载体以肌内施用,更优选通过肌内注射或通过局部给药施用。本文公开的载体可以通过任何合适的手段施用于受试者的肺,但优选通过施用包含本发明的细小病毒载体的患者吸入的可吸入颗粒的气雾剂悬浮液来施用。所述可吸入颗粒可以是液体或固体。如本领域技术人员所熟知的,包含本发明的细小病毒载体的液体颗粒的气溶胶可以通过任何合适的手段来制造,例如,使用压力驱动的气雾剂喷雾器或超声喷雾器。参见,例如,第4501729号美国专利。
具有突变型FVIII基因的病毒载体的剂量将取决于施用方式、要治疗的疾病或病症、个体受试者的身体状况、具体的病毒载体以及要被递送的基因,并且可以常规方式确定。达到治疗效果的示例性的剂量为至少为约105、106、107、108、109、1010、1011、1012、1013、1014、1015转导单位以上,优选约108-1013转导单位,还更优选1012转导单位的病毒载量。突变型FVIII基因可以施用作为具有适合于在靶细胞中表达的调节元件的DNA分子的组成部分。突变型FVIII基因可以施用作为病毒质粒(如rAAV载体)的组分。病毒颗粒可施用作为单独的病毒颗粒,无论是向门户脉管系统体内直接递送,还是包括将载体病毒颗粒体外施用到来自接受治疗的动物的细胞接着将转导的细胞返回到供体的体外治疗。
本发明通过下列实施例进一步说明,这些实施例不应被解释为对本发明的限制。在本申请中引用的所有参考文献、专利和公开的专利申请通过引用的方式并入本文。
实施例1:无B结构域的因子VIII突变体的构建、表达和纯化
质粒pAAV-CB-F8携带在CB启动子(具有CMV增强子的β-肌动蛋白启动子)控制下的无B结构域的人因子VIII(hF8)cDNA。该质粒,与图10所示的构建体一致,被用作用于制备各种hF8突变体的模板。化学合成编码取代突变I86V、Y105F、A108S、D115E、Q117H、F129L、G132K、H134Q、M147T和L152P的hF8cDNA片段并用于替换质粒pAAV-CB-F8的相应区域。所得质粒(质粒pAAV-CB-F8-X10)表达具有上述10个突变的突变型因子VIII蛋白(F8-X10;SEQIDNO:3)。
化学合成编码取代突变I86V、A108S、G132K、M147T、L152P的因子VIIIcDNA片段并用于替换质粒pAAV-CB-F8的相应区域。所得质粒(质粒pAAV-CB-F8-X5)表达具有上述5个突变的突变型因子VIII蛋白(F8-X5;SEQIDNO:4)。
在pAAV-CB-F8质粒中使用定点诱变来引入对应于人因子VIII的I86、Y105、A108、D115、Q117、F129、G132、H134、M147、L152的各个突变。由此产生的质粒包括质粒pAAV-CB-F8-I86V、质粒pAAV-CB-F8-Y105F、质粒pAAV-CB-F8-A108S、质粒pAAV-CB-F8-D115E、质粒pAAV-CB-F8-Q117H、质粒pAAV-CB-F8-F129L、质粒pAAV-CB-F8-G132K、质粒pAAV-CB-F8-H134Q和质粒pAAV-CB-F8-M147T、质粒pAAV-CB-F8-L152P。
也使用定点诱变来将pAAV-CB-F8-X10质粒中的hF8-X10的氨基酸86、105、108、115、117、129、132、134、147、152的各个突变恢复为野生型人氨基酸。由此产生的质粒包括质粒pAAV-CB-F8-X10-V86I、质粒pAAV-CB-F8-X10-F105Y、质粒pAAV-CB-F8-X10-S108A、质粒pAAV-CB-F8-X10-E115D、质粒pAAV-CB-F8-X10-H117Q、质粒pAAV-CB-F8-X10-L129F、质粒pAAV-CB-F8-X10-K132G、质粒pAAV-CB-F8-X10-Q134H、质粒pAAV-CB-F8-X10-T147M、质粒pAAV-CB-F8-X10-P152L。这些突变按照如下实施例4(图7)所述进行测试。
使用一组具有对应于G132位置的NNN的简并寡核苷酸来创建对应于G132的全部19种突变。由此产生的因子VIII突变体质粒包括质粒pAAV-CB-F8-G132A、质粒pAAV-CB-F8-G132I、….质粒pAAV-CB-F8-G132V等。最后一个字母表示在该特定位置上的氨基酸取代。类似的策略可以用于产生根据本发明其它取代。
上述质粒含有AAV-ITR并可用于产生AAV载体。肝特异性启动子可用于替代CB启动子以减小表达盒的大小并提高载体在肝中的包装和表达。也可以使用其他组织特异性启动子。
将FVIII重链和FVIII终止密码子之间的序列从FVIII表达载体中除去。所得重链(HC)突变体包含FVIII的前745个氨基酸,缺乏B结构域(BDD)和轻链(LC)序列。质粒pAAV-CB-HC-X10包含对应于重链中的I86V、Y105F、A108S、D115E、Q117H、F129L、G132K、H134Q、M147T和L152P的突变。质粒pAAV-CB-HC-X5包含对应于重链中的I86V、A108S、G132K、M147T、L152P的突变。质粒pAAV-CB-HC-G132K包含对应于重链中的G132K的突变。或者,可将酸性区3(a3)加入到这些构建体中以获得在HC1690背景下的HC突变体。
实施例2:不同因子VIII突变体在组织培养细胞中分泌的比较
在BHK细胞(图A)或293细胞(图B)中分别转染质粒pAAV-CB-hBDD-F8(重量)、质粒pAAV-CB-hBDD-F8-X10、质粒pAAV-CB-hBDD-F8-X5和质粒pAAV-CB-hBDD-F8-G312K。收获介质中分泌的F8,并在转染后48小时通过aPTT测定法对其进行测定。将野生型人BDD-F8(hBDD)的表达/分泌设定为100%。如图7所示,与野生型hF8相比,hF8突变体以约2-8.5倍更高的表达水平分泌。
实施例3:人因子VIII突变体体内分泌的比较
质粒pAAV-CB-hBDDF8(B结构域缺失(BDD)wthF8)、质粒pAAV-CB-hBDDF8-X10(具有10个取代的hF8-BDD;SEQIDNO:3)、质粒pAAV-CB-hBDD-F8-X5(具有5个取代的hF8;SEQIDNO:4)和质粒pAAV-CB-hBDD-F8-G312K(具有G132K取代的hF8)分别注射到Blab/c和F8双敲除小鼠中。收集血液中分泌的F8并在注射后48小时通过aPTT测定法对其进行测定。将野生型人F8(hBDD-F8)的表达/分泌设定为100%。这里描述的所有突变优于野生型因子VIII。如图8所示,与野生型hF8相比,hF8突变体以约1.2-5.2倍更高的表达水平分泌。
实施例4:不同因子VIII突变体分泌的比较
修饰编码hBDD-F8-X10中的氨基酸的质粒以将突变取代恢复为其相应的如表中所示的野生型氨基酸。例如,hBDD-F8-X10-V86I表示hBDD-F8-X10中的“V86”被改回为“I”。在hBDD-F8-X10-6p中,hBDD-F8-X10中的10个突变氨基酸中的6个被恢复为其相应的野生型氨基酸。在293细胞中分别转染上述质粒。收获介质中分泌的F8,并在转染后48小时通过aPTT测定法对其进行测定。将hBDD-F8-X10的表达/分泌设定为100%。如图9所示,与hBDD-F8-X10突变体相比,所有回复体表现出减少的表达和分泌。
实施例4:不同因子VIII突变体分泌的比较
将AAV8载体AAV-apoEhAAT-hF8HC1690(携带人因子VIII重链氨基酸#1-745和a3序列,apoEhAAT:具有apoE增强子的人α一个抗胰蛋白酶启动子)和AAV-apoEhAAT-hF8-HC-X10(具有10个取代的hF8HC)各自与轻链表达载体一起分别注射到F8敲除小鼠中(剂量:各载体1E11颗粒/小鼠)。收集血液中分泌的F8,并在指定时间通过aPTT测定法对其进行测定。将野生型人F8重链(hF8-HC1690)的表达/分泌设定为100%。这里描述的hF8-HC1690-X10突变体优于野生型重链表达。如图10所示,与野生型hF8HC相比,hF8-HC1690-X10突变体以约6-20倍更高的表达水平分泌。
实施例6:在293细胞中G132因子VIII重链突变体的分泌的比较
在293细胞中转染质粒pAAV-CB-hF8-HC1690(携带人因子VIII的重链氨基酸#1-745和a3序列;见图1)或在G132具有指定取代的质粒与F8轻链(LC)表达质粒。收集介质中分泌的F8,并在转染后48小时通过aPTT测定法对其进行测定。将野生型人F8重链(hF8-HC1690)的表达/分泌设定为100%。如图11所示,与野生型hF8HC相比,F8G132HC1690突变体以约1.4-3.4倍更高的表达水平分泌。
实施例7:不同因子VIII重链突变体在体内表达/分泌的比较
将质粒pAAV-CB-hF8-HC1690(携带人因子VIII的重链氨基酸#1-745和酸性区3(a3)序列;见图1,6)、质粒pAAV-CB-hF8-HC1690-X10(具有10个取代的hF8重链;SEQIDNO:5)、质粒pAAV-CB-hF8-HC1690-X5(具有5个取代的hF8重链连同a3序列一起;SEQIDNO:6)以及质粒pAAV-CB-hF8-HC1690-G312K(具有G132K取代的hF8重链和a3序列)各自连同轻链表达质粒一起注射到Blab/c和F8双敲除小鼠中。收集血液中分泌的F8并在注射后48小时通过aPTT测定法对其进行测定。将野生型人F8重链(hF8-HC1690)的表达/分泌设定为100%。如图12所示,与野生型hF8HC相比,hF8突变体以约2.5-4.5倍更高的表达水平分泌。
实施例8:L152因子VIII重链突变体在293细胞中分泌的比较
在293细胞中分别转染质粒pAAV-CB-hF8-HC1690(携带人因子VIII的重链氨基酸#1-745和酸性区3(a3)序列;见图1,6)或在L152具有指定取代的质粒与hF8轻链(LC)表达质粒。收集介质中分泌的hF8,并在转染后48小时通过aPTT测定法对其进行测定。将野生型人F8重链(hF8-HC1690)的表达/分泌设定为100%。hF8-L152HC突变体被鉴定为在图中的其特定氨基酸取代。如图13所示,与野生型hF8HC相比,hF8-L152HC突变体以约1.4-3.5倍更高的表达水平分泌。
实施例9:A108因子VIII重链突变体在293细胞中分泌的比较
在293细胞中分别转染质粒pAAV-CB-hF8-HC1690(携带人因子VIII的重链氨基酸#1-745和a3序列;见图1)或在A108具有指定取代的质粒与hF8轻链(LC)表达质粒。收集介质中分泌的hF8,并在转染后48小时通过aPTT测定法对其进行测定。hF8-A108HC突变体被鉴定为在图中的其特定氨基酸取代。将野生型人F8重链(hF8-HC1690)的表达/分泌设定为100%。如图14所示,与野生型hF8HC相比,多数hF8-A108HC突变体以更高的表达水平分泌。
实施例10:M147因子VIII重链突变体在293细胞中分泌的比较
在293细胞中分别转染质粒pAAV-CB-hF8-HC1690(携带人因子VIII的重链氨基酸#1-745和a3序列;见图1)或在M147具有指定取代的质粒与F8轻链(LC)表达质粒。收集介质中分泌的F8,并在转染后48小时通过hF8ELISA对其进行测定。hF8-M147HC突变体被鉴定为在图中的其特定氨基酸取代。将野生型人F8重链(hF8-HC1690)的表达/分泌设定为100%。如图15所示,与野生型hF8HC相比,多数hF8-M147HC突变体以更高的表达水平分泌。
实施例11:在F8-/-大鼠模型中未检测到针对5个突变氨基酸的中和抗体
A1结构域中具有单一突变(Leu176Pro)WAG/RijYcb背景下的F8-/-大鼠以1×1012病毒颗粒/每鼠施用AAV-TTR-hF8-X10。如Bethesda测定法所测定的,3只被注射的大鼠中,两只被证实出现针对因子VIII的鼠抗人因子VIII抑制性抗体。图A表示在第8周大鼠血浆中的抑制剂水平。图B表示在抗体吸附后在上清液中保持F8的活性。为了确定抑制性抗体是否特异性靶向5个突变氨基酸,我们使用过量的生物素化重组人F8(1.2μgBio-F8)以使大鼠血浆中针对常规FVIII的抑制性抗体饱和。然后,使用30μl链霉亲和素琼脂糖通过在室温下旋转1小时然后在10,000rpm下离心2分钟来拉下抗原-抗体复合物。使用等效量的生物素化的BSA(Bio-BSA)作为对照。然后将200ng的来自稳定表达的细胞系的BDD-F8-X5浓缩物加入到用Bio-F8或Bio-BSA预处理的大鼠血浆中。使用未经预处理的大鼠血浆作为对照。通过单级aPTT测定法测定上清液中的F8活性。如图15所示,在该F8-/-大鼠模型中没有检测到针对五个突变氨基酸的中和抗体。
上面的实施例表明,与野生型因子VIII相比,本发明的突变型因子VIII产品更好地表达和/或分泌,因此它们可降低生产成本,并且在使用基因转移载体时提高转基因表达水平。他们还可以允许较低的载体给药剂量和较高的因子VIII的表达水平。
以上描述是出于教导本领域普通技术人员如何实践本发明的目的。它并不意欲详细说明对正在阅读本说明书的技术人员来说是明显的所有那些显而易见的修改和变化。然而,它意欲将所有这种显而易见的修改和变化包括在本发明的范围内,其由以下权利要求所定义。权利要求意在涵盖有效满足预期目的的以任何顺序的权利要求保护的成分和步骤,除非上下文明确指出相反。

Claims (17)

1.一种分离的人因子VIII多肽突变体,其包括选自I86、Y105、A108、D115、Q117、F129、G132、H134、M147和L152中的一个或多个氨基酸取代。
2.权利要求1所述的突变体,其中,所述一个或多个氨基酸取代选自I86V、Y105F、A108S、D115E、Q117H、F129L、G132K、H134Q、M147T和L152P中。
3.权利要求1所述的突变体,其包括I86、Y105、A108、D115、Q117、F129、G132、H134、M147和L152各氨基酸的氨基酸取代。
4.权利要求3所述的突变体,其包括I86V、Y105F、A108S、D115E、Q117H、F129L、G132K、H134Q、M147T和L152P各氨基酸取代。
5.权利要求1所述的突变体,其中,所述一个或多个氨基酸取代选自I86、A108、G132、M147和L152P中。
6.权利要求5所述的突变体,其中,所述一个或多个氨基酸取代选自I86V、A108S、G132K、M147T和L152P中。
7.权利要求5所述的突变体,其包括I86、A108、G132、M147和L152各氨基酸的氨基酸取代。
8.权利要求7所述的突变体,其包括I86V、A108S、G132K、M147T和L152P各氨基酸的氨基酸取代。
9.权利要求1-8中任一项所述的突变体,其进一步包括人因子VIII的B结构域中的缺失。
10.权利要求9所述的突变体,其进一步包括人因子VIII的a2和/或a3结构域。
11.一种分离的多核苷酸,其编码权利要求1-10中任一项所述的突变体。
12.一种表达载体,其包含权利要求11所述的多核苷酸。
13.一种宿主细胞,其包含权利要求11所述的多核苷酸。
14.一种宿主细胞,其包含权利要求12所述的表达载体。
15.一种药物组合物,其包含权利要求14所述的表达载体。
16.一种用于治疗患有因子VIII缺乏的患者的方法,其包括:
向有此需要的患者施用对治疗所述因子VIII缺乏有效量的权利要求15所述的药物组合物。
17.一种表达人因子VIII多肽突变体的方法,其包括:
(a)用包含权利要求12所述的核酸的表达载体转化宿主细胞;
(b)在适合表达人因子VIII多肽突变体的条件下使宿主细胞生长;和
(c)从表达所述突变体的宿主细胞中纯化人因子VIII多肽突变体。
CN201480035965.2A 2013-06-24 2014-06-24 突变型因子viii组合物和方法 Pending CN105431451A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361838867P 2013-06-24 2013-06-24
US61/838,867 2013-06-24
PCT/US2014/043777 WO2014209942A1 (en) 2013-06-24 2014-06-24 Mutant factor viii compositions and methods

Publications (1)

Publication Number Publication Date
CN105431451A true CN105431451A (zh) 2016-03-23

Family

ID=52142603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480035965.2A Pending CN105431451A (zh) 2013-06-24 2014-06-24 突变型因子viii组合物和方法

Country Status (14)

Country Link
US (3) US20160102133A1 (zh)
EP (2) EP3904376A1 (zh)
CN (1) CN105431451A (zh)
CY (1) CY1124110T1 (zh)
DK (1) DK3013855T3 (zh)
ES (1) ES2837475T3 (zh)
HR (1) HRP20210031T1 (zh)
HU (1) HUE052074T2 (zh)
LT (1) LT3013855T (zh)
PL (1) PL3013855T3 (zh)
PT (1) PT3013855T (zh)
RS (1) RS61305B1 (zh)
SI (1) SI3013855T1 (zh)
WO (1) WO2014209942A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116710554A (zh) * 2021-11-25 2023-09-05 四川至善唯新生物科技有限公司 基因工程改造获得的分泌能力和凝血活性增强的人类八因子
CN116710554B (zh) * 2021-11-25 2024-06-07 四川至善唯新生物科技有限公司 基因工程改造获得的分泌能力和凝血活性增强的人类八因子

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230110654A (ko) * 2015-02-06 2023-07-24 더 유니버시티 오브 노쓰 캐롤라이나 엣 채플 힐 최적화된 인간 응고 인자 viii 유전자 발현 카세트및 그의 용도
SG10202106307UA (en) * 2015-11-13 2021-07-29 Takeda Pharmaceuticals Co Viral vectors encoding recombinant fviii variants with increased expression for gene therapy of hemophilia a
WO2019210270A2 (en) * 2018-04-27 2019-10-31 Seattle Children's Hospital D/B/A Seattle Children's Research Institute In vivo gene therapy using delivery of a lentiviral gene construct
US11795207B2 (en) 2021-03-30 2023-10-24 AAVnerGene Inc. Modified plasma clotting factor VIII and method of use thereof
CN117157316A (zh) * 2021-03-30 2023-12-01 艾诺健基因治疗股份有限公司 修饰的血浆凝血因子viii及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031598A2 (en) * 2001-10-05 2003-04-17 Emory University Nucleic acid and amino acid sequences encoding high-level expressor factor viii polypeptides and methods of use
US20070265199A1 (en) * 2003-12-03 2007-11-15 Fay Philip J Recombinant Factor VIII Having Increased Specific Activity
US20110286988A1 (en) * 2008-06-04 2011-11-24 Bayer Healthcare Llc FVIII Muteins for Treatment of Von Willebrand Disease
US20120065136A1 (en) * 2010-09-14 2012-03-15 University Of Rochester Recombinant factor viii having enhanced stability following mutation at the a1-c2 domain interface

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501729A (en) 1982-12-13 1985-02-26 Research Corporation Aerosolized amiloride treatment of retained pulmonary secretions
US5859204A (en) 1992-04-07 1999-01-12 Emory University Modified factor VIII
US5364771A (en) 1992-04-07 1994-11-15 Emory University Hybrid human/porcine factor VIII
US6376463B1 (en) 1992-04-07 2002-04-23 Emory University Modified factor VIII
US5478745A (en) 1992-12-04 1995-12-26 University Of Pittsburgh Recombinant viral vector system
US20040092442A1 (en) 1996-04-24 2004-05-13 University Of Michigan Inactivation resistant factor VIII
US6759216B1 (en) 1998-11-06 2004-07-06 Emory University Glycosylated, low antigenicity low immunogenicity factor VIII
US6491907B1 (en) 1998-11-10 2002-12-10 The University Of North Carolina At Chapel Hill Recombinant parvovirus vectors and method of making
EP1038959A1 (en) 1999-03-17 2000-09-27 Aventis Behring Gesellschaft mit beschränkter Haftung Factor VIII without B-domain, comprising one or more insertions of a truncated intron I of factor IX
AU2001269723B9 (en) 2000-06-01 2006-11-16 University Of North Carolina At Chapel Hill Duplexed parvovirus vectors
US6770744B2 (en) 2000-09-19 2004-08-03 Emory University Modified factor VIII
EP1233064A1 (en) 2001-02-09 2002-08-21 Aventis Behring Gesellschaft mit beschränkter Haftung Modified factor VIII cDNA and its use for the production of factor VIII
EP1424344A1 (en) 2002-11-29 2004-06-02 Aventis Behring Gesellschaft mit beschränkter Haftung Modified cDNA factor VIII and its derivates
US7211559B2 (en) * 2003-10-31 2007-05-01 University Of Maryland, Baltimore Factor VIII compositions and methods
CN102971006A (zh) 2010-07-15 2013-03-13 诺沃—诺迪斯克有限公司 稳定的因子viii变体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031598A2 (en) * 2001-10-05 2003-04-17 Emory University Nucleic acid and amino acid sequences encoding high-level expressor factor viii polypeptides and methods of use
US20070265199A1 (en) * 2003-12-03 2007-11-15 Fay Philip J Recombinant Factor VIII Having Increased Specific Activity
US20110286988A1 (en) * 2008-06-04 2011-11-24 Bayer Healthcare Llc FVIII Muteins for Treatment of Von Willebrand Disease
US20120065136A1 (en) * 2010-09-14 2012-03-15 University Of Rochester Recombinant factor viii having enhanced stability following mutation at the a1-c2 domain interface

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KARDAR GA.等: "The effects of novel mutations in A1 domain of human coagulation factor VIII on its secretion level in cultured mammalian cells", 《IRANIAN JOURNAL OF BIOTECHNOLOGY》 *
PARKER ERNEST T.等: "A1 Subunit-mediated Regulation of Thrombin-activated Factor VIII A2 Subunit Dissociation", 《THE JOURNAL OF BIOLOGICAL CHEMISTRY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116710554A (zh) * 2021-11-25 2023-09-05 四川至善唯新生物科技有限公司 基因工程改造获得的分泌能力和凝血活性增强的人类八因子
CN116710554B (zh) * 2021-11-25 2024-06-07 四川至善唯新生物科技有限公司 基因工程改造获得的分泌能力和凝血活性增强的人类八因子

Also Published As

Publication number Publication date
EP3013855A4 (en) 2017-12-13
PL3013855T3 (pl) 2021-04-19
EP3013855B1 (en) 2020-10-14
ES2837475T3 (es) 2021-06-30
EP3904376A1 (en) 2021-11-03
PT3013855T (pt) 2021-01-13
HRP20210031T1 (hr) 2021-05-14
LT3013855T (lt) 2021-01-25
WO2014209942A1 (en) 2014-12-31
DK3013855T3 (da) 2021-01-11
US20160102133A1 (en) 2016-04-14
CY1124110T1 (el) 2022-05-27
US11261234B2 (en) 2022-03-01
US20190177399A1 (en) 2019-06-13
HUE052074T2 (hu) 2021-04-28
RS61305B1 (sr) 2021-02-26
US20220144919A1 (en) 2022-05-12
EP3013855A1 (en) 2016-05-04
SI3013855T1 (sl) 2021-06-30

Similar Documents

Publication Publication Date Title
US20220144919A1 (en) Mutant factor viii compositions and methods
EP2037892B1 (en) Modified factor viii and factor ix genes and vectors for gene therapy
JP6831779B2 (ja) 修飾された第ix因子、並びに、細胞、器官及び組織への遺伝子導入のための組成物、方法及び使用
CN107427557B (zh) 用于包装和表达变体因子viii以治疗血友病的改良表达组件
JP2020530999A (ja) 核酸分子およびその使用
Vance et al. AAV biology, infectivity and therapeutic use from bench to clinic
AU2016267687B2 (en) Adeno-associated virus mediated delivery of C1EI as a therapy for angioedema
CN113316639A (zh) 用于治疗庞贝氏病的治疗性腺相关病毒
WO2021021661A1 (en) Engineered nucleic acid regulatory element and methods of uses thereof
WO2008127654A2 (en) Methods and compositions for intra-articular coagulation proteins
KR20220092583A (ko) 인자 viii 폴리펩타이드
JP2021531044A (ja) ムコ多糖症iva型の治療
WO2013159036A1 (en) Adeno associated virus plasmids and vectors
CN117247973A (zh) 一种用于遗传性凝血因子缺乏病治疗的核酸构建体及其用途
EP3302540A1 (en) Adeno-associated virus mediated delivery of c1ei as a therapy for angioedema
US11795207B2 (en) Modified plasma clotting factor VIII and method of use thereof
KR102665348B1 (ko) 지혈 장애의 치료를 위한 변이체 인자 viii의 패키징 및 발현을 위한 개선된 발현 카세트
EP4314041A1 (en) Modified plasma clotting factor viii and method of use thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination