CN105430685B - 基于控制图的干扰源数量估计方法 - Google Patents

基于控制图的干扰源数量估计方法 Download PDF

Info

Publication number
CN105430685B
CN105430685B CN201510749660.4A CN201510749660A CN105430685B CN 105430685 B CN105430685 B CN 105430685B CN 201510749660 A CN201510749660 A CN 201510749660A CN 105430685 B CN105430685 B CN 105430685B
Authority
CN
China
Prior art keywords
interference
node
neighbor
monitoring
sources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510749660.4A
Other languages
English (en)
Other versions
CN105430685A (zh
Inventor
魏祥麟
范建华
王棋萍
王统祥
胡永扬
李冉
孙钦
胡飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
36th Institute Of Central Military Commission Equipment Development Department
Original Assignee
36th Institute Of Central Military Commission Equipment Development Department
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 36th Institute Of Central Military Commission Equipment Development Department filed Critical 36th Institute Of Central Military Commission Equipment Development Department
Priority to CN201510749660.4A priority Critical patent/CN105430685B/zh
Publication of CN105430685A publication Critical patent/CN105430685A/zh
Application granted granted Critical
Publication of CN105430685B publication Critical patent/CN105430685B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开一种基于控制图的干扰源数量估计方法,包括如下步骤:(10)邻居监测:本节点接收来自邻居节点的报文,根据所述报文建立本节点的邻居列表,记录每个邻居节点的信噪比,本节点与邻居节点之间通过交互报文获得彼此的邻居列表;(20)干扰判别:本节点根据邻居列表及邻居节点的信噪比变化情况,判断本节点是否受到干扰攻击,如否,则返回(10)邻居监测步骤;(30)干扰估计:如本节点受到干扰攻击,则本节点向邻居节点发送静默请求,监测干扰信号强度,形成干扰信号强度矩阵,采用控制图方法从干扰信号强度矩阵估计出干扰源数量。本发明的干扰源数量估计方法,能准确估计多个干扰源的数量,从而有利于对多个干扰源进行准确定位。

Description

基于控制图的干扰源数量估计方法
技术领域
本发明属于网络数据通信技术领域,特别是一种基于控制图的干扰源数量估计方法。
背景技术
干扰源定位是指多跳无线网络中的被干扰节点,通过主动测量和被动监听,得到多个协议栈层次的观察结果,利用无线信道传播特性和干扰区域几何知识,协作推断出干扰源的相对或绝对位置。干扰源定位的典型算法包括质心定位算法、权重质心定位算法、虚拟力迭代算法、凸壳定位方法等。这些定位算法大多针对单个干扰源提出。为了达到高效、大范围的干扰,多个干扰源通常协同工作,以增强干扰效果,从而使得无线网络节点周围可能存在多个干扰源。为此,如何有效的定位多个干扰源使得问题进一步复杂化。
北京科技大学的程天祯等人提出了一种称为X射线的干扰区域定位算法。该X射线定位算法包括干扰区域映射、干扰区域骨架化和干扰源位置确定三个步骤。该算法通过干扰区域骨架化,利用分叉点的位置信息反映干扰源的物理位置,由于区域边界受噪声影响较大,因此X射线干扰区域定位算法定位精度偏低。
为了准确定位多个干扰源,对干扰源数量的估计是基础。现有技术中未见关于多个干扰源数量估计的方法,导致难以对多个干扰源进行准确定位。
发明内容
本发明的目的在于提供一种基于控制图的干扰源数量估计方法,能准确估计多个干扰源的数量,从而有利于对多个干扰源进行准确定位。
实现本发明目的的技术解决方案为:一种基于控制图的干扰源数量估计方法,包括如下步骤:
(10)邻居监测:本节点接收来自邻居节点的报文,根据所述报文建立本节点的邻居列表,记录每个邻居节点的信噪比,本节点与邻居节点之间通过交互报文获得彼此的邻居列表;
(20)干扰判别:根据本节点的邻居列表及邻居节点的信噪比变化情况,判断本节点是否受到干扰攻击,如否,则返回(10)邻居监测步骤;
(30)干扰估计:如本节点受到干扰攻击,则其向邻居节点发送静默请求,监测干扰信号强度,形成干扰信号强度矩阵,采用控制图方法从干扰信号强度矩阵估计出干扰源数量。
本发明与现有技术相比,其显著优点为:
1.开销小,实现简单。本发明提出的干扰源数量估计方法无需复杂的通信交互和信号处理,仅需依赖廉价无线设备所具有的接收信号强度监测功能进行干扰源信号强度监测,无需进行干扰信号分离,因而处理开销大大降低,便于在普通民用无线设备上实现。
2.精度高,估计准确。本发明提出使用控制图方法对干扰信号强度矩阵进行变更点检测,可以精确发现干扰信号强度变化较大的变更时刻,可以准确估计干扰源数量的变化情况。
下面结合附图和具体实施方式对本发明作进一步的详细描述。
附图说明
图1是本发明基于控制图的干扰源数量估计方法的主流程图。
图2是图1中干扰估计步骤的流程图。
图3是存在干扰源的多跳无线网络场景示例图。
图4是采用本发明基于控制图的干扰源数量估计方法对多个干扰源的估计的结果示例。
具体实施方式
如图1所示,本发明基于控制图的干扰源数量估计方法,包括如下步骤:
(10)邻居监测:本节点接收来自邻居节点的报文,根据这些报文建立本节点的邻居列表,记录每个邻居节点的信噪比,然后,本节点与邻居节点之间通过交互报文获得彼此的邻居列表;
例如,本节点与邻居节点之间通过交互NEIGHBOR_LIST_REQUEST和NEIGHBOR_LIST_REPLY报文,获得彼此的邻居列表;当邻居节点收到NEIGHBOR_LIST_REQUEST报文时,邻居节点将自身的邻居列表放入NEIGHBOR_LIST_REPLY报文,回复本节点。
(20)干扰判别:根据本节点的邻居列表及邻居节点的信噪比变化情况,判断本节点是否受到干扰攻击,如否,则返回(10)邻居监测步骤;
所述(20)干扰判别步骤具体为:当本节点的邻居数量减少幅度大于等于30%,或者尽管本节点邻居数量减少幅度小于30%,但有不少于30%的邻居节点的信噪比降幅大于等于30%,则判定本节点受到干扰攻击。
(30)干扰估计:如本节点受到干扰攻击,则本节点向邻居节点发送静默请求,监测干扰信号强度,形成干扰信号强度矩阵,采用控制图方法从干扰信号强度矩阵估计出干扰源数量。
如图2所示,所述(30)干扰估计步骤包括:
(31)静默请求发送:本节点向邻居节点发送报文,请求邻居节点在静默期内不向本节点发送信息;
例如,本节点向邻居节点发送静默请求报文SILENCE_REQUEST。SILENCE_REQUEST报文中规定了静默时长。在静默时长内,邻居节点将不会向节点发送信息。
(32)干扰信号强度监测:本节点在m个信道上,经过n个监测周期t,记录自身接收到的干扰信号强度,形成干扰信号强度矩阵
X=[x1,x2,…xi,…,xm],
其中,xi表示第i个信道上监测到的干扰信号强度时间序列,
xi={x1i,x2i,…,xji,…,xni},
其中,xji表示第i个信道上第j个监测周期内监测到的干扰信号强度;
(33)干扰信号数量估计:采用控制图方法,对干扰信号强度矩阵进行处理,估计出干扰源数量;
所述(33)干扰信号数量估计步骤包括:
(331)构建n-1行m列的矩阵Y=[y1,y2,…,ym],使得yij=x(i+1)j-xij
(332)对矩阵Y应用Shewhart控制图方法,其上控制线为
下控制线为
其中,
为Y的各列极差的平均值,d2是依赖于参数n-1的一个常数;
(333)构建包含n-1个元素的向量
z={z1,z2,…,zn-1},
其中,
(334)设置第1个监测周期之前的干扰源数量为0;
(335)估计第i个监测周期之前的干扰源数量:从z1开始到zi-1为止,在保证干扰源数量大于等于0的前提下,对于每个zj,1≤j<i,当zj大于UCL时,干扰源数量加1,当zj小于LCL时,干扰源数量减1,否则干扰源数量不变,当处理至zi时,得到第i个监测周期之前的干扰源数量。
(34)静默区间判别:判别本时刻是否仍处于静默期内,如是,则返回(32)干扰信号强度监测步骤,如否,则输出干扰源数量。
图3是存在干扰源的多跳无线网络场景示例图。针对图3所示的场景,网络环境中节点S采用本发明基于控制图的干扰源数量估计方法对多个干扰源估计的结果如图4所示。
多节点部署在一个100米乘以100米的区域内,干扰源传输功率设置为31.6毫瓦,S的坐标为(80,90),第一、第二和第三个干扰源的坐标分别为(60,80)、(80,100)和(100,80),监测周期为100毫秒,采用自由空间传播模型。第一个干扰源在第11个监测周期打开,在第40个监测周期关闭,并在第61个监测周期再次打开。第二个干扰源在第21个监测周期打开,在第51个监测周期关闭,并在第71个监测周期重新打开。第三个干扰源在第31个监测周期打开,并在第61个监测周期关闭。根据这个设定可知,第1-10个监测周期,干扰源数量为0;第11-20个监测周期,干扰源数量为1;第21-30个监测周期,干扰源数量为2;第31-39个监测周期,干扰源数量为3;第40-50个监测周期,干扰源数量为2;第51-70个监测周期,干扰源数量为1;第71-80个监测周期,干扰源数量为2。
S监测得到的干扰信号强度矩阵的各个列分别为:
x1=[0.000079 0.000078 0.000080 0.000077 0.000078 0.000077 0.0000780.000077 0.000077 0.000077 0.001724 0.001724 0.001724 0.001724 0.0017240.001724 0.001724 0.001724 0.001724 0.001724 0.010260 0.010260 0.0102600.010260 0.010260 0.010260 0.010260 0.010260 0.010260 0.010260 0.0119840.011984 0.011984 0.011984 0.011984 0.011984 0.011984 0.011984 0.0119840.010260 0.010260 0.010260 0.010260 0.010260 0.010260 0.010260 0.0102600.010260 0.010260 0.010260 0.001724 0.001724 0.001724 0.001724 0.0017240.001724 0.001724 0.001724 0.001724 0.001724 0.001724 0.001724 0.0017240.001724 0.001724 0.001724 0.001724 0.001724 0.001724 0.001724 0.0102600.010260 0.010260 0.010260 0.010260 0.010260 0.010260 0.010260 0.0102600.010260],
x2=[0.000077 0.000076 0.000077 0.000079 0.000077 0.000078 0.0000770.000078 0.000078 0.000078 0.003448 0.003448 0.003448 0.003448 0.0034480.003448 0.003448 0.003448 0.003448 0.003448 0.020519 0.020519 0.0205190.020519 0.020519 0.020519 0.020519 0.020519 0.020519 0.020519 0.0239680.023968 0.023968 0.023968 0.023968 0.023968 0.023968 0.023968 0.0239680.020520 0.020520 0.020520 0.020520 0.020520 0.020520 0.020520 0.0205200.020520 0.020520 0.020520 0.003448 0.003448 0.003448 0.003448 0.0034480.003448 0.003448 0.003448 0.003448 0.003448 0.003448 0.003448 0.0034480.003448 0.003448 0.003448 0.003448 0.003448 0.003448 0.003448 0.0205190.020519 0.020519 0.020519 0.020519 0.020519 0.020519 0.020519 0.0205190.020519],
x3=[0.000078 0.000076 0.000077 0.000076 0.000076 0.000077 0.0000780.000078 0.000076 0.000078 0.003878 0.003878 0.003878 0.003878 0.0038780.003878 0.003878 0.003878 0.003878 0.003878 0.023084 0.023084 0.0230840.023084 0.023084 0.023084 0.023084 0.023084 0.023084 0.023084 0.0269640.026964 0.026964 0.026964 0.026964 0.026964 0.026964 0.026964 0.0269640.023085 0.023085 0.023085 0.023085 0.023085 0.023085 0.023085 0.0230850.023085 0.023085 0.023085 0.003880 0.003880 0.003880 0.003880 0.0038800.003880 0.003880 0.003880 0.003880 0.003880 0.003878 0.003878 0.0038780.003878 0.003878 0.003878 0.003878 0.003878 0.003878 0.003878 0.0230840.023084 0.023084 0.023084 0.023084 0.023084 0.023084 0.023084 0.0230840.023084];
计算得到的矩阵Y的三个列分别为:
y1=[-0.000001 0.000002 -0.000003 0.000001 -0.000001 0.000001 -0.000001 -0.000000 0.000001 0.001646 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.008536 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0017240.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -0.001724 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 -0.008536 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 -0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0085360.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000.000000],
y2=[-0.000001 0.000001 0.000002 -0.000002 0.000000 -0.0000000.000001 -0.000000 0.000000 0.003369 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.017072 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0034480.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -0.003448 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 -0.017072 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 -0.000001 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0170720.000000 0.000000 0.000000 0.000000 0.0000000.0000000.0000000.0000000.000000],
y3=[-0.000002 0.000001 -0.000001 -0.000000 0.000001 0.000001 -0.000000 -0.000002 0.000002 0.003800 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.019206 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0038800.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -0.003878 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 -0.019206 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 -0.000001 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0192060.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000.000000];
计算得到的向量z为:
z=[-0.000001 0.000002 -0.000001 -0.000000 0.000000 0.000000 -0.000000 -0.000001 0.000001 0.002939 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.014938 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0030170.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -0.003017 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 -0.014938 0.000000 0.000000 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 -0.000001 0.000000 0.0000000.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0149380.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000.000000];
控制图输出为:
LCL=-0.0002776244;
UCL=0.0007301933。
第1到第80个监测周期,估计得到的干扰源数量为:
[0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 33 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 22 2 2 2 2 2 2]。
从图4可以看出,利用本发明方法得到的干扰源数量的结果与预期结果一致。
本发明仅需依赖廉价无线设备所具有的接收信号强度监测功能进行干扰源信号强度监测,无需进行干扰信号分离,因而处理开销大大降低,便于在普通民用无线设备上实现多个干扰源数量的估计。使用控制图方法对干扰信号强度矩阵进行变更点检测,可以精确发现干扰信号强度变化较大的变更时刻,准确估计干扰源数量的变化情况。

Claims (1)

1.一种基于控制图的干扰源数量估计方法,其特征在于,包括如下步骤:
(10)邻居监测:本节点接收来自邻居节点的报文,根据所述报文建立本节点的邻居列表,记录每个邻居节点的信噪比,本节点与邻居节点之间通过交互报文获得彼此的邻居列表;
(20)干扰判别:根据本节点的邻居列表及邻居节点的信噪比变化情况,判断本节点是否受到干扰攻击,如否,则返回(10)邻居监测步骤;
(30)干扰估计:如本节点受到干扰攻击,则其向邻居节点发送静默请求,监测干扰信号强度,形成干扰信号强度矩阵,采用控制图方法从干扰信号强度矩阵估计出干扰源数量;
所述(20)干扰判别步骤具体为:当本节点的邻居数量减少幅度大于等于30%,或者尽管本节点邻居数量减少幅度小于30%,但有不少于30%的邻居节点的信噪比降幅大于等于30%,则判定本节点受到干扰攻击;
所述(30)干扰估计步骤包括:
(31)静默请求发送:本节点向邻居节点发送报文,请求邻居节点在静默期内不向本节点发送信息;
(32)干扰信号强度监测:本节点在m个信道上,经过n个监测周期t,记录自身接收到的干扰信号强度,形成干扰信号强度矩阵
X=[x1,x2,…xi,…,xm],
其中,xi表示第i个信道上监测到的干扰信号强度时间序列,
xi={x1i,x2i,…,xji,…,xni},
其中,xji表示第i个信道上第j个监测周期内监测到的干扰信号强度;
(33)干扰信号数量估计:采用控制图方法,对干扰信号强度矩阵进行处理,估计出干扰源数量;
(34)静默区间判别:判别本时刻是否仍处于静默期内,如是,则返回(32)干扰信号强度监测步骤,如否,则输出干扰源数量;
所述(33)干扰信号数量估计步骤包括:
(331)构建n-1行m列的矩阵Y=[y1,y2,…,ym],使得yij=x(i+1)j-xij
(332)对矩阵Y应用Shewhart控制图方法,其上控制线为
下控制线为
其中,
为Y的各列极差的平均值,d2是依赖于参数n-1的一个常数;
(333)构建包含n-1个元素的向量
z={z1,z2,…,zn-1},
其中,
(334)设置第1个监测周期之前的干扰源数量为0;
(335)估计第i个监测周期之前的干扰源数量:从z1开始到zi-1为止,在保证干扰源数量大于等于0的前提下,对于每个zj,1≤j<i,当zj大于UCL时,干扰源数量加1,当zj小于LCL时,干扰源数量减1,否则干扰源数量不变,当处理至zi时,得到第i个监测周期之前的干扰源数量。
CN201510749660.4A 2015-11-05 2015-11-05 基于控制图的干扰源数量估计方法 Active CN105430685B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510749660.4A CN105430685B (zh) 2015-11-05 2015-11-05 基于控制图的干扰源数量估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510749660.4A CN105430685B (zh) 2015-11-05 2015-11-05 基于控制图的干扰源数量估计方法

Publications (2)

Publication Number Publication Date
CN105430685A CN105430685A (zh) 2016-03-23
CN105430685B true CN105430685B (zh) 2018-11-13

Family

ID=55508551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510749660.4A Active CN105430685B (zh) 2015-11-05 2015-11-05 基于控制图的干扰源数量估计方法

Country Status (1)

Country Link
CN (1) CN105430685B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106454925B (zh) * 2016-09-29 2019-07-26 中央军委装备发展部第六十三研究所 一种车联网干扰源定位方法
WO2019211792A1 (en) * 2018-05-02 2019-11-07 Jerusalem College Of Technology Machine learning methods for sir prediction in cellular networks
CN111711604B (zh) * 2020-05-15 2022-02-18 中国人民解放军国防科技大学 基于距离度量的无线网络干扰攻击场景识别方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297955A (zh) * 2013-04-27 2013-09-11 天津工业大学 一种无线传感器网络安全定位方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8260206B2 (en) * 2008-04-16 2012-09-04 Qualcomm Incorporated Methods and apparatus for uplink and downlink inter-cell interference coordination

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297955A (zh) * 2013-04-27 2013-09-11 天津工业大学 一种无线传感器网络安全定位方法

Also Published As

Publication number Publication date
CN105430685A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
JP5980929B2 (ja) 到来時間に基づく測位システム
CN108051779B (zh) 一种面向tdoa的定位节点优选方法
Hamouda et al. Adaptive sampling for energy-efficient collaborative multi-target tracking in wireless sensor networks
CN105430685B (zh) 基于控制图的干扰源数量估计方法
Mukhopadhyay et al. Performance evaluation of localization techniques in wireless sensor networks using RSSI and LQI
Jamâa et al. Easyloc: Rss-based localization made easy
CN106452877A (zh) 电力信息网故障定位方法
CN105871762B (zh) 一种用于稀疏参数向量估计的自适应网络
CN105828432B (zh) 一种锚节点测距定位的高效隐私保护方法
Wang et al. Collaborative event-region and boundary-region detections in wireless sensor networks
Shoari et al. Localization of an uncooperative target with binary observations
CN107453918B (zh) 一种数据丢失与通信故障下的分布式目标跟踪方法及装置
JP2018146351A (ja) マルチセンサシステム、センサバイアス推定装置、センサバイアス推定方法及びセンサバイアス推定プログラム
Meng et al. A Projection Based Fully Distributed Approach for Source Localization in Wireless Sensor Networks.
Bamasaq et al. Distance Matrix and Markov Chain Based Sensor Localization in WSN.
JP4784747B2 (ja) 電波干渉回避方法、無線端末、電波干渉回避プログラム及び無線通信システム
Demirkol et al. The impact of a realistic packet traffic model on the performance of surveillance wireless sensor networks
CN108594169B (zh) 一种适应于时变通信拓扑的多机器人分布式协作定位方法
Zhipeng et al. An improved hop size estimation for DV-hop localization algorithm in wireless sensor networks
Djurić et al. Non-centralized target tracking in networks of directional sensors
JP2019080144A (ja) 無線環境状況予測システム、無線環境状況予測方法、および、プログラム
EP2989480B1 (en) Space-based rss localization
Gao et al. An improved DV-Hop algorithm based on average hop distance and estimated coordinates
CN106060803B (zh) 一种目标节点测距定位的高效隐私保护方法
Xie et al. Quantitative uncertainty-based incremental localization and anchor selection in wireless sensor networks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 210007 No. 18, rear standard camp, Jiangsu, Nanjing

Applicant after: The 36th Institute of Central Military Commission Equipment Development Department

Address before: 210007 No. 18, rear standard camp, Jiangsu, Nanjing

Applicant before: No. 63 Inst. of the Headquarters of the Genearal Staff of C.P. L. A.

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant