CN105428456A - 具有量子阱结构的双结叠层GaAs电池及其制备方法 - Google Patents

具有量子阱结构的双结叠层GaAs电池及其制备方法 Download PDF

Info

Publication number
CN105428456A
CN105428456A CN201510899915.5A CN201510899915A CN105428456A CN 105428456 A CN105428456 A CN 105428456A CN 201510899915 A CN201510899915 A CN 201510899915A CN 105428456 A CN105428456 A CN 105428456A
Authority
CN
China
Prior art keywords
thickness
battery
gaas
quantum well
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510899915.5A
Other languages
English (en)
Other versions
CN105428456B (zh
Inventor
张无迪
高鹏
薛超
刘丽蕊
石璘
姜明序
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 18 Research Institute
Original Assignee
CETC 18 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 18 Research Institute filed Critical CETC 18 Research Institute
Priority to CN201510899915.5A priority Critical patent/CN105428456B/zh
Publication of CN105428456A publication Critical patent/CN105428456A/zh
Application granted granted Critical
Publication of CN105428456B publication Critical patent/CN105428456B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种具有量子阱结构的双结叠层GaAs电池及其制备方法,采用金属有机化学气相沉积法MOCVD,外延制备含有AlAs/GaAs的Bragg反射器、InGaAs量子阱的InGaAs/InGaAs双结激光电池,并包含氧化铝、氧化钛的双层减反射膜系。更大限度地实现了激光电池在响应光谱内的转换效率。

Description

具有量子阱结构的双结叠层GaAs电池及其制备方法
技术领域
本发明涉及物理电源技术领域,具体说,是一种具有量子阱结构的双结叠层GaAs电池及其制备方法。
背景技术
作为无线传输的激光具有高能量密度、方向性好、抗干扰能力强、相对传输能量损失低等优点,现今激光供能光电转换技术越来越成为理想的解决方案,在航空航天、国防、电力、无线电通讯、工业界得到越来越广泛的应用;特别在空间无线能量传输领域有很大的应用前景,适合在空间无线传输中,作为能量接收器使用或信号接收器使用。
在国防领域,激光供能系统可以提供完全隔离的传感器和控制电路、武器和保险启动电路的电源和光纤信号通道,由于光纤不受电磁干扰的影响,增加了控制电路启动电路的可靠性和保密性;激光供能系统解决了有源传感设备的电池需定期更换的问题,减少了维护成本;光纤重量轻,利于武器的轻便化升级改造。串联微型激光GaAs电池已经在核武器领域作为引信使用。
激光光电转换的工作原理是基于半导体PN结构的光生伏特效应,又称光伏效应。光伏效应是指当微电池受到光照射时,在电池内部产生光生电动势的现象。
常用激光(功率密度5-50W/cm2,0.79~0.85μm的波长)在单一波长范围内均有着较强的分布,要想在这样强的能量入射范围内尽可能多地吸收激光能量,并将其转化为电能而不是晶格振动等其他热能,仅仅采用单结电池是难以充分实现的。
发明内容
本发明所要解决的技术问题是,提供一种实现多结激光电池的具有量子阱结构的双结叠层GaAs电池及其制备方法。
为了解决上述技术问题,本发明采用的技术方案是:一种具有量子阱结构的双结叠层GaAs电池的制备方法,采用金属有机化学气相沉积法MOCVD,在GaAs/Ge衬底上面依次生长AlAs/GaAs的Bragg反射器、InGaAs量子阱、第一结InGaAs子电池、隧穿结、第二结InGaAs子电池、盖帽层,具体包括以下步骤:
(1)在GaAs/Ge衬底上,外延生长InGaAs缓冲层;
(2)外延生长AlAs/GaAs的Bragg反射器;
(3)外延生长InGaAs量子阱;
(4)外延生长第一结InGaAs子电池:依次生长GaInP背场、InxGa1-xAs基区、InxGa1-xAs发射区、GaInP窗口层;
(5)外延生长隧穿结:依次生长InxGa1-xAs层和p型InxGa1-xAs层;
(6)外延生长第二结InGaAs子电池:依次生长GaInP背场、InxGa1-xAs基区、InxGa1-xAs发射区、GaInP窗口层;
(7)外延生长盖帽层;
(8)制作电池上下电极;
(9)制备电池减反射膜。
步骤(1)中所述GaAs/Ge衬底为采用n型掺杂的GaAs/Ge衬底,其厚度为200-600μm,掺杂浓度为1×1017~1×1018cm-3;并外延生长InGaAs缓冲层,其厚度为500-1000nm;步骤(2)中所述外延生长AlAs/GaAs的Bragg反射器,其中AlAs/GaAs交替生长10-20层,AlAs层厚度50-70nm,GaAs层厚度60-80nm。
步骤(3)中所述外延生长InGaAs量子阱中:掺杂浓度为1.0~1.5×1018cm-3的n型AlGaAs垒层,厚度为1000~1500nm;无掺的AlGaAs限制层,厚度为0.1~0.2μm;高应变InxGa1-xAs量子阱,0.2≤x≤0.5,厚度5~15nm;无掺的AlGaAs限制层,厚度为100~150nm。
步骤(4)中所述外延生长第一结InGaAs子电池中:掺杂浓度为1×1017~1×1018cm-3的n型GaInP背场,厚度为50~400nm;掺杂浓度为1×1016~1×1018cm-3的n型InxGa1-xAs基区,厚度为1000~5000nm,其中0.3≤x≤0.8;掺杂浓度为1×1017~1×1019cm-3的p型InxGa1-xAs发射区,厚度为100~500nm,其中0.3≤x≤0.8;掺杂浓度为1×1017~1×1018cm-3的n型GaInP窗口层,厚度为50~400nm。
步骤(5)中所述外延生长隧穿结:依次生长掺杂浓度为1×1017~1×1018cm-3的n型InxGa1-xAs层和p型InxGa1-xAs层,其中0.3≤x≤0.6,厚度为50~150nm。
步骤(6)中所述外延生长第二结InGaAs子电池:掺杂浓度为1×1017~1×1018cm-3的n型GaInP背场,厚度为50~400nm;掺杂浓度为1×1016~1×1018cm-3的n型InxGa1-xAs基区,厚度为1000~5000nm,其中0.3≤x≤0.8;掺杂浓度为1×1017~1×1019cm-3的p型InxGa1-xAs发射区,厚度为100~500nm,其中0.3≤x≤0.8;掺杂浓度为1×1017~1×1018cm-3的n型GaInP窗口层,厚度为50~400nm。
步骤(7)中所述外延生长盖帽层:掺杂浓度为1×1018~1×1019cm-3的n型GaAs重掺层,厚度为100~200nm。
8、根据权利要求1所述的具有量子阱结构的双结叠层GaAs电池的制备方法,其特征在于,步骤(8)中通过蒸镀制备电池上下电极。
步骤(9)中制备电池减反射膜:在电池表面蒸镀氧化铝、氧化钛的双层减反射膜,其中氧化铝厚度20~70nm,氧化钛氧化铝厚度20~70nm。
上述制备方法制备的具有量子阱结构的双结叠层GaAs电池。
本发明的有益效果是:
1、本发明由于将能够吸收不同激光能量的单结电池堆叠起来,形成叠层结构,其中对应激光波长最大响应的单结电池材料及结构是实现多结激光电池的关键。这样构成的多结激光电池,能够充分转化激光能量,而且还提高了单位波长区间内的光电转换效率,是激光光电转换设计理念的一次进步。
2、本发明由于在电池有源区通过MOCVD生长量子阱结构增加对应激光波长的响应吸收,最后在电池底部生长Bragg反射器结构增强对激光的进一步吸收。
3、本发明由于采用双层减反射面设计,达到在790-850nm波长范围内反射率小于5%,增强激光吸收。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明:
本发明具有量子阱结构的双结叠层GaAs电池的制备方法,包括以下步骤:
通过MOCVD外延制备双结叠层GaAs电池。
采用MOCVD即金属有机化学气相沉积技术在GaAs/Ge衬底上面依次生长AlAs/GaAs的Bragg反射器、InGaAs量子阱、第一结InGaAs子电池、隧穿结、第二结InGaAs子电池、盖帽层。
1、采用n型掺杂的GaAs/Ge衬底,其厚度为200-600μm,掺杂浓度为1×1017-1×1018cm-3
2、外延生长InGaAs缓冲层。
3、外延生长AlAs/GaAs的Bragg反射器,其中AlAs/GaAs交替生长10-20层,AlAs层厚度50-70nm,GaAs层厚度60-80nm。
4、外延生长InGaAs量子阱:掺杂浓度为1.0-1.5×1018cm-3的n型AlGaAs垒层,厚度为1000-1500nm;无掺的AlGaAs限制层,厚度为0.1-0.2μm;高应变InxGa1-xAs量子阱,0.2≤x≤0.5,厚度5-15nm;无掺的AlGaAs限制层,厚度为100-150nm。
5、外延生长第一结InGaAs子电池:掺杂浓度为1×1017-1×1018cm-3的n型GaInP背场,厚度为50-400nm;掺杂浓度为1×1016-1×1018cm-3的n型InxGa1-xAs基区,厚度为1000-5000nm,其中0.3≤x≤0.8;掺杂浓度为1×1017-1×1019cm-3的p型InxGa1-xAs发射区,厚度为100-500nm,其中0.3≤x≤0.8;掺杂浓度为1×1017-1×1018cm-3的n型GaInP窗口层,厚度为50-400nm。
6、外延生长隧穿结:依次生长掺杂浓度为1×1017-1×1018cm-3的n型InxGa1-xAs层和p型InxGa1-xAs层,其中0.3≤x≤0.6,厚度为50-150nm。
7、外延生长第二结InGaAs子电池:掺杂浓度为1×1017-1×1018cm-3的n型GaInP背场,厚度为50-400nm;掺杂浓度为1×1016-1×1018cm-3的n型InxGa1-xAs基区,厚度为1000-5000nm,其中0.3≤x≤0.8;掺杂浓度为1×1017-1×1019cm-3的p型InxGa1-xAs发射区,厚度为100-500nm,其中0.3≤x≤0.8;掺杂浓度为1×1017-1×1018cm-3的n型GaInP窗口层,厚度为50-400nm。
8、外延生长盖帽层:掺杂浓度为1×1018-1×1019cm-3的n型GaAs重掺层,厚度为100-200nm。
9、制作电池器件结构:通过蒸镀制备电池上下电极。
10、制备电池减反射膜:在电池表面蒸镀氧化铝、氧化钛的双层减反射膜,其中氧化铝厚度20-70nm,氧化钛氧化铝厚度20-70nm。
以上所述的实施例仅用于说明本发明的技术思想及特点,其目的在于使本领域内的技术人员能够理解本发明的内容并据以实施,不能仅以本实施例来限定本发明的专利范围,即凡本发明所揭示的精神所作的同等变化或修饰,仍落在本发明的专利范围内。

Claims (10)

1.一种具有量子阱结构的双结叠层GaAs电池的制备方法,其特征在于,采用金属有机化学气相沉积法MOCVD,在GaAs/Ge衬底上面依次生长AlAs/GaAs的Bragg反射器、InGaAs量子阱、第一结InGaAs子电池、隧穿结、第二结InGaAs子电池、盖帽层,具体包括以下步骤:
(1)在GaAs/Ge衬底上,外延生长InGaAs缓冲层;
(2)外延生长AlAs/GaAs的Bragg反射器;
(3)外延生长InGaAs量子阱;
(4)外延生长第一结InGaAs子电池:依次生长GaInP背场、InxGa1-xAs基区、InxGa1-xAs发射区、GaInP窗口层;
(5)外延生长隧穿结:依次生长InxGa1-xAs层和p型InxGa1-xAs层;
(6)外延生长第二结InGaAs子电池:依次生长GaInP背场、InxGa1-xAs基区、InxGa1-xAs发射区、GaInP窗口层;
(7)外延生长盖帽层;
(8)制作电池上下电极;
(9)制备电池减反射膜。
2.根据权利要求1所述的具有量子阱结构的双结叠层GaAs电池的制备方法,其特征在于,步骤(1)中所述GaAs/Ge衬底为采用n型掺杂的GaAs/Ge衬底,其厚度为200-600μm,掺杂浓度为1×1017~1×1018cm-3;并外延生长InGaAs缓冲层,其厚度为500-1000nm;步骤(2)中所述外延生长AlAs/GaAs的Bragg反射器,其中AlAs/GaAs交替生长10-20层,AlAs层厚度50-70nm,GaAs层厚度60-80nm。
3.根据权利要求1所述的具有量子阱结构的双结叠层GaAs电池的制备方法,其特征在于,步骤(3)中所述外延生长InGaAs量子阱中:掺杂浓度为1.0~1.5×1018cm-3的n型AlGaAs垒层,厚度为1000~1500nm;无掺的AlGaAs限制层,厚度为0.1~0.2μm;高应变InxGa1-xAs量子阱,0.2≤x≤0.5,厚度5~15nm;无掺的AlGaAs限制层,厚度为100~150nm。
4.根据权利要求1所述的具有量子阱结构的双结叠层GaAs电池的制备方法,其特征在于,步骤(4)中所述外延生长第一结InGaAs子电池中:掺杂浓度为1×1017~1×1018cm-3的n型GaInP背场,厚度为50~400nm;掺杂浓度为1×1016~1×1018cm-3的n型InxGa1-xAs基区,厚度为1000~5000nm,其中0.3≤x≤0.8;掺杂浓度为1×1017~1×1019cm-3的p型InxGa1-xAs发射区,厚度为100~500nm,其中0.3≤x≤0.8;掺杂浓度为1×1017~1×1018cm-3的n型GaInP窗口层,厚度为50~400nm。
5.根据权利要求1所述的具有量子阱结构的双结叠层GaAs电池的制备方法,其特征在于,步骤(5)中所述外延生长隧穿结:依次生长掺杂浓度为1×1017~1×1018cm-3的n型InxGa1-xAs层和p型InxGa1-xAs层,其中0.3≤x≤0.6,厚度为50~150nm。
6.根据权利要求1所述的具有量子阱结构的双结叠层GaAs电池的制备方法,其特征在于,步骤(6)中所述外延生长第二结InGaAs子电池:掺杂浓度为1×1017~1×1018cm-3的n型GaInP背场,厚度为50~400nm;掺杂浓度为1×1016~1×1018cm-3的n型InxGa1-xAs基区,厚度为1000~5000nm,其中0.3≤x≤0.8;掺杂浓度为1×1017~1×1019cm-3的p型InxGa1-xAs发射区,厚度为100~500nm,其中0.3≤x≤0.8;掺杂浓度为1×1017~1×1018cm-3的n型GaInP窗口层,厚度为50~400nm。
7.根据权利要求1所述的具有量子阱结构的双结叠层GaAs电池的制备方法,其特征在于,步骤(7)中所述外延生长盖帽层:掺杂浓度为1×1018~1×1019cm-3的n型GaAs重掺层,厚度为100~200nm。
8.根据权利要求1所述的具有量子阱结构的双结叠层GaAs电池的制备方法,其特征在于,步骤(8)中通过蒸镀制备电池上下电极。
9.根据权利要求1所述的具有量子阱结构的双结叠层GaAs电池的制备方法,其特征在于,步骤(9)中制备电池减反射膜:在电池表面蒸镀氧化铝、氧化钛的双层减反射膜,其中氧化铝厚度20~70nm,氧化钛氧化铝厚度20~70nm。
10.如权利要求1-9中任一项的制备方法制备的具有量子阱结构的双结叠层GaAs电池。
CN201510899915.5A 2015-12-08 2015-12-08 具有量子阱结构的双结叠层GaAs电池及其制备方法 Active CN105428456B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510899915.5A CN105428456B (zh) 2015-12-08 2015-12-08 具有量子阱结构的双结叠层GaAs电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510899915.5A CN105428456B (zh) 2015-12-08 2015-12-08 具有量子阱结构的双结叠层GaAs电池及其制备方法

Publications (2)

Publication Number Publication Date
CN105428456A true CN105428456A (zh) 2016-03-23
CN105428456B CN105428456B (zh) 2017-02-01

Family

ID=55506515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510899915.5A Active CN105428456B (zh) 2015-12-08 2015-12-08 具有量子阱结构的双结叠层GaAs电池及其制备方法

Country Status (1)

Country Link
CN (1) CN105428456B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172500A (zh) * 2022-07-12 2022-10-11 中国电子科技集团公司第十八研究所 一种激光电池组件
CN115548156A (zh) * 2022-09-21 2022-12-30 江苏宜兴德融科技有限公司 薄膜型激光换能器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201425943Y (zh) * 2009-02-23 2010-03-17 东南大学 一种太阳能电池
CN102290493A (zh) * 2011-09-05 2011-12-21 中国电子科技集团公司第十八研究所 一种p-i-n型单结InGaN太阳能电池的制备方法
CN102651420A (zh) * 2012-05-18 2012-08-29 中国科学院苏州纳米技术与纳米仿生研究所 双结GaAs叠层激光光伏电池及其制备方法
CN103258872A (zh) * 2012-02-21 2013-08-21 厦门市三安光电科技有限公司 高效三结太阳能电池及其制作方法
US20140182667A1 (en) * 2013-01-03 2014-07-03 Benjamin C. Richards Multijunction solar cell with low band gap absorbing layer in the middle cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201425943Y (zh) * 2009-02-23 2010-03-17 东南大学 一种太阳能电池
CN102290493A (zh) * 2011-09-05 2011-12-21 中国电子科技集团公司第十八研究所 一种p-i-n型单结InGaN太阳能电池的制备方法
CN103258872A (zh) * 2012-02-21 2013-08-21 厦门市三安光电科技有限公司 高效三结太阳能电池及其制作方法
CN102651420A (zh) * 2012-05-18 2012-08-29 中国科学院苏州纳米技术与纳米仿生研究所 双结GaAs叠层激光光伏电池及其制备方法
US20140182667A1 (en) * 2013-01-03 2014-07-03 Benjamin C. Richards Multijunction solar cell with low band gap absorbing layer in the middle cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115172500A (zh) * 2022-07-12 2022-10-11 中国电子科技集团公司第十八研究所 一种激光电池组件
CN115172500B (zh) * 2022-07-12 2023-08-15 中国电子科技集团公司第十八研究所 一种激光电池组件
CN115548156A (zh) * 2022-09-21 2022-12-30 江苏宜兴德融科技有限公司 薄膜型激光换能器及其制备方法

Also Published As

Publication number Publication date
CN105428456B (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
Algora et al. Beaming power: Photovoltaic laser power converters for power-by-light
CN101533863B (zh) 一种高效单片式四结太阳电池
US11616160B2 (en) Tandem solar cell
CN106058054A (zh) 叠层太阳能电池及其制备方法
CN106653950A (zh) 一种砷化镓‑硅多结高效太阳电池的制备方法
CN105355680A (zh) 一种晶格匹配的六结太阳能电池
CN102651420A (zh) 双结GaAs叠层激光光伏电池及其制备方法
CN105355670B (zh) 一种含dbr结构的五结太阳能电池
CN105428456B (zh) 具有量子阱结构的双结叠层GaAs电池及其制备方法
US20120060918A1 (en) Energy conversion device for photovoltaic cells
CN103000758A (zh) 双面外延生长GaAs三结太阳能电池的制备方法
CN105514207A (zh) 一种多结太阳能电池的集成旁路二极管的制备方法
CN108735848A (zh) 多结叠层激光光伏电池及其制作方法
CN102983210A (zh) GaAs体系四结太阳能电池的制备方法
CN105609582A (zh) 一种结合带间和价带子带间吸收的稀铋量子阱探测器及制备方法
CN103123923B (zh) 一种激光光伏电池及其制作方法
KR102175147B1 (ko) 태양 전지 및 이의 제조 방법
CN103117286B (zh) 激光光伏电池及其制作方法
KR101672404B1 (ko) 계면 재결합 억제 박막 태양전지
CN106206825B (zh) 含有低光学折射率差的窗口层与发射区的多结太阳电池
CN103633181B (zh) 一种含有ii型异质结窗口层的太阳电池
CN103268893B (zh) Npn结构的激光光伏电池及其制备方法
CN104037251A (zh) 输出电压为6V的GaAs激光光伏电池及其制作方法
CN106611805A (zh) 光伏器件及其制备方法、多结GaAs叠层激光光伏电池
CN104037178A (zh) 输出电压为5V的GaAs激光光伏电池及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant