CN105418967A - 作为阻燃剂和抑燃剂增效剂的有机材料 - Google Patents

作为阻燃剂和抑燃剂增效剂的有机材料 Download PDF

Info

Publication number
CN105418967A
CN105418967A CN201510591974.6A CN201510591974A CN105418967A CN 105418967 A CN105418967 A CN 105418967A CN 201510591974 A CN201510591974 A CN 201510591974A CN 105418967 A CN105418967 A CN 105418967A
Authority
CN
China
Prior art keywords
formula
polymer composition
flame retardant
compound
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510591974.6A
Other languages
English (en)
Other versions
CN105418967B (zh
Inventor
B·L·卡尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MCA Technologies GmbH
Original Assignee
MCA Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MCA Technologies GmbH filed Critical MCA Technologies GmbH
Publication of CN105418967A publication Critical patent/CN105418967A/zh
Application granted granted Critical
Publication of CN105418967B publication Critical patent/CN105418967B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/0644Poly(1,3,5)triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34922Melamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34926Triazines also containing heterocyclic groups other than triazine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/357Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/327Aluminium phosphate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Conductors (AREA)
  • Fireproofing Substances (AREA)

Abstract

具有通式I的寡聚或多聚化合物在自熄灭聚合组合物中作为阻燃剂和抑燃剂的有机增效剂的用途,其中,X是卤素;或或环中至少含一个氮原子的杂环原子团,所述原子团通过这些氮原子中的一个与三嗪环连接,R2是烷基或环烷基,R1是式为的哌嗪的二价原子团;或类型的二价原子团;或n为2至30的整数,包括端点,m为2至6的整数,包括端点,p为2至12的整数,包括端点,并且X1=OH,NH2或X,其中X和X1可以是相同或不同的,X2=氢或C1-C4烷基基团。<!-- 2 -->

Description

作为阻燃剂和抑燃剂增效剂的有机材料
技术领域
本发明属于阻燃剂和抑燃剂领域,具体涉及一种作为阻燃剂和抑燃剂增效剂的有机材料。
背景技术
阻燃剂和抑燃剂被广泛用作塑料添加剂以便所生产的塑料材料能够更安全的使用。对于诸如电线和电缆以及电气和电子应用的许多应用来说,阻燃剂和抑燃剂作为部分非导电绝缘材料的使用是强制性的。
有许多类型的阻燃剂和抑燃剂可用。最常用的是无机物、卤代有机化合物、有机磷化合物或其他有机物质。
含卤阻燃添加剂已不再满足各种工业和政府规定所要求的条件。例如,用于例如电气和电子应用的聚合物树脂必须符合RoHS15和WEEE16指令:
15:Directive2002/95/EConRestrictionofcertainhazardousSubstancesinElectricandElectronicEquipment
16Directive2002/96/EConWasteofElectricandElectronicEquipment
塑料/聚合物中含卤素的阻燃添加剂或材料的使用在欧洲的建筑和施工行业(BuildingEuropeanUnionConstructionProductsDirectiveCE–Marking0123);或在运输行业,诸如铁路(CENISO/TS45545)、海上船舶消防安全(ISO5659-2extendedbyISO21489)和飞机的建设中都不被允许。
作为含卤素抑燃剂的替代,大多采用下述之一:
a)无机矿物抑燃剂诸如金属氢氧化物或
b)基于磷酸盐诸如磷酸铵和磷酸哌嗪的所谓的膨胀系统。
矿物金属氢氧化物是所有无卤抑燃剂中最优选的。然而,由于它们的低效力,它们需要以高剂量添加来满足符合规定的所需性能。高剂量使得加工困难并且不够经济。此外,由此所生产的塑料物品表现出较差的物理性能以及能源浪费的缺点。
另一方面,膨胀系统需要较低的剂量,但易水解(对水不稳定),并且因此对于电气应用诸如电缆电子器件和建筑&施工的绝缘来说是不期望的。由于吸收水,它们在较长一段时间内都不满足绝缘材料的ICE(IEV212-01-01)E&E规范。例如在德国,DeutschesInstitutfürBautechnik(DIBIt)将膨胀系统的标准定义为耐受各种环境条件,特别是湿度。
最常遇到的问题如下;
·无卤素(和锑)。在电子行业,含卤素不再是期望的或甚至是不允许的,这归因于它们在火灾和处置事件中可能潜在形成有毒二噁英以及它们在环境中的持久性。它们似乎不可破坏,
·加工时低效&连带效应(collateraleffect),能量浪费,以及所产生的物品的静负载(deadweight)和低劣品质,特别是使用最大体积金属氢氧化物(作为无卤置换),
·基于磷酸盐诸如磷酸铵、磷酸三聚氰胺和磷酸哌嗪的有效得多的膨胀系统的水解(水)不稳定性(作为无卤置换),
·绝缘材料的ICE(IEV212-01-01)E&E符合性(conformity),
·用于电气和电子应用的聚合物诸如三聚氰胺&磷酸三聚氰胺与聚酰胺和聚酯的反应性,
·特别是小分子的不相容性,导致缓慢释放和环境污染。在从塑料释放并被活细胞摄取后,这些阻燃剂甚至已经在人体内发现,
·防火之外的安全性,即在火灾事件中的烟雾释放&热通量,
·使用寿命后的处置/<废弃物能源回收>,
·最后但并非最不重要的加工/分散,因为高负载。
大多数问题的根本难题是所需要的抑燃剂&阻燃剂高负载,甚至远远超过了基本聚合物本身重量的许多倍。因此,如果组合物中聚合物与阻燃剂和抑燃剂所需要的比例可以通过降低阻燃剂和抑燃剂负载(loading)来增加,那么大多所述问题将被共同解决。
发明内容
已经发现含氮水不溶性化合物,由1,3,5-三嗪衍生物的低聚物或聚合物组成并且具有通式I:
其中,
X是卤素;
或环中至少含一个氮原子的杂环原子团,所述原子团通过这些氮原子中的一个与三嗪环连接,
R2是烷基或环烷基,
R1是式为的哌嗪的二价原子团;
类型的二价原子团;
n为2至30的整数,包括端点,
m为2至6的整数,包括端点,
p为2至12的整数,包括端点,并且
X1=OH,NH2或X,其中X和X1可以是相同或不同的,
X2=氢或C1-C4烷基基团。
作为通用增效剂缓解了目前最常使用的阻燃剂和抑燃剂已知的包括环境难题在内的缺陷。更具体地式“I”的化合物在与矿物抑燃剂组合时起到增效剂的作用并且分别缓解和消除了a)和b)类抑燃剂的下述缺陷:
c)它们能够在同样的效力下减少a)的负载;
d)它们能够消除或减少b)中水不稳定性磷酸盐的使用。
式I的化合物描述于USP4,504,610和USP8,202,924中,并且仅与用于被称为膨胀系统的磷酸铵b)组合使用。已经假定磷酸盐作为阻燃剂成炭作用的酸源存在是绝对必要的(GCaminoandRDelobel,Intumescence,Chapter7,page218-,inFireRetardancyofpolymericmaterialseditedbyA.F.GrandandC.Wilkie;publisherMarcelDekkerInc,NewYork2000;ISBN0-8247-8879-6)。
阻燃剂和抑燃剂由Phosporus,Inorganic&NitrogenFlameRetardantsAssociation(pinfa)定义并且定义于Non-HalogenatedFlameRetardantHandbook,editedbyA.B.Morgen&C.A.Wilkie;publisherScrivenerPublishingMA01915-6106;2014;ISBN978-1-118-68624-9中。
因此本发明的目的在于含有阻燃剂和抑燃剂以及式I的化合物的聚合物组合物。
其中,
X是卤素;
或环中至少含一个氮原子的杂环原子团,所述原子团通过这些氮原子中的一个与三嗪环连接,
R2是烷基或环烷基,
R1是式为的哌嗪的二价原子团;
类型的二价原子团;
n为2至30的整数,包括端点,
m为2至6的整数,包括端点,
p为2至12的整数,包括端点,并且
X1=OH,NH2或X,其中X和X1可以是相同或不同的,
X2=氢或C1-C4烷基基团。
这种化合物以组合物的0.1至10%重量计的量,优选以0.5至5%重量计的量存在于组合物中。
作为阻燃剂和抑燃剂,可以使用基于磷的抑燃剂或无机抑燃剂或基于氮的抑燃剂或基于卤素的抑燃剂或N-烷氧基受阻胺原子团生成(N-alkoxyhinderedamineradicalgenerating)阻燃剂和抑燃剂。
已经发现式“I”化合物通过阻燃的所谓“自焚”原理表现出令人惊讶的优异的阻燃剂增效剂性能为阻燃剂,而不使用磷酸盐。在火灾事件中,式“I”的化合物经历了自我燃烧和炭化过程,从而形成火盾并将火熄灭在萌发状态。下文表1示出了火灾事件中过量的炭生成。因此,含有式II化合物的样品实例中比不含有这一化合物的样品实例中,有多于15-20%的防火保护炭化作用。
所获得的含有根据本发明的所述阻燃剂的聚合物复合材料,诸如EVA,还在燃烧时释放非常低的热量。重要的是,由于根据本发明的所述阻燃剂中低卤素或没有卤素,烟气毒性和腐蚀性也低。表2和图1,2和3还强调了式I化合物作为阻燃剂和抑燃剂增效剂的效果。因此,尽管在典型的电缆聚合物组合物中将50份氢氧化铝(ATH)用2.5-5份式II组合物替换,但阻燃和抑燃的所有关键参数诸如阻燃时间、热释放速率(HRR)、峰值热释放速率(pkHRR),总热释放量(THR)保持不变,尽管存在几乎超过15%的可焚烧有机材料(表2)。
此外,所得到的聚合物组合物在用于电缆应用时显示以下优点:
e)对于需要用于相同长度电缆的绝缘护套的相同量(100%)基础聚合物/树脂,少几乎18%的相应聚合物组合物需求(重量);
(实施例:100份基础聚合物=250份化合物A(聚合物+ATH)=205份化合物AP(聚合物+ATH+PPMT)即82%的化合物A。
f)对于相同厚度的绝缘电缆,少约10%的相应聚合物组合物需求(表2);
g)易于加工,生产率更高,能源需求更少;
h)非离子,更好的绝缘材料E&E(IEV)符合性;
i)较少的加工设备磨损;
j)重量轻、质量好并且环保(处理)电缆;
(LW-0LH-HQ-E=轻重量-零/低卤素-高质量环保电缆)。
纳米粘土和复合材料也被用作抑燃剂增效剂。它们是无机材料,对于式I的化合物来说具有以下优点:
具有高效力的轻质纯有机材料;
由于高C&N含量在火灾事件中自扩大成炭作用作为防火墙;
非离子!也许是更好的符合E&E(IEV)的绝缘材料;
相对于有机粘土更好的热稳定性;
归因于与光稳定剂的化学关系的光稳定作用;
普遍适用。
相似地,其他无机化合物诸如锑氧化物以及硼酸盐也用作某些应用的增效剂。然而,它们的效力低,正如对于无机材料所预期的,仅归因于其高密度。
高效力有机增效剂,正如所预期的,由于其低密度和与有机聚合物更好的化学关系,罕见稀少。
因此,现在已发现式I的化合物也可替代锑氧化物适用作含抑燃剂的增效剂。因为其潜在的毒性,锑氧化物不再是所期望的抑燃剂增效剂。
对于工程聚合物诸如聚酰胺和聚酯,二烷基次膦酸盐诸如二乙基次膦酸铝,与增效剂一起,通常用作阻燃剂。这种化学品增加了处理设备中的腐蚀并且降低机械性能(compoundingworld,December2012)。现已发现式I的化合物与这样的二烷基次膦酸盐结合不会造成这样的腐蚀以及所产生的聚合物制品的力学性能退化。
也已经发现式I的化合物也适用作增效剂,用于N-烷氧基受阻胺原子团生成阻燃剂诸如BASF的FlamestabNOR,而且减轻它们的缺点诸如低热稳定性。
附图说明
图1是各种样品的HRR平均曲线比较图;
图2是各种样品的表面的温度曲线图;
图3是各种样品的底部的温度曲线图;
图4是制品1至6的HRR平均曲线比较图;和
图5是制品7至10的HRR平均曲线比较图。
具体实施方式
锥形量热仪试验详述
测试用所述样品完成测试并且具有给出关于锥形量热仪条件下燃烧行为评估的目的。
ISO5660标准定义了锥形量热仪参数驱动。在锥形量热仪测试期间,材料经受50kW/m2的热通量。
样品由电子设备产生的火花点燃。燃烧产物被吸入管道内,所述产物在所述管道内分析。
放热速率(HRR[kW/m2)曲线是从测量在燃烧过程中消耗的氧气百分比获得。HRR是评价燃烧行为最常用的参数之一。
其他重要因数为:
总产生热量(totalheatevolved)(THR[MJ/m2])
燃烧熄灭(flameout)(FO[s])
放热速率峰值(pkHRR[kW/m2])
所有的测试都进行三次以检查重复性。所有参数都随它们的实验偏差一同报告,计算为(最大值-最小值)/2。
用K型0.5mm不锈钢铠装热电偶在锥形量热仪测试过程中进行表面温度测量。热电偶被小心地放置并支撑以在整个实验中与样品的上表面保持接触。
在聚合物试样和铝箔之间与试样表面平行插入K型1mm不锈钢铠装热电偶测量样品底层的温度。
下面的实施例说明本发明。
实施例1
使用下列材料。
·PPMT/T1和/T2:聚(哌嗪、吗啉、三嗪)的两个样品;式II的化合物
式II(USP8,202,924的实施例3化合物IIIa)
·EVA(乙酸乙烯乙酯):470DuPont(19%VA)
·ATH(氢氧化铝):Nabaltec40CD
以所需比例将材料进行干混合并用双螺杆共旋挤出机Leistriz18-40D.挤出。
所产生的颗粒被压为100mm×100mm×6mm大小的样品并经受上文所述的锥形量热仪测试。
锥形量热仪测试结果
锥形量热仪测试结果参见下表1和表2,以及图1-3。
表1:50kW/m2下锥形量热仪测试结束时的残留量(炭)
·EVA(乙酸乙烯乙酯):470DuPont(19%VA)
·ATH(氢氧化铝):Nabaltec40CD
·PPMT/T1和/T2:聚(哌嗪、吗啉、三嗪)的两个样品;式II的化合物
表2:50kW/m2下锥形量热仪测试的平均数据
·EVA(乙酸乙烯乙酯):470DuPont(19%VA)
·ATH(氢氧化铝):Nabaltec40CD
·PPMT/T1&PPMT/T2:聚(哌嗪、吗啉、三嗪)的两个样品;式II的化合物
·HRR:放热速率
·PkHRR:放热速率峰值
·THR:总热释放量(TotalHeatRelease)
在图1、图2、图3中的各图例释义如下:
ATH(150)=100份EVA+150份ATH
ATH(100)T1(2.5)=100份EVA+100份ATH+2.5份PPMT/1
ATH(100)T2(2.5)=100份EVA+100份ATH+2.5份PPMT/2
ATH(100)T1(5)=100份EVA+100份ATH+5份PPMT/1
ATH(100)T2(5)=100份EVA+100份ATH+5份PPMT/2
实施例2
研究聚丙烯(PP)基复合材料的燃烧行为和耐火性能
使用了下列材料
·PPMT/T1和/T2:聚(哌嗪、吗啉、三嗪)的两个样品;式II的化合物
·PP:聚丙烯,MoplenHP500N(LyondellBasell)
·MDH:氢氧化镁,APYMAG60S(Nabaltec)
·CaCO3:碳酸钙,Omyacarb1T-AV(Omya)
·PTFE:聚四氟乙烯,LubeflonK100(Polissrl)
以所需比例将材料进行干混合并用双螺杆共旋挤出机Leistriz18-40D.挤出。
所产生的颗粒被压为100mm×100mm×6mm大小的样品并经受上文所述的锥形量热仪测试。
表3:所研究的制品的组成
制品 0 1 2 3 4 5 6 7 8 9 10
产品份:
PP 100 100 100 100 100 100 100 100 100 100 100
MDH 0 200 150 150 150 150 150 0 0 0 0
CaCO3 0 0 0 0 0 0 0 150 150 150 150
PPMT T1 0 0 2.5 0 0 2.5 0 0 5 0 0
PPMT T2 0 0 0 2.5 2.5 0 5 0 0 5 5
PTFE 0 0 0 0 0.1 0.1 0 0 0 0 0.1
锥形量热仪测试结果
锥形量热仪测试结果参见下述表4和表5,以及图4和图5。
表4:用不易燃内容物归一化的锥形量热仪数据(conedatanormalizedwithnon-combustiblecontent)
表5:用不可燃内容物归一化的锥形量热仪数据
测试总结:根据用聚丙烯(PP)内含物归一化的对热释放速率降低的计算,可以清晰看出式II化合物可帮助降低聚丙烯(PP)的热释放速率。热释放速率(HRR)和峰值热释放速率(PkHRR)降低66.1至81.1%,火灾事件中产生的热强度的量度(表5)。
与含CaCO3的复合材料相比,含MDH的样品性能更好。
此外,用不可燃无机材料归一化的锥形量热仪测试结束时形成增加的残留物重量清楚表明式II的化合物存在时慢得多的或不完全的燃烧(表4),以及因此更好的阻燃性。
实施例3
与次磷酸盐组合
制品1(%) 制品2(%) 制品3(%)
聚酰胺61) 55 55 55
玻璃纤维 25 25 25
二乙基次膦酸铝2) 20 15 0
式II的化合物3) 0 5 0
磷酸三聚氰胺4) 0 0 20
总燃烧时间(s)* >250s 30s >250s
UL 94V(1.6mm)* V-0
1)UltramidB3S,BASF,2)ExoliteOP1230,Clariant,3)MCAPPMTriazineHF
4)Melapur200,BASF
*总燃烧时间和保险公司实验室的UL94测试是最广泛使用并认可的阻燃性测试方法(除了上文实施例1和2中描述并采用的更精细的锥形量热仪测试以外)。评价基于明火点火后的自我熄灭的能力。时间越短,性能越好
J.Troitzch:InternationalPlasticsFlammabilityHandbook;HansePublishers;Munich-Vienna-NewYork1990
实施例4
与卤代的抑燃剂组合
制品1(%) 制品2(%) 制品3(%)
PP HP 500N 1) 75 75 75
十溴二苯乙烷2) 10 10 0
式II的化合物3) 0 3.75 0
聚磷酸铵4) 15 11.25 25
三氧化锑 0 0 0
总燃烧时间(s) >250s 12s >250s
UL 94V(1.6mm) V-2
1)MoplenHP500N(LyondellBasell)2ICL3)MCAPPMTriazineHF,MCATechnologiesGmbH
4)ExoliteAP422,Clariant
实施例5
与NOR(N-烷氧基受阻胺)技术组合
制品1(%) 制品2(%) 制品3(%)
PP HP 500N 1) 84 84 84
Flamestab NOR 2) 1 1 1
式II的化合物3) 0 3.75 0
聚磷酸铵4) 14 11.25 15
总燃烧时间(s) >250s 40s >250s
UL 94V(1.6mm) V-2
1)MoplenHP500N(LyondellBasell)2)BASF3)MCAPPMTriazineHF,MCATechnologiesGmbH4)ExoliteAP422,Clariant
实施例6
与式III的化合物组合的聚酯纤维
式III
化合物(CAS63562-33-4)从中国HongweiNewMaterialsTechnologyCo.Ltd获得。
如下简述了采用化合物II和式III的化合物制备抑燃聚酯的工艺:
7.2kg的乙二醇和10kg的对苯二甲酸二甲酯在170℃和220℃之间的温度下在2.3gMn(OCOCH3)·H2O存在时经受酯交换过程以产生对苯二甲酸乙二醇酯(terephthalicacid-glycolester)预缩合物。
之后在220℃加入500g式III的化合物和3.5g的Sb2O3。现在将反应容器排空至1mmHg压力并加热到250℃(反应混合物的温度),之后在0.2mmHg和275℃缩聚反应直到获得1.85的相对粘度。向所得的聚合物熔融物加入150g的式II化合物并搅拌15分钟。此后,按照制备聚酯纤维长丝的通用方法将聚合物纺成长丝。
抑燃聚酯的燃烧表征通过常用方法如自燃温度(DIN51794)、点火温度(DIN51794)、极限氧指数(LOI)、小型燃烧器测试(DIN53906)来评估。
阻燃聚酯显示下列表征:
自燃温度:530-550℃
点火温度:380-400℃
LOI:27。

Claims (15)

1.含有阻燃剂和抑燃剂以及式I的化合物的聚合物组合物,
其中
X是卤素;
或环中至少含一个氮原子的杂环原子团,所述原子团通过这些氮原子中的一个与三嗪环连接,
R2是烷基或环烷基,
R1是式为的哌嗪的二价原子团;
类型的二价原子团;
n为2至30的整数,包括端点,
m为2至6的整数,包括端点,
p为2至12的整数,包括端点,并且
X1=OH,NH2或X,其中X和X1可以是相同或不同的,
X2=氢或C1-C4烷基基团。
2.如权利要求1所述的聚合物组合物,所述聚合物组合物含有基于磷的抑燃剂或无机抑燃剂或者基于氮的抑燃剂或者基于卤素的抑燃剂或者N-烷氧基受阻胺原子团生成抑燃剂。
3.如权利要求1所述的聚合物组合物,所述聚合物组合物由金属氢氧化物和所述式I的化合物组成。
4.如权利要求1所述的聚合物组合物,所述聚合物组合物由金属磷酸盐和所述式I的化合物组成。
5.如权利要求1所述的聚合物组合物,所述聚合物组合物由卤化的阻燃剂和所述式I的化合物组成。
6.如权利要求1所述的聚合物组合物,所述聚合物组合物由N-烷氧基受阻胺原子团生成阻燃剂和所述式I的化合物组成。
7.如权利要求1所述的聚合物组合物,所述聚合物组合物由磷酸三聚氰胺和所述式I的化合物组成。
8.如权利要求1所述的聚合物组合物用于电气和电子应用的用途。
9.如权利要求1所述的聚合物组合物用于电缆应用的用途。
10.如权利要求1所述的聚合物组合物用于户外和施工应用的用途。
11.如权利要求1所述的聚合物组合物,所述聚合物组合物包含作为聚合物的乙酸乙烯乙酯。
12.如权利要求1所述的聚合物组合物,所述聚合物组合物包含作为主要聚合物的聚烯烃聚合物或共聚物。
13.如权利要求3所述的聚合物组合物,所述聚合物组合物包含作为主要聚合物的聚酰胺或聚酯。
14.如权利要求1所述的聚合物组合物,所述聚合物组合物包含0.1至10%重量计的所述式I的化合物。
15.如权利要求11所述的聚合物组合物,所述聚合物组合物包含0.5至7.5%重量计的所述式I的化合物。
CN201510591974.6A 2014-09-16 2015-09-16 作为阻燃剂和抑燃剂增效剂的有机材料 Active CN105418967B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14003216.0 2014-09-16
EP14003216 2014-09-16

Publications (2)

Publication Number Publication Date
CN105418967A true CN105418967A (zh) 2016-03-23
CN105418967B CN105418967B (zh) 2019-12-24

Family

ID=51582227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510591974.6A Active CN105418967B (zh) 2014-09-16 2015-09-16 作为阻燃剂和抑燃剂增效剂的有机材料

Country Status (4)

Country Link
US (3) US20160075849A1 (zh)
EP (1) EP2998349B1 (zh)
JP (1) JP6782067B2 (zh)
CN (1) CN105418967B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2662477C2 (ru) * 2014-03-11 2018-07-26 Смартполимер Гмбх Огнестойкие формованные тела из целлюлозы, полученные способом прямого растворения
US10222547B2 (en) 2015-11-30 2019-03-05 Corning Incorporated Flame-retardant optical fiber coating
IL266699B2 (en) * 2016-11-28 2024-10-01 Qed Labs Inc Melting and swelling compounds that inhibit combustion
US10167396B2 (en) * 2017-05-03 2019-01-01 Corning Incorporated Low smoke fire-resistant optical ribbon
US11391900B2 (en) * 2019-11-19 2022-07-19 Corning Research & Development Corporation Talcum-free flame retardant fiber optical cable with micro-modules
WO2024209814A1 (ja) * 2023-04-07 2024-10-10 出光ファインコンポジット株式会社 樹脂組成物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504610A (en) * 1983-02-07 1985-03-12 Montedison S.P.A. Self-extinguishing polymeric compositions
JPH05311034A (ja) * 1992-05-01 1993-11-22 Chisso Corp Abs系重合体の難燃性組成物
CN101575408A (zh) * 2008-05-09 2009-11-11 Mca技术有限公司 用作阻燃剂和光稳定剂的聚三嗪基化合物
US20120071594A1 (en) * 2008-05-09 2012-03-22 Mca Technologies Gmbh Polytriazinyl compounds as flame retardants and light stabilizers
CN103003344A (zh) * 2010-07-19 2013-03-27 帝斯曼知识产权资产管理有限公司 阻燃的绝缘电导线

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196842A (ja) * 1993-12-28 1995-08-01 Chisso Corp 難燃性熱可塑性重合体組成物
DE19933901A1 (de) * 1999-07-22 2001-02-01 Clariant Gmbh Flammschutzmittel-Kombination
JP2003292688A (ja) * 2002-03-29 2003-10-15 Daiwabo Co Ltd 難燃性ポリオレフィン樹脂成形物およびこれを用いた積層体とエアフィルター
EP1745493B1 (en) * 2004-05-05 2017-12-27 Union Carbide Chemicals & Plastics Technology LLC Flame retardant plenum cable
DE102007035417A1 (de) * 2007-07-28 2009-01-29 Chemische Fabrik Budenheim Kg Halogenfreies Flammschutzmittel
US9056973B2 (en) * 2011-06-21 2015-06-16 Dow Global Technologies Llc Halogen-free flame-retardant polymer composition comprising piperazine based intumescent flame retardant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504610A (en) * 1983-02-07 1985-03-12 Montedison S.P.A. Self-extinguishing polymeric compositions
JPH05311034A (ja) * 1992-05-01 1993-11-22 Chisso Corp Abs系重合体の難燃性組成物
CN101575408A (zh) * 2008-05-09 2009-11-11 Mca技术有限公司 用作阻燃剂和光稳定剂的聚三嗪基化合物
US20120071594A1 (en) * 2008-05-09 2012-03-22 Mca Technologies Gmbh Polytriazinyl compounds as flame retardants and light stabilizers
US20120245291A1 (en) * 2008-05-09 2012-09-27 Mca Technologies Gmbh Polytriazinyl Compounds as Flame Retardants and Light Stabilizers
US20140011923A1 (en) * 2008-05-09 2014-01-09 Mca Technologies Gmbh Polytriazinyl Compounds as Flame Retardants and Light Stabilizers
CN103003344A (zh) * 2010-07-19 2013-03-27 帝斯曼知识产权资产管理有限公司 阻燃的绝缘电导线

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
丁浩等: "《新型功能复合涂料与应用》", 30 September 2009, 国防工业出版社 *
万英: "《电工手册》", 31 August 2013 *

Also Published As

Publication number Publication date
EP2998349B1 (en) 2018-01-17
US20160075849A1 (en) 2016-03-17
US20170327665A1 (en) 2017-11-16
EP2998349A1 (en) 2016-03-23
US20190367701A1 (en) 2019-12-05
CN105418967B (zh) 2019-12-24
JP6782067B2 (ja) 2020-11-11
JP2016060911A (ja) 2016-04-25

Similar Documents

Publication Publication Date Title
CN105418967B (zh) 作为阻燃剂和抑燃剂增效剂的有机材料
RU2490287C2 (ru) Огнестойкий полимерный материал
Levchik Introduction to flame retardancy and polymer flammability
CN109694568B (zh) 一种高灼热丝无卤阻燃聚酰胺复合物及其制备方法与应用
Kiliaris et al. Polymers on fire
CN109233101B (zh) 一种耐热阻燃聚丙烯组合物及其制备方法
Shen Review of recent advances on the use of boron-based flame retardants
Sut et al. Rapid mass calorimeter as a high-throughput screening method for the development of flame-retarded TPU
Xu et al. Flame retardancy and thermal behavior of intumescent flame-retardant EVA composites with an efficient triazine-based charring agent
Zhou et al. Application of intumescent flame retardant containing aluminum diethyphosphinate, neopentyl glycol, and melamine for polyethylene
Jang et al. The effect of flame retardants on the flammability and mechanical properties of paper-sludge/phenolic composite
Jang et al. Improvement of the flame retardancy of paper-sludge/polypropylene composite
CN111333960A (zh) 一种无锑阻燃聚丙烯组合物及其制备方法
CN115505172B (zh) 一种无卤阻燃剂及其制备方法和应用
CN115558181A (zh) 一种阻燃母粒及其制备方法与应用
Yang et al. Flame retardancy of wood-polymeric composites
Innes et al. Plastic flame retardants: technology and current developments
Bourbigot Intumescence‐based flame retardant
Mouritz et al. Flame retardant composites
Pani et al. Studies on the effects of various flame retardants on polypropylene
KR101891338B1 (ko) 비할로겐 난연제 및 난연조제를 포함하는 폴리시클로헥실렌디메틸렌테레프탈레이트 수지 조성물
Rawal et al. Effect of fire retardancy materials in fibre reinforced composite plate for false ceilings-A Review
US20230174745A1 (en) Flame-Retardants Comprising Soluble Flame-Retardant Metal Compounds
Palve et al. Recent Developments in Nitrogen-and Phosphorous-Based Flame Retardants for Polyurethanes
Al-Mosawi et al. Flame retardancy of biopolymer polyhydroxyalkanoate composite

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant