CN105413693B - 一种可磁力回收的对氯硝基苯加氢还原催化剂及制备方法 - Google Patents

一种可磁力回收的对氯硝基苯加氢还原催化剂及制备方法 Download PDF

Info

Publication number
CN105413693B
CN105413693B CN201510907629.9A CN201510907629A CN105413693B CN 105413693 B CN105413693 B CN 105413693B CN 201510907629 A CN201510907629 A CN 201510907629A CN 105413693 B CN105413693 B CN 105413693B
Authority
CN
China
Prior art keywords
parachloronitrobenzene
magnetic force
reduction catalyst
preparation
hydrogenating reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510907629.9A
Other languages
English (en)
Other versions
CN105413693A (zh
Inventor
张其坤
杨兵
马晓晔
石敬民
郑国静
徐华清
匡芮
王赤峰
陈雪雪
张程程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Normal University
Original Assignee
Shandong Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Normal University filed Critical Shandong Normal University
Priority to CN201510907629.9A priority Critical patent/CN105413693B/zh
Publication of CN105413693A publication Critical patent/CN105413693A/zh
Application granted granted Critical
Publication of CN105413693B publication Critical patent/CN105413693B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • C07C209/365Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst by reduction with preservation of halogen-atoms in compounds containing nitro groups and halogen atoms bound to the same carbon skeleton
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种可磁力回收的对氯硝基苯加氢还原催化剂及制备方法。将制备的Fe3O4纳米磁性粒子与水溶性钴盐加入水中,在惰性气体保护下超声充分混合,加入还原剂,超声下充分反应后得到目标产物。本发明采用自然界丰富的铁、钴元素相关盐类做基质,原料易得,价格便宜;制得的催化剂由于含有Fe3O4纳米磁性粒子,可通过外部磁场进行回收利用;同时制备的催化剂粒径为5‑30nm,使得比表面积可达100‑180m2/g,因而可对催化反应过程中反应物的吸附和分散起到极大的促进作用,最终使得转化率和选择性接近100%;本发明制备方法简单,能耗低,环境友好,适于工业化生产。

Description

一种可磁力回收的对氯硝基苯加氢还原催化剂及制备方法
技术领域
本发明涉及催化剂制备技术领域,具体涉及一种可磁力回收的对氯硝基苯加氢还原催化剂及制备方法。
背景技术
芳香胺是一种重要的药物合成、杀虫剂、染料、除草剂、高分子等的中间体,氯苯胺是芳香胺中的一个典型。氯苯胺的来源很大一部分来自对氯硝基苯的硝基还原。无论是在工业界还是在学术界将对氯硝基苯选择性还原为对氯苯胺都是非常重要的一种有机反应。迄今有许多的制备方法,例如铁粉还原、电化学还原、CO/H2O还原法、光催化还原、水合肼还原、催化氢化还原、NaBH4还原法等。在上述的制备方法中,对于铁粉还原的方法,传统的做法是,将化学计量的铁粉加入酸性的溶剂中和对氯硝基苯反应,这种方法会产生大量的废弃物,对环境有很大影响。催化氢化还原法相比较而言是工业生产最常用的一种方法,因而是相关研究工作者关注的焦点。随着研究的深入,一大批相对应的高效催化剂应运而生。目前已报道的催化剂主要有负载型贵金属(Pt,Rh,Ir,Ru,Au)、及非晶态合金催化剂等。这些催化剂催化还原对氯硝基苯易发生脱氯副反应,不但降低了产品质量,且生成的副产物氯化氢会严重腐蚀生产设备。添加脱氯抑制剂改进方法,虽在一定程度上抑制了脱氯副反应的发生,但增加了抑制剂与产物的分离的附加过程。对于基于铁基的催化剂,因为其高效的催化效果、价格低廉、储量丰富、环境友好、在催化对氯硝基苯成为对氯苯胺的过程中成为首选。
过渡金属作为催化剂已成为一种趋势。然而,由于价格成本的制约、催化的选择性、对环境的危害、反应条件比较苛刻依然是制约此类催化剂的主要因素。因此,寻找一种绿色、高效、环境友好、再生方便的新型催化剂是本发明工作的主要目标。
发明内容
本发明的目的在于提供一种高效可磁力回收的对氯硝基苯加氢还原催化剂的制备方法,能够使反应易于进行并且便于催化反应后的高效回收与再生,达到优化工业生产的目的。
为实现上述目的,本发明的技术方案为:
一种可磁力回收的对氯硝基苯加氢还原催化剂的制备方法,将制备的Fe3O4纳米磁性粒子与水溶性钴盐加入水中,在惰性气体保护下超声充分混合,加入还原剂,超声下充分反应后得到目标产物。本发明采用自然界含量丰富的铁、钴元素相关盐类做基质,原料易得,价格便宜,超声波每秒几万次的高频振动不仅能够使得Fe3O4纳米磁性粒子与钴盐充分混合,而且能够促进钴与二价铁竞争进入至Fe3O4纳米磁性粒子的晶格中从而改变纳米粒子的晶格结构,获得某些特异的性能,进而增加了催化剂的催化效果;制得的催化剂由于含有Fe3O4纳米磁性粒子,可非常方便的通过外部磁场进行回收利用;同时制备的催化剂粒径为5-30nm,使得比表面积可达100-180m2/g,因而可对催化反应过程中反应物的吸附和分散起到极大的促进作用,最终使得转化率和选择性接近100%;本发明制备方法简单,能耗低,适于工业化生产。
优选的制备步骤为:
(1)向水溶性铁盐的水溶液中加入超氧化物制备Fe3O4纳米磁性粒子;
(2)配制水溶性钴盐的水溶液,加入步骤(1)中制备的Fe3O4纳米磁性粒子,在惰性气体的保护下,充分混合后加入还原剂反应后得到杂化的纳米颗粒,杂化的纳米颗粒经洗涤干燥得到目标产物。
进一步优选的所述步骤(1)的具体步骤为:将水溶性铁盐配制成Fe3+的浓度为0.5-1.5mol/L的水溶液,加入超氧化物,在惰性气体的保护下,在20-100℃下反应后,静置分离得到粉末,粉末经洗涤干燥得到Fe3O4纳米磁性粒子。
更进一步优选的所述步骤(1)中的洗涤干燥的步骤为:首先用去离子水反复洗涤使得到的粉末pH值维持在6-8,后加入甲醇洗液洗涤,洗涤后在真空干燥箱中室温干燥8-14h。
进一步优选的所述步骤(2)中的洗涤干燥的步骤为:首先用去离子水反复洗涤使得到的杂化的纳米颗粒pH值维持在6-8左右,后用乙醇再洗涤三次,洗涤后在真空干燥箱中50-70℃干燥5-8h。
进一步优选的所述步骤(1)中的水溶性铁盐为硫酸铁或三氯化铁。硫酸铁和三氯化铁的原料容易得到,且价格更为便宜。
进一步优选的所述步骤(1)中的超氧化物为超氧化钾或超氧化钠。
进一步优选的所述惰性气体为氮气或氩气。
进一步优选的所述步骤(1)中水溶性铁盐中水溶液的Fe3+与超氧化物的摩尔比为:0.1-0.5:0.1-1。使用该配比得到的Fe3O4纳米磁性粒子所形成的催化剂的催化效果更好。
进一步优选的所述步骤(2)中水溶性钴盐与Fe3O4纳米磁性粒子的摩尔比为1:1-3。由于钴盐只能竞争四氧化三铁中的二价铁,按照该配比,能够减少原料的浪费。
进一步优选的所述还原剂为硼氢化钠、硼氢化锂、硼氢化钾或其他可将水溶性钴盐还原的还原剂。
进一步优选的所述水溶性钴盐为硫酸钴、氯化钴或硝酸钴。
一种利用上述方法制备的可磁力回收的对氯硝基苯加氢还原催化剂。Fe3O4纳米磁性粒子作为载体与钴催化剂协同杂化,由于Fe3O4纳米磁性粒子具有催化氯代硝基苯的性质,其与钴协同杂化制备出的催化材料分散效果更好,反应易于进行,反应条件温和(常压、70-90℃),而且催化反应后可很方便的磁力回收,达到高效回收、再生的目的,从而实现优化工业生产的目的。同时该催化剂粒径为5-30nm使得比表面积更大,可达100-180m2/g,因而可对催化反应过程中反应物的吸附和分散起到极大的促进作用,最终使得转化率和选择性接近100%。
一种可磁力回收的对氯硝基苯加氢还原催化剂在硝基加氢还原成氨基的应用。
本发明的有益效果为:
本发明采用氧化法制备出纳米铁载体,并且和钴原位共沉淀制备出催化剂。铁磁性的纳米颗粒做载体与钴催化剂协同杂化,磁性载体本身具有催化氯代硝基苯为氯代苯胺的特点和钴结合使两者协同增效,从而制备出分散效果好的纳米级可磁力回收的催化材料,反应易于进行且便于催化反应后的催化剂高效回收与再生,从而达到优化工业生产的目的。
本发明制备的磁性纳米催化剂粒径尺寸小,平均粒径在5-30nm,因此比表面积大。通过比表面积检测,达到100-180m2/g,对催化反应过程中反应物的吸附和分散起到很大促进作用。催化剂催化效率高,反应时间短,在70-90度,水作溶剂,环境气压条件下,20分钟就能将氯代硝基苯转化为氯代苯胺,转化率和选择性接近100%。
本发明采用自然界丰富的铁、钴元素的相关可水溶性盐类做基质,原料易得,价格便宜,且催化剂可通过外部磁场进行回收利用,重复利用效果好。本催化体系采用水作溶剂,水合肼做还原剂,整个反应除生成目标产物氯代苯胺外只有氮气和水,几乎对环境不产生污染,是一条绿色合成路线。本催化反应条件温和,对设备要求低,外加能量少,节能明显,更加适合工业生产要求。
附图说明
图1为Fe3O4(a),Co0(b)和Co0/Fe3O4(c)的TEM图;
图2为铁磁性钴催化材料的回收重复利用效果图。
具体实施方式
下面结合附图和实施例对本发明进行详细的说明。
实施例1
把270ml去离子水和40.5g三氯化铁加入500ml三口烧瓶中搅拌成均匀溶液,将0.3M的KO2缓慢加入溶液中,强力搅拌,并且通入N2保护,在343K的温度下反应2h,待体系颜色变黑且不再放出气体后,再继续搅拌半小时。静置待体系中黑色粉末全部沉至瓶底,吸出上层液体,首先用去离子水反复洗涤使得到的产品pH值维持在7左右,后加入50ml甲醇洗液洗涤,洗涤后在真空干燥箱中室温干燥12h,得到纳米磁性粒子。
称取50g去离子水,加入5mmol硫酸钴,搅拌溶解5min,得到硫酸钴溶液,加入上述制备的0.01mol的纳米磁性粒子,并通N2保护,在超声清洗仪中超声10min使两者充分混合。将含有2g的20ml硼氢化钠溶液逐滴加入到上述混合液中持续超声,滴加完毕,再继续超声反应15min,最终得到黑色的协同杂化的Co0/Fe3O4纳米颗粒,首先用去离子水反复洗涤使得到的颗粒pH值维持在7左右,后用乙醇再洗涤三次,洗涤后在真空干燥箱中60摄氏度干燥6h,得到目标颗粒。
将上述步骤中制备的纳米杂化Co0/Fe3O4粒子2mmol放于250ml的三口烧瓶中,加入0.01mol的对氯硝基苯,搅拌10min后将2ml的水合肼加入到三口瓶中加热至80℃,继续搅拌反应20min,反应完毕利用强磁体将催化剂与反应溶液分离,分离后的反应溶液用二氯甲烷萃取,有机层用硫酸镁干燥除去水分,将干燥后的有机层减压蒸馏得到对氯苯胺产品,反应收率为99.2%。
实施例2
把270ml去离子水和60g硫酸铁加入500ml三口烧瓶中搅拌成均匀溶液,将0.3M的KO2缓慢加入溶液中,强力搅拌,并且通入N2保护,在343K的温度下反应2h,待体系颜色变黑且不再放出气体后,再继续搅拌半小时。静置待体系中黑色粉末全部沉至瓶底,吸出上层液体,首先用去离子水反复洗涤使得到的产品pH值维持在7左右,后加入50ml甲醇洗液洗涤,洗涤后在真空干燥箱中室温干燥10h,得到纳米磁性粒子。
称取50g去离子水,加入5mmol氯化钴,搅拌溶解5min,得到氯化钴溶液,加入上述制备的纳米磁性粒子0.01mol,并通N2保护,在超声清洗仪中超声10min使两者充分混合。将含有2g的20ml硼氢化钠溶液逐滴加入到上述混合液中持续超声,滴加完毕,再继续超声反应15min,最终得到黑色的协同杂化的Co0/Fe3O4纳米颗粒,首先用去离子水反复洗涤使得到的颗粒pH值维持在7左右,后用乙醇再洗涤三次,洗涤后在真空干燥箱中60摄氏度干燥6h,得到目标颗粒。
将上述步骤中制备的纳米杂化Co0/Fe3O4粒子2mmol放于250ml的三口烧瓶中,加入0.01mol的对氯硝基苯,搅拌10min后将2ml的水合肼加入到三口瓶中加热至80℃,继续搅拌反应20min,反应完毕利用强磁体将催化剂与反应溶液分离,分离后的反应溶液用二氯甲烷萃取,有机层用硫酸镁干燥除去水分,将干燥后的有机层减压蒸馏得到对氯苯胺产品,反应收率为98.9%。
实施例3
把270ml去离子水和60g硫酸铁加入500ml三口烧瓶中搅拌成均匀溶液,将0.2M的KO2缓慢加入溶液中,强力搅拌,并且通入N2保护,在343K的温度下反应2h,待体系颜色变黑且不再放出气体后,再继续搅拌半小时。静置待体系中黑色粉末全部沉至瓶底,吸出上层液体,首先用去离子水反复洗涤使得到的产品pH值维持在7左右,后加入50ml甲醇洗液洗涤,洗涤后在真空干燥箱中室温干燥10h,得到纳米磁性粒子。
称取50g去离子水,加入5mmol硝酸钴,搅拌溶解5min,得到硝酸钴溶液,加入上述制备的纳米磁性粒子0.01mol,并通N2保护,在超声清洗仪中超声10min使两者充分混合。将含有2g的20ml硼氢化钠溶液逐滴加入到上述混合液中持续超声,滴加完毕,再继续超声反应20min,最终得到黑色的协同杂化的Co0/Fe3O4纳米颗粒,首先用去离子水反复洗涤使得到的颗粒pH值维持在7左右,后用乙醇再洗涤三次,洗涤后在真空干燥箱中60摄氏度干燥6h,得到目标颗粒。
将上述步骤中制备的纳米杂化Co0/Fe3O4粒子2mmol放于250ml的三口烧瓶中,加入0.015mol的对氯硝基苯,搅拌15min后将2ml的水合肼加入到三口瓶中加热至70℃,继续搅拌反应30min,反应完毕利用强磁体将催化剂与反应溶液分离,分离后的反应溶液用二氯甲烷萃取,有机层用硫酸镁干燥除去水分,将干燥后的有机层减压蒸馏得到氯代苯胺产品,反应收率为99.5%。
实施例4
把270ml去离子水和60g硫酸铁加入500ml三口烧瓶中搅拌成均匀溶液,将0.8M的NaO2缓慢加入溶液中,强力搅拌,并且通入N2保护,在293K的温度下反应2h,待体系颜色变黑且不再放出气体后,再继续搅拌半小时。静置待体系中黑色粉末全部沉至瓶底,吸出上层液体,首先用去离子水反复洗涤使得到的产品pH值维持在7左右,后加入50ml甲醇洗液洗涤,洗涤后在真空干燥箱中室温干燥10h,得到纳米磁性粒子。
称取50g去离子水,加入5mmol氯化钴,搅拌溶解5min,得到氯化钴溶液,加入上述制备的纳米磁性粒子0.01mol,并通氩气保护,在超声清洗仪中超声10min使两者充分混合。将含有2g的20ml硼氢化锂溶液逐滴加入到上述混合液中持续超声,滴加完毕,再继续超声反应15min,最终得到黑色的协同杂化的Co0/Fe3O4纳米颗粒,首先用去离子水反复洗涤使得到的颗粒pH值维持在7左右,后用乙醇再洗涤三次,洗涤后在真空干燥箱中60摄氏度干燥6h,得到目标颗粒。
将上述步骤中制备的纳米杂化Co0/Fe3O4粒子2mmol放于250ml的三口烧瓶中,加入0.01mol的对氯硝基苯,搅拌10min后将2ml的水合肼加入到三口瓶中加热至80℃,继续搅拌反应20min,反应完毕利用强磁体将催化剂与反应溶液分离,分离后的反应溶液用二氯甲烷萃取,有机层用硫酸镁干燥除去水分,将干燥后的有机层减压蒸馏得到对氯苯胺产品,反应收率为98.9%。
实施例5
把270ml去离子水和60g硫酸铁加入500ml三口烧瓶中搅拌成均匀溶液,将1M的KO2缓慢加入溶液中,强力搅拌,并且通入N2保护,在373K的温度下反应2h,待体系颜色变黑且不再放出气体后,再继续搅拌半小时。静置待体系中黑色粉末全部沉至瓶底,吸出上层液体,首先用去离子水反复洗涤使得到的产品pH值维持在7左右,后加入50ml甲醇洗液洗涤,洗涤后在真空干燥箱中室温干燥10h,得到纳米磁性粒子。
称取50g去离子水,加入5mmol硝酸钴,搅拌溶解5min,得到硝酸钴溶液,加入上述制备的纳米磁性粒子0.01mol,并通氩气保护,在超声清洗仪中超声10min使两者充分混合。将含有2g的20ml硼氢化钾溶液逐滴加入到上述混合液中持续超声,滴加完毕,再继续超声反应20min,最终得到黑色的协同杂化的Co0/Fe3O4纳米颗粒,首先用去离子水反复洗涤使得到的颗粒pH值维持在7左右,后用乙醇再洗涤三次,洗涤后在真空干燥箱中60摄氏度干燥6h,得到目标颗粒。
将上述步骤中制备的纳米杂化Co0/Fe3O4粒子2mmol放于250ml的三口烧瓶中,加入0.015mol的对氯硝基苯,搅拌15min后将2ml的水合肼加入到三口瓶中加热至70℃,继续搅拌反应30min,反应完毕利用强磁体将催化剂与反应溶液分离,分离后的反应溶液用二氯甲烷萃取,有机层用硫酸镁干燥除去水分,将干燥后的有机层减压蒸馏得到氯代苯胺产品,反应收率为99.5%。
本发明制备的Co0/Fe3O4纳米颗粒的微观图如图1所示,Co0/Fe3O4纳米颗粒的粒径问5-30nm,其平均粒径为10nm左右。
如图2所示,本发明的Co0/Fe3O4纳米颗粒的催化可重复高效利用,且重复利用15次依然可使原料的转化率大于90%。
本发明的Co0/Fe3O4纳米颗粒的催化效果对比如表1所示,
表1 Co0/Fe3O4纳米颗粒的催化效果对比表
从表1中可以看出,本发明的Co0/Fe3O4纳米颗粒的催化效率远高于单纯的Co0纳米催化剂或Fe3O4纳米催化剂,而且使用Co0/Fe3O4纳米颗粒的催化反应的选择性要高于单纯使用Co0纳米催化剂或Fe3O4纳米催化剂,因此本发明的Co0/Fe3O4纳米颗粒的催化效果显著提高。
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围内。

Claims (9)

1.一种可磁力回收的对氯硝基苯加氢还原催化剂的制备方法,其特征是,步骤为:
(1)向水溶性铁盐的水溶液中加入超氧化物制备Fe3O4纳米磁性粒子;
(2)配制水溶性钴盐的水溶液,加入步骤(1)中制备的Fe3O4纳米磁性粒子,在惰性气体的保护下,充分混合后加入还原剂反应后得到协同杂化的纳米颗粒,协同杂化的纳米颗粒经洗涤干燥得到目标产物。
2.如权利要求1所述的一种可磁力回收的对氯硝基苯加氢还原催化剂的制备方法,其特征是,所述步骤(2)中的洗涤干燥的步骤为:首先用去离子水反复洗涤使得到的协同杂化的纳米颗粒pH值维持在6-8,后用乙醇再洗涤三次,洗涤后在真空干燥箱中50-70℃干燥5-8h。
3.如权利要求1所述的一种可磁力回收的对氯硝基苯加氢还原催化剂的制备方法,其特征是,所述步骤(1)中的水溶性铁盐水溶液中的Fe3+与超氧化物的摩尔比为:0.1-0.5:0.1-1。
4.如权利要求1所述的一种可磁力回收的对氯硝基苯加氢还原催化剂的制备方法,其特征是,所述步骤(1)中的水溶性铁盐为硫酸铁或三氯化铁,超氧化物为超氧化钾或超氧化钠。
5.如权利要求1所述的一种可磁力回收的对氯硝基苯加氢还原催化剂的制备方法,其特征是,所述惰性气体为氮气或氩气。
6.如权利要求1所述的一种可磁力回收的对氯硝基苯加氢还原催化剂的制备方法,其特征是,所述步骤(2)中水溶性钴盐与Fe3O4纳米磁性粒子的摩尔比为1:1-3。
7.如权利要求1所述的一种可磁力回收的对氯硝基苯加氢还原催化剂的制备方法,其特征是,所述还原剂为硼氢化钠、硼氢化钾或硼氢化锂,所述水溶性钴盐为硫酸钴、氯化钴或硝酸钴。
8.一种利用如权利要求1-7任一所述的制备方法制备的可磁力回收的对氯硝基苯加氢还原催化剂。
9.一种如权利要求8所述的可磁力回收的对氯硝基苯加氢还原催化剂在硝基加氢还原成氨基的应用。
CN201510907629.9A 2015-12-09 2015-12-09 一种可磁力回收的对氯硝基苯加氢还原催化剂及制备方法 Expired - Fee Related CN105413693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510907629.9A CN105413693B (zh) 2015-12-09 2015-12-09 一种可磁力回收的对氯硝基苯加氢还原催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510907629.9A CN105413693B (zh) 2015-12-09 2015-12-09 一种可磁力回收的对氯硝基苯加氢还原催化剂及制备方法

Publications (2)

Publication Number Publication Date
CN105413693A CN105413693A (zh) 2016-03-23
CN105413693B true CN105413693B (zh) 2018-02-02

Family

ID=55492494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510907629.9A Expired - Fee Related CN105413693B (zh) 2015-12-09 2015-12-09 一种可磁力回收的对氯硝基苯加氢还原催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN105413693B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576728A (en) * 1968-03-20 1971-04-27 Sherwin Williams Co Electrophoretic coating process
CN101157034A (zh) * 2007-11-13 2008-04-09 上海师范大学 一种非晶态合金催化剂及其制备方法和用途
CN102351714A (zh) * 2011-08-17 2012-02-15 中国石油化工集团公司 一种对氯硝基苯催化加氢制备对氯苯胺的方法
CN104549306A (zh) * 2015-01-20 2015-04-29 中国人民大学 磁性Zn0/Fe3O4催化剂及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576728A (en) * 1968-03-20 1971-04-27 Sherwin Williams Co Electrophoretic coating process
CN101157034A (zh) * 2007-11-13 2008-04-09 上海师范大学 一种非晶态合金催化剂及其制备方法和用途
CN102351714A (zh) * 2011-08-17 2012-02-15 中国石油化工集团公司 一种对氯硝基苯催化加氢制备对氯苯胺的方法
CN104549306A (zh) * 2015-01-20 2015-04-29 中国人民大学 磁性Zn0/Fe3O4催化剂及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Co-precipitation method of synthesis and characterization of iron oxidenanoparticles;N D Kandpal等;《Journal of Scientific & Industrial Research》;20140228;第73卷;全文 *
Preparation of NiFeB nanoalloy catalysts and their applications in liquid-phase hydrogenation of p-chloronitrobenzene;Yu-Wen Chen等;《Ind. Eng. Chem. Res.》;20090528;第48卷;全文 *

Also Published As

Publication number Publication date
CN105413693A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
Xiao et al. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies
Zhou et al. Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light
Wu et al. Nitrogen-doped anatase nanofibers decorated with noble metal nanoparticles for photocatalytic production of hydrogen
Besharat et al. Graphene-based (nano) catalysts for the reduction of Cr (VI): A review
Qin et al. Synthetic strategies and application of gold-based nanocatalysts for nitroaromatics reduction
Rossi et al. Magnetic nanocatalysts: Supported metal nanoparticles for catalytic applications
CN108160094B (zh) 一种氮掺杂炭材料担载贵金属催化剂及制备和应用
Wen et al. Heterometal modified Fe3O4 hollow nanospheres as efficient catalysts for organic transformations
Ghosh et al. Ag nanoparticle immobilized mesoporous TiO2-cobalt ferrite nanocatalyst: A highly active, versatile, magnetically separable and reusable catalyst
CN103263921A (zh) 一种金属/石墨烯催化剂及制备方法
Geng et al. Rational design of CuO/SiO2 nanocatalyst with anchor structure and hydrophilic surface for efficient hydrogenation of nitrophenol
Li et al. Photoinduced in situ spontaneous formation of a reduced graphene oxide-enwrapped Cu–Cu2O nanocomposite for solar hydrogen evolution
Rasheed et al. Highly efficient photocatalytic degradation of the Tetracycline hydrochloride on the α-Fe2O3@ CN composite under the visible light
CN107252685A (zh) 一种含羟基胺类化合物功能化磁性氧化石墨烯催化材料及其制备方法和应用
Ravi et al. Heterojunction engineering at ternary Cu2S/Ta2O5/CdS nanocomposite for enhanced visible light-driven photocatalytic hydrogen evolution
Kharisov et al. Iron-based nanomaterials in the catalysis
CN105879881A (zh) PtPd/Fe3O4纳米催化剂的制备及其在HECK反应中的应用
CN108404973A (zh) 一种zsm-5负载的双金属催化剂及其制备方法与应用
Fang et al. Fabrication of ellipsoidal silica yolk–shell magnetic structures with extremely stable Au nanoparticles as highly reactive and recoverable catalysts
Gao et al. Co3O4@ Fe3O4/cellulose blend membranes for efficient degradation of perfluorooctanoic acid in the visible light-driven photo-Fenton system
CN109331825A (zh) 一种石墨烯包裹金属镍催化剂、制备方法及其应用
Liu et al. Enhanced degradation of ultra-violet stabilizer Bis (4-hydroxy) benzophenone using oxone catalyzed by hexagonal nanoplate-assembled CoS 3-dimensional cluster
Wei et al. Hydrodechlorination of p-chlorophenol on Pd-coated Fe 3 O 4@ polypyrrole catalyst with ammonia borane as hydrogen donor
Sudhaik et al. Applications of graphitic carbon nitride-based S-scheme heterojunctions for environmental remediation and energy conversion
Li et al. Rational design on photo (electro) catalysts for artificial nitrogen looping

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180202

Termination date: 20181209