CN105401212A - 单晶硅生长控制方法 - Google Patents

单晶硅生长控制方法 Download PDF

Info

Publication number
CN105401212A
CN105401212A CN201510865764.1A CN201510865764A CN105401212A CN 105401212 A CN105401212 A CN 105401212A CN 201510865764 A CN201510865764 A CN 201510865764A CN 105401212 A CN105401212 A CN 105401212A
Authority
CN
China
Prior art keywords
single crystal
silicon
crystal bar
reflection
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510865764.1A
Other languages
English (en)
Other versions
CN105401212B (zh
Inventor
张俊宝
宋洪伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Chaosi Semiconductor Co.,Ltd.
Original Assignee
SHANGHAI ADVANCED SILICON TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI ADVANCED SILICON TECHNOLOGY Co Ltd filed Critical SHANGHAI ADVANCED SILICON TECHNOLOGY Co Ltd
Priority to CN201510865764.1A priority Critical patent/CN105401212B/zh
Publication of CN105401212A publication Critical patent/CN105401212A/zh
Application granted granted Critical
Publication of CN105401212B publication Critical patent/CN105401212B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

本发明技术是一种单晶硅生长控制方法。采用反射及冷却装置对硅晶棒上920℃?-?700?℃区域进行降温,使这一区域的长度小于200mm,在提拉硅单晶棒的速度大于1.12?mm/min,使晶棒在这一温度区间的停留时间小于180min,避免OSF缺陷的形成。采用半抛物线弧形面反射硅熔融液的辐射红外线,照射生长界面处的硅单晶棒侧面,降低侧表面降温速度,从而降低硅单晶棒生长界面处中心与表面的温度梯度,使晶片上的氧元素及掺杂元素的径向分布均匀。采用光洁表面反射高温坩埚壁射线,避免对晶棒产生影响。

Description

单晶硅生长控制方法
技术领域
本发明涉及一种单晶硅生长方法,涉及直拉法单晶硅生长时控制生长界面附近的径向温度梯度,控制单晶体中热氧施主的形成。特别涉及直拉法单晶硅生长工艺中硅单晶棒的径向及轴向温度控制。
背景技术
集成电路小型化、低功耗、高运算速率、窄线宽的发展趋势,对大尺寸集成电路用硅片品质与性能的要求越来越高。随着晶棒尺寸越来越大,晶锭生长的温度控制难度增大,单晶硅生长难度大幅增加。
在单晶硅中存在多种缺陷,包括位错、空位、间隙原子、堆垛、掺杂元素分布不均等。众所周知,在这些缺陷中堆垛缺陷是在硅单晶氧化过程中形成的,被称为氧化诱导堆垛缺陷(OxidationinducedStacking-Faults,简称OSF),对电子器件制造有害。这种OSF缺陷在晶体提拉生长过程的特定条件下形成,非专利文献G.Rozgonyi,p149,SemiconductorSilicon2002vol1,ElectrochemicalSocietyproceedingvolume2002-2,对此做过详细的研究,OSF晶核在一些特定的V/G范围内形成,(V是硅单晶棒的提拉速度,G是硅单晶棒生长界面处的温度梯度)。
由于硅单晶的结晶凝固过程是放热过程,在晶棒中心的热量比边缘的热量难以扩散,因此晶体的生长界面为弧形,而且随着晶体尺寸的增大,生长界面弧形高度也增大。造成晶体生长界面上径向的温度梯度增加,晶片径向上氧元素及掺杂元素分布不均匀程度增加,对电子器件产生不利影响。专利CN201420688047.7、CN201320808094.6的热屏的设计是为了降低坩埚对晶体的辐射。电磁技术的引入,也是降低晶体径向上的温度梯度,其成本相对较高。
同时,在在晶体缺陷中,对于p型单晶硅,OSF成核主要与V/G值范围相关。但是对于n-型单晶硅,OSF成核不仅与V/G值范围相关,还与硅单晶棒的热历史(即,降温工艺制度)以及硅单晶棒中的氧含量及其分布相关。因此n型单晶硅中OSF晶核,更加容易形成。通常情况下,硅晶体中氧原子在450℃下形成氧施主。目前工业上采用Czochralski法生长硅单晶,硅单晶棒的长度基本都超过1m以上。因此硅单晶棒在450℃下停留的时间也很长,更容易形成氧施主。
抑制OSF缺陷最简单的方法是,减少在硅单晶棒在450℃下的停留时间。有两种基本的方法可以实现,一是降低硅单晶棒长度,但是将大大降低生产效率。二是对硅单晶棒进行降温,但是降温的方法可能加剧晶体径向上的温度梯度,传递到生长界面,引超晶体质量降低。
发明内容
本发明的目的在于提供一种硅单晶生长控制方法,在降低生长界面径向温度梯度的同时,控制晶棒的轴向温度,不发生OSF成核。
为了达到以上的目的,本发明工艺技术采用以下方法:增加生长界面区附近晶棒的外表面温度,降低径向温度梯度;快速降低硅单晶棒轴向特定区域段的温度,不形成OSF晶核。
在石英坩埚上方,设计一个反射及冷却装置1,见图1所示。装置具有一个中心孔,用于通过硅单晶棒,内部具有冷却。
通常情况下,硅晶体中氧原子在450℃下形成氧施主。我们的实验发现,单晶棒在920℃-700℃的停留时间小于180min时,不会出现OSF成核。即在拉晶工艺中将单晶棒在920℃-700℃的停留时间控制在180min以下时,就可以控制不会出现OSF成核,不形成氧施主。我们实验发现,如果提拉硅单晶棒的速度在0.5–1.5mm/min之间,硅单晶棒920℃的位置距离熔体表面大约确定为250mm,硅单晶棒700℃的位置距离熔体表面大约确定为450mm。
本发明专利的特征在于,反射及冷却装置的坚直段2的长度为250mm。距离硅单晶棒的侧面的距离为20-30mm,见图2,反射及冷却装置半剖图所示。坚直段2表面粗糙度为8-10μm。表面镀有碳化硅多孔陶瓷镀层,镀层的厚度为2.42μm,镀层内孔径大小控制在1.2μm-1.5μm。由单晶棒表面辐射出的红外线的波长范围为2.4μm-3.0μm。碳化硅多孔陶瓷镀层对其有0.9的吸收系数,且较高的表面粗糙度提高了吸收面积和吸收效果,可对硅单晶棒非接触高速降温。
拉晶过程中,冷却水的进入温度为25℃,出口的温度小于50℃。保证对冷却面的充分冷却。控制硅单晶棒920℃-700℃温度区间的长度小于200mm,提拉硅单晶棒的速度大于1.12mm/min。
本发明专利的特征在于,反射及冷却装置的半抛物线弧形段3,形状为半抛物线形成的弧形面,抛物线的开口向晶棒,开口高度为130mm-150mm。半抛物线形成的弧形面,反射由硅融熔液和晶棒发的红外线。半抛物线弧形面的反射特征为大部分红外线经反射后,形成一束水平射线,反射方向为抛物线的开口方向,直接照射硅单晶棒的侧面。而这一位置的硅单晶棒,距离生长界面最近。既对生长界面附近的单晶棒侧表面进行辐射加热,使生长界面处硅单晶棒的中心温度和侧面温度梯度降低,即径向温度梯度降低。晶片在径向的氧元素及掺杂元素分布均匀性增加。部分红外线被反射回硅融熔液,减少能量损失。
本发明专利的特征在于,反射及冷却装置的水平段4长度为20-30mm,距离硅熔融液的高度为20-40mm。水平段具有反射熔体能量的作用,同时将氩气快速导出,降低气氛中SiO浓度,从而降低晶体中的氧元素浓度。
本发明专利的特征在于,反射及冷却装置的竖直段5与坩埚壁距离10-20mm。其作用为反射坩埚壁的能量。尤其是拉晶后期,熔体总量下降,坩埚壁的辐射量增加,竖直段5反射可防止坩埚壁的辐射对晶体的影响。
本发明专利的特征在于,半抛物线弧形段3、水平段4和竖直段5由金属铬制造,表面抛光,光洁度要求为Ra不大于0.1μm,表面镀有高纯石英玻璃镀层,镀层的厚度为硅融熔液的红外辐射的波长一半0.86μm。硅融熔液的红外辐射波长为1.71μm,镀层为半波长可以对红外线形成全反射。同时光洁的铬表面对1.71μm红外辐射的反射率在0.9以上,有效防止能量损失。也保证半抛物线弧形面将1.71μm红外辐射反射到生长界面附件的晶体侧面,降低生长界面径向温度梯度。
附图说明
图1为本发明硅单晶生长控制反射及冷却装置位置图;
图2为本发明硅单晶生长控制反射及冷却装置结构图。
具体实施方式
实施例1
长直径为8英吋单晶硅棒,采用内径为22英寸(内径560mm)石英坩埚。反射及冷却装置中竖起面2的高度为250mm,采用喷丸将表面粗糙度控制在8-10μm。采用等离子体气相沉积方法在表面镀碳化硅多孔陶瓷镀层,镀层的厚度为2.42μm,镀层内孔径大小控制在1.2μm-1.5μm,致密度大于65%。竖直面2距离单晶硅棒侧表面20mm。
半抛物线弧形段3,抛物线的开口向晶棒,开口高度为130mm,弧形段3长度为130mm。水平段4长度为20mm。竖直段5与坩埚壁距离10mm。半抛物线弧形段3、水平段4和竖直段5由金属铬制造,表面抛光,光洁度要求为Ra为0.1μm,表面采用化学气相沉积高纯石英玻璃镀层,厚度为0.86μm。
拉晶过程中,水平段4距离硅熔融液的高度为20mm。冷却水的进入温度为25℃,出口的温度控制在50℃。提拉硅单晶棒的速度为1.5mm/min,晶棒生长中拉脱检测生长界面的弧高为25mm,重熔后重新生长,晶棒的长度为1.35m,生长后晶锭质量检测未发现OSF成核。
对比例1
长直径为8英吋单晶硅棒,采用内径为22英寸(内径560mm)石英坩埚。采用传统的方法进行生长,提拉硅单晶棒的速度为1.5mm/min,晶棒生长中拉脱检测生长界面的弧高为36mm,重熔后重新生长,晶棒的长度为1.35m,生长后晶锭质量检测在0.6m处发现OSF成核。
实施例2
长直径为8英吋单晶硅棒,采用内径为24英寸(内径610mm)石英坩埚。反射及冷却装置中竖起面2的高度为250mm,采用喷丸将表面粗糙度控制在8-10μm。采用等离子体气相沉积方法在表面镀碳化硅多孔陶瓷镀层,镀层的厚度为2.42μm,镀层内孔径大小控制在1.2μm-1.5μm,致密度大于65%。竖直面2距离单晶硅棒侧表面20mm。
半抛物线弧形段3,抛物线的开口向晶棒,开口高度为130mm,弧形段3长度为155mm。水平段4长度为20mm。竖直段5与坩埚壁距离10mm。半抛物线弧形段3、水平段4和竖直段5由金属铬制造,表面抛光,光洁度要求为Ra为0.1μm,表面采用化学气相沉积高纯石英玻璃镀层,厚度为0.86μm。
拉晶过程中,水平段4距离硅熔融液的高度为40mm。冷却水的进入温度为25℃,出口的温度控制在50℃。提拉硅单晶棒的速度为1.45mm/min,晶棒生长中拉脱检测生长界面的弧高为26mm,重熔后重新生长,晶棒的长度为1.30m,生长后晶锭质量检测未发现OSF成核。
实施例3
长直径为12英吋(直径305)单晶硅棒,采用内径为26英寸(内径660mm)石英坩埚。反射及冷却装置中竖起面2的高度为250mm,采用喷丸将表面粗糙度控制在8-10μm。采用等离子体气相沉积方法在表面镀碳化硅多孔陶瓷镀层,镀层的厚度为2.42μm,镀层内孔径大小控制在1.2μm-1.5μm,致密度大于65%。竖直面2距离单晶硅棒侧表面20mm。
半抛物线弧形段3,抛物线的开口向晶棒,开口高度为150mm,弧形段3长度为125mm。水平段4长度为20mm。竖直段5与坩埚壁距离10mm。半抛物线弧形段3、水平段4和竖直段5由金属铬制造,表面抛光,光洁度要求为Ra为0.08μm,表面采用化学气相沉积高纯石英玻璃镀层,厚度为0.86μm。
拉晶过程中,水平段4距离硅熔融液的高度为30mm。冷却水的进入温度为25℃,出口的温度控制在45℃。提拉硅单晶棒的速度为1.45mm/min,晶棒生长中拉脱检测生长界面的弧高为23mm,重熔后重新生长,晶棒的长度为1.30m,生长后晶锭质量检测未发现OSF成核。
对比例2
长直径为12英吋单晶硅棒,采用内径为26英寸(内径660mm)石英坩埚。采用传统的方法进行生长,提拉硅单晶棒的速度为1.45mm/min,晶棒生长中拉脱检测生长界面的弧高为45mm,重熔后重新生长,晶棒的长度为1.35m,生长后晶锭质量检测在0.4m处发现OSF成核。
实施例4
长直径为12英吋(直径305)单晶硅棒,采用内径为32英寸(内径810mm)石英坩埚。反射及冷却装置中竖起面2的高度为250mm,采用喷丸将表面粗糙度控制在8-10μm。采用等离子体气相沉积方法在表面镀碳化硅多孔陶瓷镀层,镀层的厚度为2.42μm,镀层内孔径大小控制在1.2μm-1.5μm,致密度大于65%。竖直面2距离单晶硅棒侧表面25mm。
半抛物线弧形段3,抛物线的开口向晶棒,开口高度为150mm,弧形段3长度为175mm。水平段4长度为25mm。竖直段5与坩埚壁距离20mm。半抛物线弧形段3、水平段4和竖直段5由金属铬制造,表面抛光,光洁度要求为Ra为0.08μm,表面采用化学气相沉积高纯石英玻璃镀层,厚度为0.86μm。
拉晶过程中,水平段4距离硅熔融液的高度为30mm。冷却水的进入温度为25℃,出口的温度控制在45℃。提拉硅单晶棒的速度为1.35mm/min,晶棒生长中拉脱检测生长界面的弧高为30mm,重熔后重新生长,晶棒的长度为1.25m,生长后晶锭质量检测未发现OSF成核。
实施例5
长直径为12英吋(直径305)单晶硅棒,采用内径为34英寸(内径865mm)石英坩埚。反射及冷却装置中竖起面2的高度为250mm,采用喷丸将表面粗糙度控制在8-10μm。采用等离子体气相沉积方法在表面镀碳化硅多孔陶瓷镀层,镀层的厚度为2.42μm,镀层内孔径大小控制在1.2μm-1.5μm,致密度大于65%。竖直面2距离单晶硅棒侧表面30mm。
半抛物线弧形段3,抛物线的开口向晶棒,开口高度为130mm,弧形段3长度为210mm。水平段4长度为30mm。竖直段5与坩埚壁距离10mm。半抛物线弧形段3、水平段4和竖直段5由金属铬制造,表面抛光,光洁度要求为Ra为0.1μm,表面采用化学气相沉积高纯石英玻璃镀层,厚度为0.86μm。
拉晶过程中,水平段4距离硅熔融液的高度为30mm。冷却水的进入温度为25℃,出口的温度控制在40℃。提拉硅单晶棒的速度为1.30mm/min,晶棒生长中拉脱检测生长界面的弧高为28mm,重熔后重新生长,晶棒的长度为1.45m,生长后晶锭质量检测未发现OSF成核。

Claims (7)

1.一种单晶硅生长控制方法;采用反射及冷却装置竖直面2对硅晶棒上920℃-700℃区域进行降温,使这一温度区域的长度小于200mm,控制提拉硅单晶棒的速度大于1.12mm/min,使晶棒在这一温度区间的停留时间小于180min;采用半抛物线弧形面反射硅熔融液的辐射红外线,照射生长界面处的硅单晶棒侧面,降低侧表面的降温速度,从而降低硅单晶棒生长界面处中心与表面的温度梯度;控制反射及冷却装置水平面与熔液的表面距离,提高SiO的扩散速度;采用光洁表面反射高温坩埚壁射线,避免对晶棒产生影响。
2.根据权利要求1所述的单晶硅生长控制方法,其特征在于反射及冷却装置的坚直段2的长度为250mm;距离硅单晶棒的侧面的距离为20-30mm;坚直段2表面粗糙度为8-10μm;表面镀有碳化硅多孔陶瓷镀层,镀层的厚度为2.42μm,镀层内孔径大小控制在1.2μm-1.5μm。
3.一种单晶硅生长控制方法,其特征在于拉晶过程中,冷却水的进入温度为25℃,出口的温度小于50℃,控制硅单晶棒920℃-700℃温度区间的长度小于200mm,提拉硅单晶棒的速度大于1.12mm/min。
4.根据权利要求1所述的单晶硅生长控制方法,其特征还在于反射及冷却装置的半抛物线弧形段3,形状为半抛物线形成的弧形面,抛物线的开口向晶棒,开口高度为130mm-150mm;反射由硅融熔液和晶棒发的红外线,形成一束水平射线,照射硅单晶棒的侧面,降低生长界面处硅单晶棒的中心温度和侧面温度梯度,即降低径向温度梯度。
5.根据权利要求4所述的单晶硅生长控制方法,其特征在于反射及冷却装置的水平段4长度为20-30mm,距离硅熔融液的高度为20-40mm。
6.根据权利要求4所述的单晶硅生长控制方法,其特征在于反射及冷却装置的竖直段5与坩埚壁距离10-20mm;反射坩埚壁的能量,尤其是拉晶后期,熔体总量下降,坩埚壁的辐射量增加,竖直段5反射防止坩埚壁的辐射对晶体的影响。
7.根据权利要求1所述的单晶硅生长控制方法,其特征在于半抛物线弧形段3、水平段4和竖直段5由金属铬制造,表面抛光,光洁度要求为Ra不大于0.1μm,表面镀有高纯石英玻璃镀层,镀层的厚度为0.86μm。
CN201510865764.1A 2015-12-02 2015-12-02 单晶硅生长控制方法 Active CN105401212B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510865764.1A CN105401212B (zh) 2015-12-02 2015-12-02 单晶硅生长控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510865764.1A CN105401212B (zh) 2015-12-02 2015-12-02 单晶硅生长控制方法

Publications (2)

Publication Number Publication Date
CN105401212A true CN105401212A (zh) 2016-03-16
CN105401212B CN105401212B (zh) 2019-05-07

Family

ID=55466956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510865764.1A Active CN105401212B (zh) 2015-12-02 2015-12-02 单晶硅生长控制方法

Country Status (1)

Country Link
CN (1) CN105401212B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604431A (zh) * 2016-07-11 2018-01-19 上海超硅半导体有限公司 n型单晶硅制造方法和装置
CN108950679A (zh) * 2018-06-28 2018-12-07 西安交通大学 一种在线监测直拉单晶炉内长晶界面形状的方法
CN109930200A (zh) * 2017-12-18 2019-06-25 上海新昇半导体科技有限公司 热屏及单晶硅生长炉结构
CN109930197A (zh) * 2017-12-18 2019-06-25 上海新昇半导体科技有限公司 热屏及单晶硅生长炉结构
CN109930198A (zh) * 2017-12-18 2019-06-25 上海新昇半导体科技有限公司 热屏及单晶硅生长炉结构
TWI740669B (zh) * 2020-02-21 2021-09-21 大陸商上海新昇半導體科技有限公司 晶棒生長控制方法以及控制系統
CN113862779A (zh) * 2021-09-29 2021-12-31 西安奕斯伟材料科技有限公司 一种坩埚组件及拉晶炉
CN114574948A (zh) * 2022-01-29 2022-06-03 徐州鑫晶半导体科技有限公司 控制生长完美硅晶体的方法及硅晶体
CN116657236A (zh) * 2023-06-02 2023-08-29 曲靖阳光新能源股份有限公司 一种用于拉制单晶硅棒的拉晶炉
CN117431620A (zh) * 2023-12-18 2024-01-23 麦斯克电子材料股份有限公司 一种减少大尺寸硅单晶氧化层错的拉晶方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356408A (zh) * 2000-11-27 2002-07-03 希特隆股份有限公司 生长单晶坯料的装置
CN1608147A (zh) * 2001-03-23 2005-04-20 Memc电子材料有限公司 用于拉晶机的热屏蔽组件
KR20060072692A (ko) * 2004-12-23 2006-06-28 주식회사 실트론 단결정 잉곳의 성장 장치
KR20110062361A (ko) * 2009-12-03 2011-06-10 주식회사 엘지실트론 원통형 열반사 수단을 구비한 단결정 성장 장치
CN203668549U (zh) * 2013-12-30 2014-06-25 上海涌真机械有限公司 一种可以提高直拉法单晶生长速度的冷却装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1356408A (zh) * 2000-11-27 2002-07-03 希特隆股份有限公司 生长单晶坯料的装置
CN1608147A (zh) * 2001-03-23 2005-04-20 Memc电子材料有限公司 用于拉晶机的热屏蔽组件
KR20060072692A (ko) * 2004-12-23 2006-06-28 주식회사 실트론 단결정 잉곳의 성장 장치
KR20110062361A (ko) * 2009-12-03 2011-06-10 주식회사 엘지실트론 원통형 열반사 수단을 구비한 단결정 성장 장치
CN203668549U (zh) * 2013-12-30 2014-06-25 上海涌真机械有限公司 一种可以提高直拉法单晶生长速度的冷却装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604431A (zh) * 2016-07-11 2018-01-19 上海超硅半导体有限公司 n型单晶硅制造方法和装置
CN109930200A (zh) * 2017-12-18 2019-06-25 上海新昇半导体科技有限公司 热屏及单晶硅生长炉结构
CN109930197A (zh) * 2017-12-18 2019-06-25 上海新昇半导体科技有限公司 热屏及单晶硅生长炉结构
CN109930198A (zh) * 2017-12-18 2019-06-25 上海新昇半导体科技有限公司 热屏及单晶硅生长炉结构
CN108950679A (zh) * 2018-06-28 2018-12-07 西安交通大学 一种在线监测直拉单晶炉内长晶界面形状的方法
CN108950679B (zh) * 2018-06-28 2020-04-28 西安交通大学 一种在线监测直拉单晶炉内长晶界面形状的方法
TWI740669B (zh) * 2020-02-21 2021-09-21 大陸商上海新昇半導體科技有限公司 晶棒生長控制方法以及控制系統
CN113862779A (zh) * 2021-09-29 2021-12-31 西安奕斯伟材料科技有限公司 一种坩埚组件及拉晶炉
CN114574948A (zh) * 2022-01-29 2022-06-03 徐州鑫晶半导体科技有限公司 控制生长完美硅晶体的方法及硅晶体
CN116657236A (zh) * 2023-06-02 2023-08-29 曲靖阳光新能源股份有限公司 一种用于拉制单晶硅棒的拉晶炉
CN116657236B (zh) * 2023-06-02 2023-11-03 曲靖阳光新能源股份有限公司 一种用于拉制单晶硅棒的拉晶炉
CN117431620A (zh) * 2023-12-18 2024-01-23 麦斯克电子材料股份有限公司 一种减少大尺寸硅单晶氧化层错的拉晶方法
CN117431620B (zh) * 2023-12-18 2024-03-01 麦斯克电子材料股份有限公司 一种减少大尺寸硅单晶氧化层错的拉晶方法

Also Published As

Publication number Publication date
CN105401212B (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
CN105401212A (zh) 单晶硅生长控制方法
JP5380442B2 (ja) 種結晶から鋳造シリコンを製造するための方法および装置
TW522456B (en) Silicon single crystal wafer and method for manufacturing the same
KR101997608B1 (ko) 실리콘 단결정 육성장치 및 실리콘 단결정 육성방법
KR20100050510A (ko) 시드 결정으로부터 캐스트 실리콘을 제조하는 방법
US11072870B2 (en) Crystal pulling systems and methods for producing monocrystalline ingots with reduced edge band defects
CN103556223B (zh) 一种生长大尺寸和方形蓝宝石单晶的方法
JP2013112566A (ja) 多結晶シリコンの製造方法および多結晶シリコン製造用反応炉
CN106149051A (zh) 氟化物单晶体的热控布里奇曼法单晶生长装置与方法
CN104131339A (zh) 一种多晶硅片的制备方法
JPWO2017069112A1 (ja) シリコン単結晶インゴットの引上げ装置およびシリコン単結晶インゴットの製造方法
TW518374B (en) Apparatus and method for producing single crystal ingot by Czochralski method
CN102758244A (zh) 复合加热式直拉多晶硅或单晶硅制备工艺
US9546436B2 (en) Polycrystalline silicon and method of casting the same
Schwanke et al. Influence of crucible properties and Si3N4-coating composition on the oxygen concentration in multi-crystalline silicon ingots
CN102758245A (zh) 除氧型单晶炉
CN100385046C (zh) 硅晶片的制造方法
CN109930197A (zh) 热屏及单晶硅生长炉结构
WO2014155985A1 (ja) シリコン単結晶製造装置およびこれを用いたシリコン単結晶製造方法
CN102758254A (zh) 单晶炉加热系统
CN211522362U (zh) 带晶种升降单元的铸造硅单晶炉
CN102817069A (zh) 复合加热防辐射式直拉多或单晶硅制备工艺
CN102097314A (zh) 一种对冷却过程进行精确控制的激光热处理装置和方法
CN102758248A (zh) 单晶炉用均热式加热系统
US20220005766A1 (en) Composite heat insulation structure for monocrystalline silicon growth furnace and monocrystalline silicon growth furnace

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 201604 No. 88, Yangshi Road, Shihudang Town, Songjiang District, Shanghai

Patentee after: Shanghai Chaosi Semiconductor Co.,Ltd.

Address before: 201604 No. 88, Yangshi Road, Shihudang Town, Songjiang District, Shanghai

Patentee before: SHANGHAI ADVANCED SILICON TECHNOLOGY Co.,Ltd.

CP01 Change in the name or title of a patent holder