CN105396563B - 高吸附性二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的制备方法 - Google Patents

高吸附性二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的制备方法 Download PDF

Info

Publication number
CN105396563B
CN105396563B CN201510717504.XA CN201510717504A CN105396563B CN 105396563 B CN105396563 B CN 105396563B CN 201510717504 A CN201510717504 A CN 201510717504A CN 105396563 B CN105396563 B CN 105396563B
Authority
CN
China
Prior art keywords
cellulose diacetate
electrostatic spinning
film
porous thin
ordered porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510717504.XA
Other languages
English (en)
Other versions
CN105396563A (zh
Inventor
高长有
冯建永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201510717504.XA priority Critical patent/CN105396563B/zh
Publication of CN105396563A publication Critical patent/CN105396563A/zh
Application granted granted Critical
Publication of CN105396563B publication Critical patent/CN105396563B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • B01D39/04Organic material, e.g. cellulose, cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/30Particle separators, e.g. dust precipitators, using loose filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28038Membranes or mats made from fibers or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • C08L1/12Cellulose acetate
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/24Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives
    • D01F2/28Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from cellulose derivatives from organic cellulose esters or ethers, e.g. cellulose acetate
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0631Electro-spun
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/44Materials comprising a mixture of organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4825Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Textile Engineering (AREA)
  • Nanotechnology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

本发明公开了一种高吸附性二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的制备方法。将二醋酸纤维素和聚己内酯、或者将二醋酸纤维素和乳酸‑羟基乙酸共聚物、或者将二醋酸纤维素和聚乙烯吡咯烷酮溶解在有机溶剂中,制备成纺丝液,采用静电纺丝法,制备成二醋酸纤维素静电纺纳米纤维有序多孔薄膜。本发明方法简单,制备过程不会对环境造成任何污染。制得的二醋酸纤维素静电纺纳米纤维多孔有序薄膜,具有较小的纤维直径,较好的孔径和有序度。其干态吸附和湿态吸附性能好,吸水性较强,可以用于干态和湿态吸附、过滤分离行业的烟气和烟草行业,市场应用前景广阔,具有较强的应用价值。

Description

高吸附性二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的 制备方法
技术领域
本发明涉及一种纳米纤维多孔非织造布有序薄膜的制备方法,尤其是高吸附性二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的制备方法。
技术背景
醋酸纤维素(CA)是应用比较广泛的高分子,其来源于纤维素,可以应用在涂料、薄膜、膜分离、纺织和烟草等行业。由于CA分子含有氧环结构,可以通过醚键连接而成,支链上含有强极性的乙酰基(-OCOCH)和羟基(-OH)。所以CA丝束对极性物质具有较强的亲和力,可以和焦油组分和低分子物质进行化学反应,反应物牢牢留在纤维表面;同时,丝束表面具有微孔和粗糙度,在对烟气的吸附过程中,同时具有物理吸附和化学吸附双重效果。醋酸纤维素可以通过异构或均匀的纤维素乙酰化来实现。由于溶解性的限制,三醋酸纤维素并没有大量的商业化应用。而由于低结晶度,二醋酸纤维素以较好的溶解性而有较好应用领域。
加拿大圭尔夫大学植物农业系的Konwarh(Konwarh R, Misra M, Mohanty AK,Karak N. Diameter-tuning of electrospun cellulose acetate fibers: A Box-Behnken design (BBD) study. Carbohyd Polym. 2013;92:1100-6.)将二醋酸纤维素溶解在醋酸和水的混合溶剂中制备纺丝液,其中醋酸和水的重量比为75:25,以20-30kV的纺丝电压、11-15cm的纺丝距离、1-3mL/h的纺丝流量制备141-166nm的无序纳米纤维膜。
新加坡国立大学纳米科学和纳米技术研究团队的Ma(Ma ZW, Kotaki M,Ramakrishna S. Electrospun cellulose nanofiber as affinity membrane. JMembrane Sci. 2005;265:115-23.)将醋酸纤维素溶解于丙酮/二甲基甲酰胺/三氟乙烯混合溶剂中,混合溶剂体积比例为3:1:1,体积浓度为16%,流速为4mL/h,25kV的电压制备无序醋酸纤维素纳米纤维,纤维直径为200nm-1µm。朱拉隆功大学静电纺纳米纤维与石油石化学院的Taepaiboon(Taepaiboon P, Rungsardthong U, Supaphol P. Vitamin-loadedelectrospun cellulose acetate nanofiber mats as transdermal and dermaltherapeutic agents. of vitamin A acid and vitamin E. Eur J Pharm Biopharm.2007;67:387-97.)将醋酸纤维素溶解于丙酮/二甲基乙酰胺的混合溶剂,溶剂体积比为2:1,浓度为12.5-20%,可以纺制纤维直径为100nm-1µm的无序醋酸纳米纤维。
上海大学材料科学与工程学院的Yu(Yu DG, Yu JH, Chen L, Williams GR,Wang X. Modified coaxial electrospinning for the preparation of high-qualityketoprofen-loaded cellulose acetate nanofibers. Carbohyd Polym. 2012;90:1016-23.)将11g醋酸纤维素与2g酪洛芬溶解于丙酮、二甲基乙酰胺、乙醇的混合溶剂中,混合溶剂的比例为4:1:1。利用同轴静电纺丝技术制备无序醋酸纤维素纳米复合纤维,并且纤维直径为680 ±150 nm。
蒙国王科技大学吞武里的Wongsasulak(Wongsasulak S, Patapeejumruswong M,Weiss J, Supaphol P, Yoovidhya T. Electrospinning of food-grade nanofibersfrom cellulose acetate and egg albumen blends. J Food Eng. 2010;98:370-6.)将20%(w / w)的醋酸纤维素溶解在85%醋酸,12%(w / w)的蛋清溶解在50%甲酸中制备静电纺丝液,并且醋酸纤维素和蛋清在混合溶剂中的比例分别为100:0、91:9、77:23、66:34和0:100,制备不同组分的无序醋酸纤维静电纺纳米纤维薄膜。
福建师范大学化学与材料科学学院的Tang(Tang CY, Chen PP, Liu HQ.Cocontinuous cellulose acetate/polyurethane composite nanofiber fabricatedthrough electrospinning. Polym Eng Sci. 2008;48:1296-303.)将二醋酸纤维素和聚氨酯混合后溶解在体积比为2:1的二甲基乙酰胺/丙酮混合溶剂中,其中二醋酸纤维素和聚氨酯的质量比例分别为100/0、 80/20、60/40、40/60、20/80和 0/100。所制备无序纳米纤维直径分别为0.9-2.5µm和0.14-0.31µm。随后,福建师范大学化学与材料科学学院的Liu将二醋酸纤维素溶解在二甲基乙酰胺/丙酮的混合溶剂中,二甲基乙酰胺与丙酮的体积比分别为2:1和1:2,纺丝液浓度为15-20%,并在在纺丝液浓度为20%时的无序纳米纤维平均直径为120nm。从上述文献中可以看出,前人研究主要是利用醋酸纤维素制备无序排列纳米纤维薄膜。
目前,CA主要与其它组分复合制备无序薄膜。比如,CA与聚吡咯(PPy)复合制备无序纳米纤维膜应用在神经组织工程(Thunberg J, Kalogeropoulos T, Kuzmenko V, HäggD, Johannesson S, Westman G, et al. In situ synthesis of conductivepolypyrrole on electrospun cellulose nanofibers: scaffold for neural tissueengineering. Cellulose.22:1459-67.),与碳纳米管(CN)复合制备纳米纤维应用在高性能超级电容器的电极材料和其他能源存储设备(Cai J, Niu H, Li Z, Du Y, Cizek P,Xie Z, et al. High-Performance Supercapacitor Electrode Materials fromCellulose-Derived Carbon Nanofibers. Acs Appl Mater Inter. 2015;7:14946-53.),与六氟丙烯(PVDF-HFP)、氢氧化锂复合制备无序纳米纤维膜并且应用在大功率分离器和锂离子电池方面(Huang F, Xu Y, Peng B, Su Y, Jiang F, Hsieh Y-L, et al. CoaxialElectrospun Cellulose-Core Fluoropolymer-Shell Fibrous Membrane from RecycledCigarette Filter as Separator for High Performance Lithium-Ion Battery. ACSSustainable Chemistry & Engineering. 2015;3:932-40.),CA与蒙脱土(MMT)复合制备的无序纳米纤维膜应用在物理防护方面(Kim SW, Han SO, Sim IN, Cheon JY, Park WH.Fabrication and Characterization of Cellulose Acetate/MontmorilloniteComposite Nanofibers by Electrospinning. J Nanomater. 2015.),CA与甲氧萘丙酸(NAP)复合制备的无序纳米纤维膜应用在伤口敷料方面(Li Z, Kang H, Che N, Liu Z,Li P, Li W, et al. Controlled release of liposome-encapsulated Naproxen fromcore-sheath electrospun nanofibers. Carbohyd Polym. 2014;111:18-24.),CA与玉米蛋白(Zein)复合制备的无序纳米纤维膜应用在组织工程方面(Ali S, Khatri Z, Oh KW,Kim I-S, Kim SH. Zein/cellulose acetate hybrid nanofibers: Electrospinningand characterization. Macromol Res. 2014;22:971-7.),CA与聚氧化乙烯(PEO)复合制备的无序纳米纤维膜应用在食品、生物技术和医药行业(Broumand A, Emam-Djomeh Z,Khodaiyan F, Davoodi D, Mirzakhanlouei S. Optimal fabrication of nanofibermembranes from ionized-bicomponent cellulose/polyethyleneoxide solutions. IntJ Biol Macromol. 2014;66:221-8.),CA与聚氨酯(PU)和Zein复合制备的无序纳米纤维膜应用在伤口敷料(Unnithan AR, Gnanasekaran G, Sathishkumar Y, Lee YS, Kim CS.Electrospun antibacterial polyurethane–cellulose acetate–zein composite matsfor wound dressing. Carbohyd Polym. 2014;102:884-92.), CA与阳离子聚烷基芴(PF)复合制备的无序纳米纤维膜应用于传感器(Vázquez-Guilló R, Calero A, Valente AJ,Burrows HD, Mateo CR, Mallavia R. Novel electrospun luminescent nanofibersfrom cationic polyfluorene/cellulose acetate blend. Cellulose. 2013;20:169-77.),CA与PLLA复合制备的无序纳米纤维膜应用于组织工程(Hou J-z, Sun X-p, ZhangW-x. Preparation and characterization of electrospun fibers based on poly (L-lactic acid)/cellulose acetate. Chinese J Polym Sci. 2012;30:916-22.),CA与丝心蛋白复合制备的无序纳米纤维膜应用于重金属离子的吸附(Zhou W, He J, Cui S, GaoW. Preparation of electrospun silk fibroin/Cellulose Acetate blend nanofibersand their applications to heavy metal ions adsorption. Fiber Polym. 2011;12:431-7.),CA与聚丙烯酸丁酯 (PBA)复合制备的无序纳米纤维膜(Baek W-I, Pant HR, NamK-T, Nirmala R, Oh H-J, Kim I, et al. Effect of adhesive on the morphologyand mechanical properties of electrospun fibrous mat of cellulose acetate.Carbohydrate research. 2011;346:1956-61.)。
而CA与PCL和PVP复合制备的主要是静电纺纳米纤维无序薄膜,并且CA与医用PLGA复合制备静电纺纳米纤维的报道没有。比如,CA与PCL复合制备的静电纺纳米纤维无序薄膜主要应用于具有抗菌作用的伤口敷料方面(Liao N, Unnithan AR, Joshi MK, TiwariAP, Hong ST, Park C-H, et al. Electrospun bioactive poly (ɛ-caprolactone)–cellulose acetate–dextran antibacterial composite mats for wound dressingapplications. Colloids and Surfaces A: Physicochemical and EngineeringAspects. 2015;469:194-201.)以及生物过滤器和生物传感器(Ahmed F, Saleemi S,Khatri Z, Abro MI, Kim I-S. Co-electrospun poly (ɛ-caprolactone)/cellulosenanofibers-fabrication and characterization. Carbohyd Polym. 2015;115:388-93.),CA与聚乙烯吡咯烷酮(PVP)复合制备的静电纺纳米纤维无序薄膜主要应用于金属离子的吸附领域(Xiang T, Zhang Z, Liu H, Yin Z, Li L, Liu X. Characterization ofcellulose-based electrospun nanofiber membrane and its adsorptive behavioursusing Cu (II), Cd (II), Pb (II) as models. Science China Chemistry. 2013;56:567-75.),PLGA与透明质酸(HA)复合制备的静电纺纳米纤维无序薄膜主要应用于骨组织工程(Haider A, Gupta KC, Kang I-K. Morphological effects of HA on the cellcompatibility of electrospun HA/PLGA composite nanofiber scaffolds. BioMedresearch international. 2014;2014.)。
利用CA制备静电纺纳米纤维有序薄膜主要是利用CA的单一组分而不是复合组分,并且这种有序薄膜并不是应用在吸附领域。比如将CA溶解于体积比为2:1的丙酮和N,N二甲基乙酰胺混合溶剂中制备CA有序薄膜并且应用于薄层色谱的固定相(Tidjarat S,Winotapun W, Opanasopit P, Ngawhirunpat T, Rojanarata T. Uniaxially alignedelectrospun cellulose acetate nanofibers for thin layer chromatographicscreening of hydroquinone and retinoic acid adulterated in cosmetics. Journalof Chromatography A. 2014;1367:141-7.)。与纳米纤维无序薄膜相比,有序薄膜具有较高的应力(Zhang C, Yuan H, Liu H, Chen X, Lu P, Zhu T, et al. Well-alignedchitosan-based ultrafine fibers committed teno-lineage differentiation ofhuman induced pluripotent stem cells for Achilles tendon regeneration.Biomaterials. 2015;53:716-30.)。
发明内容
本发明的目的是提供一种纤维排列方向和孔隙结构可控、具有较高强力的高吸附性二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的制备方法。
本发明的二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的制备方法,包括如下步骤:
将二醋酸纤维素和聚己内酯、或二醋酸纤维素和聚乳酸-羟基乙酸共聚物、或二醋酸纤维素和聚乙烯吡咯烷酮按质量比为3:1溶解在有机溶剂中,制备成体积浓度为5-12%纺丝液;采用静电纺丝法制成有序多孔薄膜,其中纺丝电压为10-15kV,接收辊转速为1000-2000转/分,注射针头流速为1-4mL/h,注射针头与接收辊之间的接收距离为18cm。
本发明中,所述的有机溶剂可以为丙酮和三氯甲烷按体积比为2:1的混合液或二甲基甲酰胺和甲醇按体积比为2:1的混合液。
本发明的有益效果在于:
本发明方法工艺简单、操作可行、成本低廉、并且制备过程不会对环境造成任何污染。本发明方法制备的二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜,具有较小的纤维直径,较好的孔径、有序度和应力。其干态吸附量、湿态吸附量和吸水率均随时间的增加而增加。通过与相同条件下制备的静电纺无序纳米纤维多孔薄膜相比,发现静电纺纳米纤维有序多孔薄膜的应力远远大于无序纳米纤维多孔薄膜。通过与单一组分的二醋酸纤维素静电纺纳米纤维有序多孔薄膜相比,复合组分的二醋酸纤维素静电纺纳米纤维有序多孔薄膜具有较小的纤维直径、孔径和应变,但具有较大的应力。在起始阶段二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的干态吸附量与单一组分的二醋酸纤维素静电纺纳米纤维有序多孔薄膜的干态吸附量没有差异,但随着时间的增加,二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的干态吸附量大于单一组分的二醋酸纤维素静电纺纳米纤维有序多孔薄膜。而复合组分的二醋酸纤维素静电纺纳米纤维有序多孔薄膜的吸水率和湿态吸附量小于单一组分的二醋酸纤维素静电纺纳米纤维有序多孔薄膜。因此,该复合多孔有序薄膜具有较好的干态吸附性能,可以用于干态吸附、过滤分离行业的烟气和烟草行业。
附图说明
图1是实施例1制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜的扫描电镜照片。
图2是实施例2制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜的扫描电镜照片。
图3是实施例3制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜的扫描电镜照片。
图4是实施例1制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜在干态条件下吸附颗粒后的扫描电镜照片。
图5是实施例1制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜在干态条件下吸附颗粒后的颗粒形貌扫描电镜照片。
图6是实施例2制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜在干态条件下吸附颗粒后的扫描电镜照片。
图7是实施例2制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜在干态条件下吸附颗粒后的颗粒形貌扫描电镜照片。
图8是实施例3制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜在干态条件下吸附颗粒后的扫描电镜照片。
图9是实施例3制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜在干态条件下吸附颗粒后的颗粒形貌扫描电镜照片。
图10是实施例1制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜在湿态条件下吸附溶液后的扫描电镜照片。
图11是实施例2制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜在湿态条件下吸附溶液后的扫描电镜照片。
图12是实施例3制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜在湿态条件下吸附溶液后的扫描电镜照片。
图13是实施例4制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜的扫描电镜照片。
图14是实施例4制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜在干态条件下吸附颗粒后的扫描电镜照片。
图15是实施例4制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜在干态条件下吸附颗粒后的颗粒形貌扫描电镜照片。
图16是实施例4制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜在湿态条件下吸附溶液后的扫描电镜照片。
图17是实施例1、2、3、4制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜的纤维直径。
图18是实施例1、2、3、4制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜的孔径。
图19是实施例1、2、3、4制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜的有序度。
图20是实施例1、2、3、4制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜在干态条件下的干态吸附量。
图21是实施例1、2、3、4制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜的吸水率。
图22是实施例1、2、3、4制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜在湿态条件下的湿态吸附量。
图23是实施例1、2、3、4制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜的应力-应变曲线。
图24实施例1、2、3、4制备的二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的应变。
图25实施例1、2、3、4制备的二醋酸纤维素静电纺纳米纤维有序多孔薄膜的应力。
具体实施方式
以下结合实施例进一步说明本发明。
实施例1:
将0.375g的二醋酸纤维素和0.125g的聚己内酯(PCL)放入6.67mL丙酮和3.33mL三氯甲烷的混合溶剂中,搅拌至完全溶解,得到体积浓度为5%的溶液。将配制的溶液吸入注射器中,利用静电纺丝机制备二醋酸纤维素纳米纤维有序多孔薄膜,调节纺丝电压为15kV,接收辊转速为2000转/分,注射针头流速为1mL/h,注射针头与接收辊之间的接收距离为18cm。本例制备的二醋酸纤维素纳米纤维有序多孔薄膜见图1,纤维直径见图17,孔径见图18,有序度见图19,并且具有0.45±0.17µm的纤维直径,5.43±1.18µm的孔径,79.43±7.40°的有序度。其在干态条件下吸附颗粒11d后的扫描电镜照片如图4所示,在干态条件下吸附颗粒后的颗粒形貌如图5所示,在湿态条件下吸附溶液后的扫描电镜照片如图10所示,干态吸附量曲线如图20所示,吸水率如图21所示,湿态吸附量如图22所示,应力-应变曲线如图23所示,应变如图24所示,应力如图25所示。颗粒主要吸附在有序纤维的表面和孔隙,在干态条件下吸附11d后的干态吸附量增加了3.49±0.50%,在PBS中5h后的吸水率为371.94±21.63%,溶液会保留在有序纤维和孔隙中,在湿态条件下5h后的湿态吸附量增加了413.92±30.55%。其应力和应变分别为0.36±0.23 MPa和6.41±4.35%。
实施例2:
将0.375g的二醋酸纤维素和0.125g的聚乳酸-羟基乙酸共聚物(PLGA)放入6.67mL丙酮和3.33mL三氯甲烷的混合溶剂中,搅拌至完全溶解,得到体积浓度为5%的溶液。将配制的溶液吸入注射器中,利用静电纺丝机制备二醋酸纤维素纳米纤维有序多孔薄膜,调节纺丝电压为15kV,接收辊转速为2000转/分,注射针头流速为1mL/h,注射针头与接收辊之间的接收距离为18cm。本例制备的二醋酸纤维素纳米纤维有序多孔薄膜见图2,纤维直径见图17,孔径见图18,有序度见图19,具有0.13±0.05µm的纤维直径,2.48±2.10µm的孔径,80.89±2.66°的有序度。其在干态条件下吸附颗粒11d后的扫描电镜照片如图6所示,在干态条件下吸附颗粒后的颗粒形貌如图7所示,在湿态条件下吸附溶液后的扫描电镜照片如图11所示,干态吸附量曲线如图20所示,吸水率如图21所示,湿态吸附量如图22所示,应力-应变曲线如图23所示,应变如图24所示,应力如图25所示。颗粒主要吸附在有序纤维的表面和孔隙,在干态条件下吸附11d后的干态吸附量增加了3.72±1.61%,在PBS中5h后的吸水率为402.23±31.69%,溶液会保留在有序纤维和孔隙中,在湿态条件下5h后的湿态吸附量增加了435.72±50.17 %。其应力和应变分别为0.10±0.12 MPa和17.29±11.99%。
实施例3:
将0.9g的二醋酸纤维素和0.3g的聚乙烯吡咯烷酮(PVP)放入6.67mL二甲基甲酰胺和3.33mL甲醇的混合溶剂中,搅拌至完全溶解,得到体积浓度为12%的溶液。将配制的溶液吸入注射器中,利用静电纺丝机制备二醋酸纤维素纳米纤维有序多孔薄膜,调节纺丝电压为18kV,接收辊转速为2000转/分,注射针头流速为1mL/h,注射针头与接收辊之间的接收距离为18cm。本例制备的二醋酸纤维素纳米纤维有序多孔薄膜见图3,纤维直径见图17,孔径见图18,有序度见图19,具有0.12±0.04µm的纤维直径,3.48±2.50µm的孔径,90.24±3.12°的有序度。其在干态条件下吸附颗粒11d后的扫描电镜照片如图8所示,在干态条件下吸附颗粒后的颗粒形貌如图9所示,在湿态条件下吸附溶液后的扫描电镜照片如图12所示,干态吸附量曲线如图20所示,吸水率如图21所示,湿态吸附量如图22所示,应力-应变曲线如图23所示,应变如图24所示,应力如图25所示。颗粒主要吸附在有序纤维的表面和孔隙,在干态条件下吸附11d后的干态吸附量增加了3.31±1.67%,在PBS中5h后的吸水率为436.14±16.03%,溶液会保留在有序纤维和孔隙中,在湿态条件下5h后的湿态吸附量增加了376.56±26.42%。其应力和应变分别为0.25±0.21 MPa和7.19±5.61%。
实施例4:
为了与复合组分的二醋酸纤维素纳米纤维有序多孔薄膜的性能进行比较,利用相同的实验条件制备了单一组分的二醋酸纤维素纳米纤维有序多孔薄膜。将1g的二醋酸纤维素放入10mL丙酮中,搅拌至完全溶解,得到体积浓度为10%的纺丝液。将配制的纺丝液吸入注射器中,利用静电纺丝机制备二醋酸纤维素纳米纤维有序多孔薄膜,调节纺丝电压为15kV,接收辊转速为2000转/分,注射针头流速为2mL/h,注射针头与接收辊之间的接收距离为18cm。本例制备的二醋酸纤维素纳米纤维有序多孔薄膜见图13,纤维直径见图17,孔径见图18,有序度见图19,具有2.60±0.85µm的纤维直径,7.37±0.56µm的孔径,93.95±5.00°的有序度。其在干态条件下吸附颗粒11d后的扫描电镜照片如图14所示,在干态条件下吸附颗粒后的颗粒形貌如图15所示,在湿态条件下吸附溶液后的扫描电镜照片如图16所示,干态吸附量曲线如图20所示,吸水率如图21所示,湿态吸附量如图22所示,应力-应变曲线如图23所示,应变如图24所示,应力如图25所示。颗粒主要吸附在有序纤维的表面和孔隙,在干态条件下吸附11d后的干态吸附量增加了3.91±1.16%,在PBS中5h后的吸水率为500.06±40.17%,溶液会保留在有序纤维和孔隙中,在湿态条件下5h后的湿态吸附量增加了466.62±68.23%。其应力和应变分别为0.06±0.07MPa和42.16±27.25%。

Claims (2)

1.高吸附性二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的制备方法,其特征是包括如下步骤:
将二醋酸纤维素和聚己内酯、或二醋酸纤维素和聚乳酸-羟基乙酸共聚物、或二醋酸纤维素和聚乙烯吡咯烷酮按质量比为3:1溶解在有机溶剂中,制备成体积浓度为5-12%纺丝液;采用静电纺丝法制成有序多孔薄膜,其中纺丝电压为10-15kV,接收辊转速为1000-2000转/分,注射针头流速为1-4mL/h,注射针头与接收辊之间的接收距离为18cm。
2.根据权利要求1所述的高吸附性二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的制备方法,其特征是所述的有机溶剂为丙酮和三氯甲烷按体积比为2:1的混合液,或二甲基甲酰胺和甲醇按体积比为2:1的混合液。
CN201510717504.XA 2015-10-29 2015-10-29 高吸附性二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的制备方法 Active CN105396563B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510717504.XA CN105396563B (zh) 2015-10-29 2015-10-29 高吸附性二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510717504.XA CN105396563B (zh) 2015-10-29 2015-10-29 高吸附性二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN105396563A CN105396563A (zh) 2016-03-16
CN105396563B true CN105396563B (zh) 2018-04-27

Family

ID=55462514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510717504.XA Active CN105396563B (zh) 2015-10-29 2015-10-29 高吸附性二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN105396563B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107190418B (zh) * 2017-07-12 2019-04-09 航天特种材料及工艺技术研究所 基于3d打印pla材料的可吸附-脱附蛋白质的纤维膜装置及其制备方法
CN107794750B (zh) * 2017-11-22 2020-12-01 东南大学 一种毛细管作用诱导的有序纳米纤维基柔性石墨烯薄膜的制备方法
CN109943972B (zh) * 2017-12-21 2021-08-06 中国石油化工股份有限公司 一种CDA-g-PET纤维膜及其制备方法和应用
CN108669650B (zh) * 2018-03-21 2020-11-10 云南中烟工业有限责任公司 一种降低烟气巴豆醛释放量的复合材料及其制备方法和应用
CN108835712B (zh) * 2018-03-21 2021-02-02 云南中烟工业有限责任公司 一种降低烟气中巴豆醛释放量的复配添加剂及其制备方法和应用
CN108514154B (zh) * 2018-03-30 2020-10-16 上海洁晟环保科技有限公司 一种烟气过滤材料及其制备方法和用途
CN108486768B (zh) * 2018-06-05 2020-08-04 南通纺织丝绸产业技术研究院 一种二醋酸纤维素纤维薄膜及其制备方法
CN111150094B (zh) * 2018-11-08 2022-03-11 湖南中烟工业有限责任公司 一种具有携香及选择性降低烟气苯酚含量功能的超细纤维功能化滤棒丝束及其制备和应用
CN110578180B (zh) * 2019-09-27 2021-09-17 武汉轻工大学 酸化改性纤维素纤维及其制备方法和在食用油加工中的应用
CN111188128B (zh) * 2020-01-06 2022-03-04 陕西科技大学 一种具有微支撑的透气薄膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101144196A (zh) * 2007-09-20 2008-03-19 东华大学 一种规则化静电纺中空纤维的制备方法
CN101559326A (zh) * 2009-05-08 2009-10-21 东华大学 纳米纤维超滤膜及其制备方法
CN102691176A (zh) * 2012-06-14 2012-09-26 东华大学 利用绝缘接收模板静电纺制备图案化纳米纤维膜的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101144196A (zh) * 2007-09-20 2008-03-19 东华大学 一种规则化静电纺中空纤维的制备方法
CN101559326A (zh) * 2009-05-08 2009-10-21 东华大学 纳米纤维超滤膜及其制备方法
CN102691176A (zh) * 2012-06-14 2012-09-26 东华大学 利用绝缘接收模板静电纺制备图案化纳米纤维膜的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A form-stable phase change material made with a cellulose acetate nanofibrous mat from bicomponent electrospinning and incorporated capric–myristic–stearic acid ternary eutectic mixture for thermal energy storage/retrieval;Yibing Cai et al.;《RSC Adv.》;20150930;第5卷;第84246页 *
有序PAN中空微纳米纤维的制备及性能研究;张晓超;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20130615(第6期);第6、9页 *

Also Published As

Publication number Publication date
CN105396563A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
CN105396563B (zh) 高吸附性二醋酸纤维素复合静电纺纳米纤维有序多孔薄膜的制备方法
Huang et al. Fabrication of bead-on-string polyacrylonitrile nanofibrous air filters with superior filtration efficiency and ultralow pressure drop
Gao et al. Recent progress and challenges in solution blow spinning
Lan et al. Fabrication of hydroxyapatite nanoparticles decorated cellulose triacetate nanofibers for protein adsorption by coaxial electrospinning
CN108884617B (zh) 亲水性聚氨酯纳米纤维及其制备方法
Tijing et al. 1.16 Electrospinning for membrane fabrication: strategies and applications
Liu et al. Regenerated cellulose micro-nano fiber matrices for transdermal drug release
CN104436865B (zh) 一种高效低阻复合纤维pm2.5过滤膜及静电纺丝制备方法
Li et al. Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol (PVA)/Chitosan (CS)/Graphene (Gr) nanofibrous membranes
CN103774345B (zh) 一种高效低阻抗菌空气净化滤膜的制备方法
Liu et al. High-performance filters from biomimetic wet-adhesive nanoarchitectured networks
CN108993167B (zh) 一种抗菌的静电纺丝纳米纤维空气过滤材料的制备及应用
CN109675450A (zh) 一种抗菌复合纳米纤维膜及其制备方法和应用
CN105903271B (zh) 可调控混合纳米结构纤维复合过滤材料及其制备方法
CN109954329B (zh) 一种植物纤维自支撑石墨烯防霾滤层材料及其制备方法和应用
CN104689724A (zh) 一种有机无机复合纳米纤维膜过滤材料及其制备方法
Guo et al. PET/TPU nanofiber composite filters with high interfacial adhesion strength based on one-step co-electrospinning
CN111282342B (zh) 一种长效驻极纳米纤维过滤材料及其制备方法
CN113368712B (zh) 一种高效空气过滤复合纳米纤维膜及其制备方法
CN112522856A (zh) 一种金属有机骨架和电纺纳米纤维复合防护罩覆膜及制备
Li et al. Controlled release of PDGF-bb by coaxial electrospun dextran/poly (L-lactide-co-ε-caprolactone) fibers with an ultrafine core/shell structure
CN104178930A (zh) 一种纳米纤维膜及其制备方法
CN113413684B (zh) 一种聚乳酸纳米双层纤维膜滤芯及其制备方法
CN102677391A (zh) 一种高选择性纳米纤维膜的制备方法
Wang et al. Superelastic three-dimensional nanofiber-reconfigured spongy hydrogels with superior adsorption of lanthanide ions and photoluminescence

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant