CN105393336A - 复合基板、其制造方法、功能元件以及晶种基板 - Google Patents

复合基板、其制造方法、功能元件以及晶种基板 Download PDF

Info

Publication number
CN105393336A
CN105393336A CN201480034478.4A CN201480034478A CN105393336A CN 105393336 A CN105393336 A CN 105393336A CN 201480034478 A CN201480034478 A CN 201480034478A CN 105393336 A CN105393336 A CN 105393336A
Authority
CN
China
Prior art keywords
substrate
silicon substrate
crystal seed
base plate
race
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480034478.4A
Other languages
English (en)
Other versions
CN105393336B (zh
Inventor
仓冈義孝
岩崎康范
吉野隆史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of CN105393336A publication Critical patent/CN105393336A/zh
Application granted granted Critical
Publication of CN105393336B publication Critical patent/CN105393336B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/12Salt solvents, e.g. flux growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02516Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

一种复合基板,具备:多晶陶瓷基板,直接接合于多晶陶瓷基板的硅基板,通过气相法设置在硅基板上的包含13族元素氮化物的晶种膜,以及通过助熔剂法在该晶种膜上结晶生长而成的氮化镓结晶层。

Description

复合基板、其制造方法、功能元件以及晶种基板
技术领域
本发明涉及一种13族元素氮化物复合基板的制作方法、通过该方法制作的外延晶片以及电子器件。
背景技术
(助熔剂法)
通过作为液相法之一的助熔剂法,能够得到位错密度低的氮化镓单晶基板。利用助熔剂法使GaN单晶生长时,一般情况下,使用晶种,以晶种为起点,使GaN生长。生长用基板使用通过MOCVD法、HVPE法等气相法在蓝宝石基板上生长了1~20μm左右的晶种层而得到的晶片(晶种基板)(专利文献1)。
(MOCVD法)
正在积极采用如下方法:代替现有的蓝宝石基板,在硅基板上,通过有机金属化学气相生长(MOCVD)法将氮化物半导体成膜,形成大功率器件结构、LED元件结构。硅基板的优点是能够获得大尺寸的晶片。
(复合基板)
制作蓝色LED、蓝紫色半导体激光器和功率半导体等半导体器件时,可以使用将基底基板和包含氮化镓等III族氮化物的基板贴合而得的复合基板(专利文献2)。
使用氮化镓薄膜的大功率器件、LED元件,在元件形成工序后,从提高散热性的观点考虑,一般做法是将硅基板、蓝宝石基板磨薄,并贴合在热传导性更高的氧化铝、AlN多晶基板等上。
现有技术文献
非专利文献
非专利文献1:(通过MOCVD法得到的Si基GaN):“HighpowerAlGaN/GaNHFETwithahighbreakdownvoltageofover1.8kVon4inchSisubstratesandthesuppressionofcurrentcollapse",NariakiIkeda,SyuusukeKaya,JiangLi,YoshihiroSato,SadahiroKato,SeikohYoshida,Proceedingsofthe20thInternationalSymposiumonPowerSemiconductorDevices&IC’sMay18-22,2008Oralando,FL”,pp.287-290
专利文献
专利文献1:WO2010/084675
专利文献2:日本特开2012-124473号公报
发明内容
在使用硅基板的情况下,特别是用于大功率器件用途时,为了制成高耐压器件,必须将GaN、AlGaN、AlN等复杂地层叠而形成多层膜结构,在其上厚厚地形成GaN层(非专利文献1)。而且,在硅基板上通过MOCVD法形成的GaN薄膜难以降低位错密度。
如果想要通过助熔剂法获得大尺寸的晶片,则需要与该晶片尺寸相同程度或更大尺寸的晶种基板。与蓝宝石基板相比,硅基板能够容易且廉价地获得大尺寸的晶片,所以如果能够通过MOCVD法在硅基板上形成GaN薄膜,制成晶种基板,则对工业是有用的。但是,一般来说,使用带硅基板的晶种基板时,难以通过助熔剂法获得GaN单晶。原因在于硅容易溶解在用作助熔剂的钠中,进而,如果助熔剂中的硅浓度升高,则GaN结晶的培养速度极度降低,GaN结晶几乎不生长。实际上,将使用硅基板的晶种基板用于通过助熔剂法培养单晶GaN时,硅基板完全熔融在助熔剂中,几乎看不到GaN单晶的生长。另外,容易想象即使能够尽量抑制硅熔融,只要有微量的硅溶解在助熔剂中,就会作为不希望的杂质混入GaN结晶中,所以难以控制GaN单晶的载流子浓度。
本发明涉及以下内容。
(1)一种复合基板,其特征在于,包括:
多晶陶瓷基板,
硅基板,直接接合于所述多晶陶瓷基板,
晶种膜,包含13族元素氮化物,通过气相法设置在所述硅基板上,以及,
氮化镓结晶层,通过助熔剂法在该晶种膜上结晶生长而成。
(2)根据(1)所述的复合基板,其特征在于,上述13族元素氮化物为氮化镓。
(3)根据(1)或(2)所述的复合基板,其中,上述多晶陶瓷基板由氧化铝或者氮化铝形成。
(4)根据(1)~(3)中任意一项所述的复合基板,其特征在于,上述硅基板被薄层化。
(5)根据(4)所述的复合基板,其特征在于,所述硅基板被薄层化至厚度为0.2微米~8微米。
(6)一种功能元件,其特征在于,包括:
(1)~(5)中的任一项所述的复合基板,以及,
功能层,包含13族元素氮化物,通过气相法形成在所述氮化镓结晶层上。
(7)根据(6)所述的功能元件,其特征在于,上述功能层具有发光功能。
(8)一种复合基板的制造方法,其特征在于,包括:
成膜工序,在将多晶陶瓷基板和硅基板直接接合而成的复合基板的所述硅基板上,通过气相法形成晶种膜,所述晶种膜包含13族元素氮化物;以及,
培养工序,通过助熔剂法,在所述晶种膜上培养氮化镓结晶层。
(9)根据(8)所述的方法,其特征在于,上述13族元素氮化物为氮化镓。
(10)根据(8)或(9)所述的方法,其中,上述多晶陶瓷基板由氧化铝或者氮化铝形成。
(11)根据(8)~(10)所述的方法,其特征在于,包括:将所述硅基板薄层化的工序。
(12)根据(11)所述的方法,其中,所述硅基板被薄层化至厚度为0.2微米~8微米。
(13)一种晶种基板,其特征在于,包括:
多晶陶瓷基板,
硅基板,直接接合于所述多晶陶瓷基板,以及,
晶种膜,包含13族元素氮化物,通过气相法设置在所述硅基板上。
(14)根据(13)所述的晶种基板,其特征在于,上述13族元素氮化物为氮化镓。
(15)根据(13)或(14)所述的晶种基板,其中,上述多晶陶瓷基板由氧化铝或者氮化铝形成。
(16)根据(13)~(15)所述的晶种基板,其特征在于,上述硅基板被薄层化。
(17)根据(16)所述的晶种基板,其特征在于,所述硅基板被薄层化至厚度为0.2微米~8微米。
通过直接接合,将氧化铝、AlN的多晶陶瓷基板贴合在硅基板上,进行复合化,使用这样得到的基底基板,优选将该硅基板加工成薄板,然后,通过气相法(特别是MOCVD法)在硅面上形成包含13族元素氮化物的晶种膜。以该基板为晶种基板,应用助熔剂法。由此,在应用助熔剂法时阻碍生长的硅不会接触助熔剂,能够在GaN薄膜上厚厚地形成结晶性良好的液相法GaN,制成GaN模板基板(复合基板)。
进而,优点是:通过硅基板和多晶陶瓷基板的复合化,能够抑制在13族元素氮化物厚膜生长时产生的应力所导致的翘曲、裂纹。因此,即使为了通过MOCVD法在硅基板上制作高耐压大功率器件而需要形成厚的GaN层的情况下,也能够大幅简化或省略复杂的多层应力缓和层,能够提高生产率。
如上所述,使用在廉价且尺寸大的硅基板和多晶陶瓷基板复合化而成的基底基板上使氮化镓生长而得的晶种基板,能够获得结晶性良好的GaN模板基板。结果,不使用通常使用的昂贵的单晶SiC,就能够提高LED、大功率器件的性能,进而提高散热性。
进而,因为通过在将硅基板和多晶陶瓷基板复合化而成的基底基板的硅上设置晶种膜,将硅基板的两侧的主面用多晶陶瓷和晶种膜被覆,所以,能够抑制在利用助熔剂法进行结晶培养时硅基板被熔液溶解的情况。对硅基板实施薄层化加工时,防溶解效果进一步提高。
特别是将该硅基板薄层化的情况下,不必对硅基板的侧面进行被覆,就能够将硅基板与熔液的接触限制在最小限度,所以能够降低制造成本。
附图说明
图1(a)是表示在多晶陶瓷基板上形成了硅基板1的状态的示意图,图1(b)是表示基底基板7的示意图,图1(c)是表示晶种基板8的示意图。
图2(a)是表示复合基板9的示意图,图2(b)是表示发光元件10的示意图。
具体实施方式
如图1(a)所示,将硅基板1直接接合于多晶陶瓷基板2。1b是硅基板与多晶陶瓷基板的接合面,1a是露出的主面,7是露出的侧面。接下来,如图1(b)所示,对硅基板1进行薄层化加工,形成薄层化的硅基板1A。1c是实施了薄层化的硅基板的加工面,7A是露出的侧面。由该硅基板1A和多晶陶瓷基板2形成基底基板7。
接下来,如图1(c)所示,在硅基板1A的加工面1c上形成晶种膜3,得到晶种基板8。
接下来,如图2(a)所示,在晶种膜3上,通过助熔剂法形成氮化镓结晶层4,得到GaN模板基板(复合基板)9。接下来,根据需要,在GaN模板基板9上形成发光元件结构5,得到功能元件10(图2(b))。
作为多晶陶瓷基板2,可以举出氧化铝、氮化铝等。
作为多晶陶瓷基板和硅基板的接合方法,例如可以对两基板进行研磨,照射氩气电子束,在真空中使研磨面彼此接触,并施加载荷而进行直接接合。
优选通过对硅基板进行薄层化加工,将厚度降低至例如8μm以下。作为薄层化加工,优选研磨加工。薄层化加工后的硅基板的厚度优选为8μm以下,更优选为3μm以下。通过像这样地减薄硅基板,硅基板的侧面向熔液中溶解的情况得到显著抑制。
另外,从薄层化加工的观点考虑,被薄层化的硅基板的厚度通常为0.2μm以上,优选为0.5μm以上。
没有对硅基板进行薄层化加工的情况下,也可以通过尽可能减薄最初与多晶陶瓷基板接合阶段的硅基板来抑制硅基板的侧面与熔液的接触。这种情况下,也优选硅基板的厚度在30μm以下。
另外,在硅基板上形成晶种膜时,也可以使硅基板的侧面也被晶种膜被覆,防止硅基板露出。
在硅基板上,通过气相法设置包含13族元素氮化物的晶种膜。
晶种膜可以为一层,或者也可以在基底基板侧包含缓冲层。作为晶种膜的形成方法的一个优选例,可以举出气相生长法,可以举出有机金属化学气相生长(MOCVD:MetalOrganicChemicalVaporDeposition)法、氢化物气相生长(HVPE)法、脉冲激发堆积(PXD)法、MBE法、升华法。特别优选MOCVD法。
13族元素是指IUPAC制定的元素周期表中的第13族元素。13族元素具体为镓、铝、铟、铊等。另外,作为添加剂,可以举出碳、低熔点金属(锡、铋、银、金)、高熔点金属(铁、锰、钛、铬等过渡金属)。低熔点金属有时是为了防止钠氧化而添加的,高熔点金属有时是从放入坩埚的容器、生长炉的加热器等混入的。另外,13族元素氮化物优选为GaN、AlN、GaAlN、GaInN、AlInN、GaAlInN。
接下来,在晶种膜上,通过助熔剂法形成氮化镓结晶层。此时,助熔剂的种类只要能够生成氮化镓结晶即可,没有特别限定。优选实施方式中,使用包含碱金属和碱土类金属中的至少一方的助熔剂,特别优选包含钠的助熔剂。
在助熔剂中混合镓原料物质,进行使用。作为镓原料物质,可使用镓单体、镓合金、镓化合物,从操作方面考虑,优选镓单体。
助熔剂法中的氮化镓结晶的培养温度、培养时的保持时间没有特别限定,根据助熔剂的组成适当变更。在一个例子中,使用含有钠或锂的助熔剂培养氮化镓结晶的情况下,优选使培养温度为800~950℃,更优选为850~900℃。
通过助熔剂法,在包含含有氮原子的气体的气氛下对单晶进行培养。该气体优选为氮气,也可以为氨气。气氛的压力没有特别限定,从防止助熔剂蒸发的观点考虑,优选为10个大气压以上,更优选为30个大气压以上。但是,因为压力高时装置规模变大,所以气氛的总压力优选为2000个大气压以下,更优选为500个大气压以下。气氛中的含有氮原子的气体以外的气体没有限定,优选为惰性气体,特别优选为氩气、氦气、氖气。
在这样得到的复合基板上,通过气相法形成功能层。
在复合基板上,通过气相法、优选MOCVD法制作半导体发光二极管(LED)时,LED内部的位错密度与GaN模板的GaN单晶的密度基本相同,所以能够抑制高亮度化、光效下降现象。
从结晶品质的观点考虑,功能层的成膜温度优选为1000℃以上,更优选为1050℃以上。另外,从不使氮化镓结晶层的结晶品质降低的观点考虑,功能层的成膜温度优选为1200℃以下,更优选为1150℃以下。
功能层的材质优选为13族元素氮化物。13族元素是指IUPAC制定的元素周期表中的第13族元素。13族元素具体为镓、铝、铟、铊等。另外,作为添加剂,可以举出碳、过渡金属(铁、锰、钛、铬等)。
发光元件结构例如具备n型半导体层、设置在该n型半导体层上的发光区域以及设置在该发光区域上的p型半导体层。例如在氮化镓结晶层上形成n型接触层、n型包层、活性层、p型包层、p型接触层,构成发光元件结构。
本发明能够用于要求高品质的技术领域、例如高彩色再现性的高亮度白色LED、高速高密度光盘用蓝紫色激光器、混合动力汽车用变换器中使用的大功率器件等。
实施例
(基板的复合化)
准备直径4英寸500μm厚的由氮化铝形成的多晶陶瓷基板2,使用金刚石研磨粒子进行研磨而将其平坦化。以原子间力显微镜(AFM)在10μm见方的区域内对研磨后的表面进行观察,计测表面粗糙度,结果均方根粗糙度为0.8nm。
将该研磨后的由氮化铝形成的多晶陶瓷基板2和对两面进行了研磨的直径4英寸300μm厚的(111)面硅基板1放入真空腔室内,在真空中,对研磨后的面分别进行3分钟氩气电子束照射。然后,在真空腔室内使实施了照射的面接触,常温下施加1吨的载荷,使其接合,制成复合晶片。
用金刚石研磨粒子对复合晶片7的硅面进行研磨。研磨至硅的厚度为5μm进行薄膜化,接下来,通过坡口加工工序对晶片的外周进行倒角加工。通过坡口加工实施锥形加工,使硅面从多晶陶瓷基板的外周向内侧收进0.5mm。通过AFM在10μm见方的区域内对硅面的研磨表面进行观察,计测表面粗糙度,结果是,均方根粗糙度为0.1nm以下。
(晶种基板制作)
用组成为氢氟酸/纯水=1/10(体积比)的稀氢氟酸,对基底基板7进行稀氢氟酸清洗,除去表面氧化膜,将其以该状态设置在MOCVD装置的反应器内基座上。此时,使多晶陶瓷基板2侧与基座接触,以便在硅面上成膜。接下来,使反应器内为氢和氮混合气氛,进行加热,使基板温度达到初期层形成温度1050℃。
使反应器内压力为10kPa,将TMA鼓泡气体以规定的流量比导入反应器内,使NH3和TMA反应,形成厚度100nm的AlN膜。然后,使NH3、TMA和TMG反应,形成厚度40nm的AlGaN膜。
接下来,保持基板温度,以TMG(三甲基镓)和氨为原料,使GaN膜3生长至厚度为3μm。然后,将基板温度降至室温,取出复合晶片。
(助熔剂法)
以该复合晶片为晶种基板8,通过助熔剂法培养GaN结晶层4。生长中使用的原料为镓、钠以及锂。将晶种基板配置在氧化铝坩埚中,使助熔剂接触通过MOCVD法成膜的GaN膜。在该坩埚内分别填充镓30g、钠44g、锂30mg,在炉内温度900℃、压力5MPa下将GaN单晶培养大约10小时。从坩埚中取出晶种基板8时,在基板表面堆积有厚度大约为100μm的GaN单晶。
使用金刚石研磨粒子,对由此得到的复合基板的生长有GaN单晶的面进行研磨,将其平坦化,得到没有裂纹且透明的直径4英寸的带氮化镓单晶膜的复合基板9。
通过CL(阴极发光)法,将黑点(因为发光微弱,所以看起来比周围暗的点)作为出现在基板表面的位错进行计数,由此算出氮化镓单晶膜的位错密度。通过CL法进行测定时,使用安装有阴极发光检测器的日立High-Technologies制“S-3400NTypeII”。结果,位错密度为7×106cm-2左右。
(发光元件结构制作)
在上述得到的直径4英寸氮化镓单晶的复合基板9上形成发光元件结构5。
将复合基板9再次放入MOCVD炉内,在氢和氮混合气氛中将基板温度升至1100℃,以TMG(三甲基镓)和氨气为原料,以硅烷气体为掺杂物,使n型GaN膜生长成厚度为1μm。
接下来,使温度降至750℃,形成3对InGaN/GaN量子阱结构。接下来,将基板温度升至1050℃,以TMG(三甲基镓)和氨气为原料,以Cp2Mg为掺杂物,使p型GaN膜生长至厚度为0.1μm。
(比较例1、2)
作为硅基板1,使用直径4英寸300μm厚的(111)面硅基板,不进行薄层化研磨加工,在硅基板1上直接形成晶种膜3(比较例1)。另外,作为硅基板1,使用直径4英寸500μm厚的(111)面硅基板,不使用多晶陶瓷基板2,也不进行基板的复合化(比较例2)。除此之外,与上述实施例同样地尝试制作复合基板。
结果,比较例1、2中,在利用助熔剂法培养GaN结晶的工序中,硅基板1和GaN晶种膜3均消失。认为原因在于硅基板1和GaN晶种膜3溶解在了助熔剂中。因此,无法得到复合基板9。

Claims (17)

1.一种复合基板,其特征在于,包括:
多晶陶瓷基板,
硅基板,直接接合于所述多晶陶瓷基板,
晶种膜,包含13族元素氮化物,且通过气相法设置在所述硅基板上,以及,
氮化镓结晶层,通过助熔剂法在该晶种膜上结晶生长而成。
2.根据权利要求1所述的复合基板,其特征在于,所述13族元素氮化物为氮化镓。
3.根据权利要求1或2所述的复合基板,其中,所述多晶陶瓷基板由氧化铝或者氮化铝形成。
4.根据权利要求1~3中的任一项所述的复合基板,其特征在于,所述硅基板被薄层化。
5.根据权利要求4所述的复合基板,其中,所述硅基板被薄层化至厚度为0.2微米~8微米。
6.一种功能元件,其特征在于,包括:
权利要求1~5中的任一项所述的复合基板,以及,
功能层,包含13族元素氮化物,通过气相法形成在所述氮化镓结晶层上。
7.根据权利要求6所述的功能元件,其特征在于,所述功能层具有发光功能。
8.一种复合基板的制造方法,其特征在于,包括:
成膜工序,在将多晶陶瓷基板和硅基板直接接合而成的复合基板的所述硅基板上,通过气相法来形成晶种膜,所述晶种膜包含13族元素氮化物;以及,
培养工序,通过助熔剂法,在所述晶种膜上培养氮化镓结晶层。
9.根据权利要求8所述的方法,其特征在于,所述13族元素氮化物为氮化镓。
10.根据权利要求8或9所述的方法,其中,所述多晶陶瓷基板由氧化铝或者氮化铝形成。
11.根据权利要求8~10中的任一项所述的方法,其特征在于,包括:将所述硅基板薄层化的工序。
12.根据权利要求11所述的方法,其中,包括:将所述硅基板薄层化至厚度为0.2微米~8微米的工序。
13.一种晶种基板,其特征在于,包括:
多晶陶瓷基板,
硅基板,直接接合于所述多晶陶瓷基板,以及,
晶种膜,包含13族元素氮化物,且通过气相法设置在所述硅基板上。
14.根据权利要求13所述的晶种基板,其特征在于,所述13族元素氮化物为氮化镓。
15.根据权利要求13或14所述的晶种基板,其中,所述多晶陶瓷基板由氧化铝或者氮化铝形成。
16.根据权利要求13~15中的任一项所述的晶种基板,其特征在于,所述硅基板被薄层化。
17.根据权利要求16所述的晶种基板,其中,所述硅基板被薄层化至厚度为0.2微米~8微米。
CN201480034478.4A 2013-07-22 2014-07-18 复合基板、其制造方法、功能元件以及晶种基板 Active CN105393336B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361856797P 2013-07-22 2013-07-22
US61/856,797 2013-07-22
PCT/JP2014/069174 WO2015012218A1 (ja) 2013-07-22 2014-07-18 複合基板、その製造方法、機能素子および種結晶基板

Publications (2)

Publication Number Publication Date
CN105393336A true CN105393336A (zh) 2016-03-09
CN105393336B CN105393336B (zh) 2017-10-31

Family

ID=52393259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480034478.4A Active CN105393336B (zh) 2013-07-22 2014-07-18 复合基板、其制造方法、功能元件以及晶种基板

Country Status (6)

Country Link
US (1) US10030318B2 (zh)
JP (1) JP5805352B2 (zh)
KR (1) KR101590309B1 (zh)
CN (1) CN105393336B (zh)
TW (1) TWI510667B (zh)
WO (1) WO2015012218A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140127857A1 (en) * 2012-11-07 2014-05-08 Taiwan Semiconductor Manufacturing Company, Ltd. Carrier Wafers, Methods of Manufacture Thereof, and Packaging Methods
CN105591004B (zh) 2016-03-29 2020-07-10 苏州晶湛半导体有限公司 基于图形化Si衬底的LED外延片及其制备方法
US10204778B2 (en) * 2016-12-28 2019-02-12 QROMIS, Inc. Method and system for vertical power devices
EP3757559B1 (en) * 2018-02-22 2024-05-15 Osaka University Substrate evaluation chip and substrate evaluation device
TWI749928B (zh) * 2020-12-01 2021-12-11 合晶科技股份有限公司 複合基板結構及其製造方法
WO2023157547A1 (ja) * 2022-02-17 2023-08-24 日本碍子株式会社 Iii族元素窒化物半導体基板および貼り合わせ基板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497763B2 (en) 2001-01-19 2002-12-24 The United States Of America As Represented By The Secretary Of The Navy Electronic device with composite substrate
US6897138B2 (en) * 2001-06-25 2005-05-24 Toyoda Gosei Co., Ltd. Method and apparatus for producing group III nitride compound semiconductor
US20030089950A1 (en) * 2001-11-15 2003-05-15 Kuech Thomas F. Bonding of silicon and silicon-germanium to insulating substrates
GB2398672A (en) * 2003-02-19 2004-08-25 Qinetiq Ltd Group IIIA nitride buffer layers
US7687827B2 (en) * 2004-07-07 2010-03-30 Nitronex Corporation III-nitride materials including low dislocation densities and methods associated with the same
JP2007214256A (ja) * 2006-02-08 2007-08-23 Toshiba Ceramics Co Ltd Soiウェーハ
JP5041397B2 (ja) * 2006-04-26 2012-10-03 豊田合成株式会社 電子デバイス用半導体基板の製造方法
JP4958207B2 (ja) * 2006-03-16 2012-06-20 豊田合成株式会社 光素子基板の製造方法
TW200741044A (en) * 2006-03-16 2007-11-01 Toyoda Gosei Kk Semiconductor substrate, electronic device, optical device, and production methods therefor
JP5607548B2 (ja) * 2009-01-21 2014-10-15 日本碍子株式会社 3b族窒化物結晶板製造装置
JP2012124473A (ja) * 2010-11-15 2012-06-28 Ngk Insulators Ltd 複合基板及び複合基板の製造方法
CN108425147A (zh) 2011-08-10 2018-08-21 日本碍子株式会社 13族元素氮化物膜及其叠层体

Also Published As

Publication number Publication date
KR101590309B1 (ko) 2016-01-29
CN105393336B (zh) 2017-10-31
JPWO2015012218A1 (ja) 2017-03-02
WO2015012218A1 (ja) 2015-01-29
TW201520357A (zh) 2015-06-01
US10030318B2 (en) 2018-07-24
US20160108552A1 (en) 2016-04-21
JP5805352B2 (ja) 2015-11-04
TWI510667B (zh) 2015-12-01
KR20160003289A (ko) 2016-01-08

Similar Documents

Publication Publication Date Title
JP3352712B2 (ja) 窒化ガリウム系半導体素子及びその製造方法
US8882910B2 (en) AlGaN substrate and production method thereof
CN101438429B (zh) Ⅲ族氮化物化合物半导体叠层结构体
CN105393336A (zh) 复合基板、其制造方法、功能元件以及晶种基板
CN103814160B (zh) 复合基板、其制造方法、13族元素氮化物构成的功能层的制造方法以及功能元件
CN104583470A (zh) 氮化铝基板及iii族氮化物层叠体
JP6117199B2 (ja) 半導体基板及び形成する方法
US9287453B2 (en) Composite substrates and functional device
US9941442B2 (en) Group 13 element nitride crystal substrate and function element
US20180274128A1 (en) Group 13 element nitride crystal substrate and function element
US7696533B2 (en) Indium nitride layer production
JP2004119423A (ja) 窒化ガリウム結晶基板、その製造方法、窒化ガリウム系半導体素子および発光ダイオード
KR20120094406A (ko) 적층 기판 및 그 제조 방법
KR20130078984A (ko) 질화갈륨 기판 제조방법
JP6008661B2 (ja) GaN系結晶及び半導体素子の製造方法
JP2006222361A (ja) 窒化物半導体結晶及びその製造方法
JPH0529653A (ja) 半導体素子
US8026517B2 (en) Semiconductor structures
CN204067415U (zh) 复合晶片以及功能元件
TWI596797B (zh) Gallium nitride-based crystal and semiconductor device manufacturing method, and light-emitting Device and method of manufacturing the light-emitting device
TW508835B (en) Epitaxial wafer for infrared light-emitting device and light-emitting device using the same
TW201039380A (en) Compound semiconductor epitaxial growth method for avoiding polishing of substrate
JP2011102213A (ja) 単結晶基板、その製造方法、当該単結晶基板上に形成してなる半導体薄膜、および半導体構造

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant