CN105390559B - 一种超高填充因子的太阳电池及其制备方法 - Google Patents

一种超高填充因子的太阳电池及其制备方法 Download PDF

Info

Publication number
CN105390559B
CN105390559B CN201510694092.2A CN201510694092A CN105390559B CN 105390559 B CN105390559 B CN 105390559B CN 201510694092 A CN201510694092 A CN 201510694092A CN 105390559 B CN105390559 B CN 105390559B
Authority
CN
China
Prior art keywords
junction
layer
boundary layer
silver
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510694092.2A
Other languages
English (en)
Other versions
CN105390559A (zh
Inventor
王亮兴
陆明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201510694092.2A priority Critical patent/CN105390559B/zh
Publication of CN105390559A publication Critical patent/CN105390559A/zh
Application granted granted Critical
Publication of CN105390559B publication Critical patent/CN105390559B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于太阳能光伏电池技术领域,具体为一种超高填充因子的太阳电池及其制备方法。本发明太阳电池的结构包括:上电极、界面层、PN结的发射层、PN结的基区、电池的钝化层、下电极;其中界面层材料的性质满足:界面层与发射层之间形成一个势垒;这个势垒方向与PN结方向相反;这个势垒高度最小为Eg‑0.8eV,最大为Eg‑0.4eV;形成这个势垒的材料向PN结区的扩散深度小于PN结的发射层厚度。界面层与PN结的发射层之间形成一个附加结。本发明改变了原来要求消除或降低太阳电池附加结势垒的思路,在PN结上形成反向串联的势垒高度适合的附加结,获得了超出太阳电池PN结理论最大值的填充因子,从而显著提高了电池转换效率。

Description

一种超高填充因子的太阳电池及其制备方法
技术领域
本发明属于太阳能光伏电池技术领域,具体涉及一种太阳电池及其制造方法。
背景技术
提高太阳电池的效率是人们研究的目标之一,而效率取决于开路电压(Voc)、短路电流密度(Jsc)和填充因子(FF)三者的乘积,因此提高FF是增加效率的重要因素。对于实际的太阳电池,影响FF的因素很多,主要与理想因子、串联电阻、并联电阻、开路电压、界面势垒等因素有关。
电池的串联电阻由金属电阻、方块电阻、接触电阻、体电阻等部分组成,一般通过栅电极的优化设计和快速热退火来减小串联电阻。并联电阻包括边缘缺陷或短路引起的漏电、内部缺陷或表面污染引起的复合电流等,一般通过减少工艺过程中引入的污染和边缘腐蚀或刻蚀来减少漏电流。开路电压Voc是影响FF的关键因素,在理想情况下,FF只与Voc有关,Voc越大,FF越高。实际上,Voc主要与材料带隙、材料质量、PN结结构、暗电流等因素有关。暗电流包括反向饱和电流、基区和发射区的漏电流,主要是由于在电池表面、电池PN结区和在工艺过程中引入的有害杂质或缺陷引起载流子复合。虽然非晶硅材料的带隙比单晶Si的带隙大,但是由于材料缺陷较多,导致电池FF较低。此外,界面势垒引入附加电场,抵消部分内建电场,会引起S-shape JV曲线,导致电池FF显著降低,一般通过降低界面势垒高度来减小附加电场的影响。
即使基本解决了上述有问题,太阳电池的FF还是偏低,例如,目前PERL结构的Si电池的最大FF=0.828(UNSW,Voc=706 mV,Jsc=42.7mA/cm2,25%),IBC电池的最大FF=0.8296(Sunpower,Voc=730 mV,Jsc=41.22mA/cm2,25%),HIT+IBC电池的最大FF为0.827(Panasonic,25.6%,Voc=740mv,Jsc= 41.8mA/cm2)。可见目前最高效率的Si电池的FF小于0.84,已经十分接近理论最大值(0.85)。其它电池,目前已经获得的FF与理论最大值如下:GaAs单结电池的FF最大为0.88,理论最大值为0.89。CIGS的FF 最大为0.79,理论最大值为0.84。CdTe的的FF 最大为0.80,理论最大值为0.87。三结GaInP/GaAs/ GaInAs的FF为0.87,理论最大值为0.89。可见,即使FF达到理论最大值,太阳电池的FF损失还是十分严重(大于10%),FF损失10%,效率也损失10%。
为解决上述存在的问题,需要对太阳电池的结构和制备工艺过程进行创新,减少FF损失,从而提高太阳电池的转换效率。
发明内容
本发明的目的在于提供一种能够减少FF损失、提高转换效率的太阳电池及其制备方法。
本发明提供的太阳电池,其结构组成如图1所示,由下而上依次为上电极1,界面层2,PN的发射层3,PN结的基区4,电池的钝化层5,下电极6 ;其中,界面层2的材料具有如下特点:
(1)界面层与发射层之间形成一个势垒;
(2)这个势垒方向与PN结方向相反;
(3)这个势垒高度最小为Eg-0.8eV,最大为Eg-0.4eV,Eg为PN结材料的带隙;
(4)形成这个势垒的材料向PN结区的扩散深度小于PN结的发射层厚度。
本发明中,所述界面层2与PN结的发射层3之间形成有一个附加结。该附加结可以是金属半导体结、半导体同质结或异质结等。
本发明还提供上述结构的太阳电池电池的制造方法,具体步骤为:
(1)采用200微米厚p-Si <100>的硅片作为基区4;采用旋涂法在硅片表面旋涂磷浆;
(2)硅片在氮气气氛中加热15min~60min,温度为820℃—920℃;从而在P型衬底上表面形成N层(发射层)3,这样PN结形成;
(3)清洗电池表面,去除表面氧化物等;
(4)蒸镀或生长界面层2,界面层2与N层(发射层)3形成一个附加结,这个附加结的势垒高度和方向由界面层的材料决定,这里可以选择Ag等金属。由于金属和N-Si之间的接触性质,从而金属与N层Si界面形成一个与PN结方向相反的势垒;
(5)在界面层2上蒸镀上电极1;
(6)在基区背面蒸镀或生长钝化层5;
(7)在钝化层上蒸镀下电极6;
(8)为了在界面层2与N层3之间形成高度适合的附加结势垒高度,通过在400℃-800℃温度范围退火,时间为1s—5min。
本发明改变了太阳电池的结构设计,原来要求PN结不能串联附加的整流结,因此尽量消除或降低附加势垒的高度。本发明的结构:PN结与一个势垒高度适合的附加结反向串联连接。一个金属半导体结(MS)与PN结反向串联连接,当PN结处于正向偏置时(即P连接正极、N连接负极),而MS处于反向偏置。随着正向偏置电压的增加,PN的内建电势和耗尽层减小,流过PN结的电流增加,如图2蓝线所示。MS处于反向偏置,随着正向偏置电压(相对于PN结)的增加,MS的内建电势和耗尽层增加,流过MS结的电流减小。由于他们串联连接,所以PN的漏电流受限于MS势垒,所以流经整个电池的漏电流很小,JV曲线几乎是直线。随着正偏压(相对于PN结)进一步增加,当MS结处于击穿状态时,漏电流迅速增加,不再限制PN结的漏电流,从而导致整个电池的漏电流迅速增加,如图2红圈所示。
由于退火前,金属半导体界面MS势垒较高,PN的二极管曲线被MS整流,电池FF很低(0.305),Voc=0.431V,Jsc=20.52 mA/cm2。我们采用高温快速退火,电池在氮气氛中700℃退火1s,#1电池的Voc为504 mV,短路电流密度Jsc = 33.27 mA/cm2,FF等于0.911,效率为15.3%。可见退火后,电性能显著增加。由于电池上下表面无钝化层、上表面无减反射膜,所以电池Voc、Jsc和效率相对较低。可见,电池的FF很高,远远超出电池的理论极限(Si电池的实际最大FF为0.840,理论最大FF为0.850)。
虽然采用Ag电极然后高温退火的方法十分简单和常见,但是我们改变了原来要求消除或降低太阳电池附加结势垒的思路,通过快速退火和表面状态控制,故意在PN结上形成反向串联的势垒高度适合的附加结,从而获得了超出太阳电池PN结理论最大值的FF。
本发明中,所述PN结材料可以为Si、GaAs、CIGS、CdTe、GaInP、InP、a-Si、GaInAs、AlInP、。
本发明中,所述上电极材料为银、铝、铜、钛银、铝银或透明导电膜等,或者为丝网印刷铝或银浆料;所述下电极材料为银、铝、铜、钛银、铝银或透明导电膜等,或者为丝网印刷铝或银浆料。
本发明中,所述反向势垒除了金属银、铝、铜、钛银、铝银或透明导电膜外,可以为半导体,如ZnS,CIGS、CdTe、GaInP、InP、a-Si、GaInAs、AlInP、GaAs等。
本发明中,所述附加势垒通过400℃~800℃快速退火(1s~5min)或表面状态控制,控制势垒的方向和高度。
本发明提出的超高FF的电池结构,其优点在于:在没有增加太阳电池制备复杂性的前提下,我们改变了原来要求消除或降低太阳电池附加结势垒的思路,通过快速退火和表面状态控制,故意在PN结上形成反向串联的势垒高度适合的附加结,从而获得了超出太阳电池PN结理论最大值的FF。
附图说明
图1为电池结构示意图。
图2为实施例的Ag/np-Si/Al和ITO/np-Si/Al太阳电池的JV曲线。
图3为实施例1的电池Ag/np-Si/Al的JV曲线。
图4为实施例2的电池Ag/SiO2/TiO2/SiO2/np-Si/Al2O3/Al的JV曲线。
图中标号:1为上电极,2为界面层,3为PN结的N层(或P层),4为PN结的P层(或N层),5为电池的钝化层,6为下电极。
具体实施方式
以下实施例用以说明本发明,但不用于限制本发明。
实施例1
太阳电池的制备过程:
1)硅片为200微米厚,p-Si <100>,电阻率为1-10欧姆厘米。
2)采用旋涂法在硅片表面旋涂磷浆,转速1000~3000r/min,30秒。
3)硅片在氮气气氛中加热15min~60min,温度为820℃—920℃。
4)电池表面清洗,去除表面氧化物等。
5)上电极为蒸镀银电极,下电极为蒸镀Al电极。
6)退火400℃-800℃,时间为1s—5min。
结果和分析
电性能如图3所示,由于退火前,金属半导体界面MS势垒较高,PN的二极管曲线被MS整流,电池FF很低(0.305),Voc=0.431V,Jsc=20.52 mA/cm2。我们采用高温快速退火,电池在氮气氛中700℃退火1s,#1电池的Voc为504 mV,短路电流密度Jsc = 33.27 mA/cm2,FF等于0.911,效率为15.3%,同一批其它电电池也出现类似结果。可见退火后,电性能显著增加。由于电池上下表面无钝化层、上表面无减反射膜,所以电池Voc、Jsc和效率相对较低。由图3还可以看出,电池的FF很高,远远超出电池的理论极限(Si电池的实际最大FF为0.840,理论最大FF为0.850)。
由于以上电池结构中,上表面没有减反射膜,上、下表面没有钝化层,所以电池的Jsc和Voc较低,从而导致电池效率较低,但是FF很高。从这种最简单的结构可以看出,只包括PN结和MS结,说明导致超高FF的原因是由于存在反向的MS结。
实施例2
为了提高电池效率,在电池表面蒸镀SiO2/TiO2双层减反射膜和钝化层SiO2,下表面蒸镀一层Al2O3,具体电池的制备过程为:
1)硅片为200微米厚,p-Si <100>,电阻率为1-10欧姆厘米。
2)采用旋涂法在硅片表面旋涂磷浆,转速1000~3000r/min,30秒。
3)硅片在氮气气氛中加热15min~60min,温度为820℃—920℃。
4)电池表面清洗,去除表面氧化物等。
5)上表面蒸镀钝化层SiO2(20nm)和减反射膜SiO2/TiO2(95nm/60n)。
6)蒸镀上电极为银电极。
7)下表面蒸镀Al2O3(20nm)。
8)蒸镀下电极为Al电极。
9)退火400℃-700℃,时间为1s—10min。
电性能如图4所示,我们获得了Voc为0.572 V,Jsc为40.8 mA/cm2,效率为20.3 %,FF达到0.869的电池(对于Voc为0.572 V的电池来说,理论最大FF为0.828),我们电池的FF超过了理论最大值。需要注意的是,电池增加钝化层后,电池的FF从0.911减小到0.869,这是由于钝化层SiO2(20nm)改变了MS的界面势垒高度,而势垒高度对电池的FF产生决定性影响。

Claims (4)

1. 一种超高填充因子的太阳电池的制造方法,该太阳电池结构组成:由下而上依次为上电极(1),界面层(2),PN结的发射层(3),PN结的基区(4),电池的钝化层(5),下电极(6) ;其中,界面层(2)的材料具有如下特点:
(1)界面层与发射层之间形成一个势垒;
(2)这个势垒方向与PN结方向相反;
(3)这个势垒高度最小为Eg-0.8eV,最大为Eg-0.4eV,Eg为PN结材料的带隙;
(4)形成这个势垒的材料向PN结区的扩散深度小于PN结的发射层厚度;
其特征在于具体步骤为:
(1)采用200微米厚p-Si <100>的硅片作为基区(4);采用旋涂法在硅片表面旋涂磷浆;
(2)硅片在氮气气氛中加热15min~60min,温度为820℃—920℃,在P型衬底上表面形成N层即发射层(3),这样PN结形成;
(3)清洗电池表面,去除表面氧化物等 ;
(4)蒸镀或生长界面层(2),界面层(2)与发射层(3)形成一个附加结,这个附加结的势垒高度和方向由界面层的材料决定,从而界面层的材料与N层Si界面形成一个与PN结方向相反的势垒;
(5)在界面层(2)上蒸镀上电极(1);
(6)在基区背面蒸镀或生长钝化层(5);
(7)在钝化层上蒸镀下电极(6);
(8)在400℃-800℃温度下退火,时间为1s—5min,在界面层2与N层3之间形成高度适合的附加结势垒高度。
2.根据权利要求1所述的制造方法,其特征在于,所述界面层(2)与PN结的发射层(3)之间形成有一个附加结,该附加结是金属半导体结、半导体同质结或异质结。
3.根据权利要求1所述的制造方法,其特征在于,所述上电极材料选自银、铝、铜、钛银、铝银或透明导电膜;所述下电极材料选自银、铝、铜、钛银、铝银或透明导电膜。
4.根据权利要求1所述的制造方法,其特征在于,所述界面层的材料选自金属银、铝、铜、钛银、铝银或透明导电膜,或者选自半导体ZnS,CIGS、CdTe、GaInP、InP、a-Si、GaInAs、AlInP、GaAs。
CN201510694092.2A 2015-10-25 2015-10-25 一种超高填充因子的太阳电池及其制备方法 Expired - Fee Related CN105390559B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510694092.2A CN105390559B (zh) 2015-10-25 2015-10-25 一种超高填充因子的太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510694092.2A CN105390559B (zh) 2015-10-25 2015-10-25 一种超高填充因子的太阳电池及其制备方法

Publications (2)

Publication Number Publication Date
CN105390559A CN105390559A (zh) 2016-03-09
CN105390559B true CN105390559B (zh) 2017-11-17

Family

ID=55422635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510694092.2A Expired - Fee Related CN105390559B (zh) 2015-10-25 2015-10-25 一种超高填充因子的太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN105390559B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9368655B2 (en) * 2010-12-27 2016-06-14 Lg Electronics Inc. Solar cell and method for manufacturing the same
CN102184999B (zh) * 2011-04-02 2013-12-18 中国科学院苏州纳米技术与纳米仿生研究所 基于npn结构的激光光伏电池及其制备工艺
KR101894585B1 (ko) * 2012-02-13 2018-09-04 엘지전자 주식회사 태양전지

Also Published As

Publication number Publication date
CN105390559A (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
CN111710746B (zh) 一种钙钛矿/晶硅叠层太阳电池结构
CN105185866B (zh) 一种高效钝化接触晶体硅太阳电池的制备方法
CN104157717B (zh) 一种全背电极n型晶硅异质结太阳电池的制备方法
CN109509813A (zh) 一种无掩膜的p型全背电极接触晶硅太阳电池的制备方法
KR102350885B1 (ko) 태양 전지
CN105390555A (zh) 全背极太阳电池结构及其制备方法
CN102751371A (zh) 一种太阳能薄膜电池及其制造方法
CN206148449U (zh) 一种适合薄片化的n型pert双面电池结构
CN106653923B (zh) 一种适合薄片化的n型pert双面电池结构及其制备方法
EP4084086B1 (en) Photovoltaic cell and method for manufacturing same
CN102403370A (zh) 共面式光伏电池及其制造方法
CN103594532B (zh) 一种n型晶体硅太阳能电池的制备方法
Bennett et al. An overview of developments in foil-based back-contact modules
CN209199966U (zh) 一种低成本p型全背电极晶硅太阳电池
CN102738263B (zh) 掺杂单元、掺杂晶片、掺杂方法、电池及制作方法
CN105390559B (zh) 一种超高填充因子的太阳电池及其制备方法
CN206460967U (zh) 一种碲化镉薄膜太阳能电池
CN102891204B (zh) 一种下层配置的n-i-p结构的CdTe薄膜太阳能电池
CN102738264B (zh) 掺杂单元、掺杂晶片、掺杂方法、太阳能电池及制作方法
CN113437161A (zh) 太阳能电池片及其制备方法和光伏组件
CN103178163A (zh) 一种硅基埋栅薄膜太阳能电池的制作方法
CN104952961A (zh) 一种n-CdSxSe1-x薄膜/石墨烯肖特基结太阳能电池
CN111477697A (zh) 一种ibc太阳能电池金属化栅线结构的制备方法
CN103872181B (zh) 一种背接触太阳电池的金属化方法
CN106340557B (zh) 一种太阳能电池片及其组件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171117

Termination date: 20201025