CN105368405B - 磁性离子液体的新用途 - Google Patents

磁性离子液体的新用途 Download PDF

Info

Publication number
CN105368405B
CN105368405B CN201510686962.1A CN201510686962A CN105368405B CN 105368405 B CN105368405 B CN 105368405B CN 201510686962 A CN201510686962 A CN 201510686962A CN 105368405 B CN105368405 B CN 105368405B
Authority
CN
China
Prior art keywords
ionic liquids
heat
magnetic ionic
reaction system
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510686962.1A
Other languages
English (en)
Other versions
CN105368405A (zh
Inventor
瞿广飞
何巍伟
宁平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201510686962.1A priority Critical patent/CN105368405B/zh
Publication of CN105368405A publication Critical patent/CN105368405A/zh
Application granted granted Critical
Publication of CN105368405B publication Critical patent/CN105368405B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0281Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
    • B01J31/0284Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aromatic ring, e.g. pyridinium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0287Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing atoms other than nitrogen as cationic centre
    • B01J31/0288Phosphorus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/263Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions
    • C07C17/2632Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by condensation reactions involving an organo-magnesium compound, e.g. Grignard synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/54Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition of compounds containing doubly bound oxygen atoms, e.g. esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种磁性离子液体的新用途,即磁性离子液体在作为加热介质中的应用;通过施加可控电压产生电场,使磁性离子液体的阴阳离子发生运动迁移和剧烈碰撞,在内部形成电流,由此产生热量,将电能转化为热能,使其自身温度快速升高并将热量传递给反应体系,作为良好的生热、传热及储热介质为反应体系供热,在反应体系内部直接与反应物质接触并进行直接加热,同时对某些反应体系还会具有良好的金属催化效果;本发明可实现反应体系的快速生热及均匀受热,是一种新型的高效、稳定、安全、绿色环保、操作简便的加热方法,是一种对反应体系加热方式上的革新,并且可应用于诸多需要加热的反应体系。

Description

磁性离子液体的新用途
技术领域
本发明涉及一种磁性离子液体的新用途,具体为利用磁性离子液体电生热作为加热介质,属于反应加热及新型材料开发利用技术领域。
背景技术
现有的化学反应体系加热方式大多采用电加热装置间接为反应体系进行加热,例如采用金属管加热的装置,通过对某种液体介质(水或硅油等)加热进而传递热量给反应容器并作用于反应体系。发热的金属管多直接与液体介质接触,在加热的过程中,加热管、发热壁与液体的换热面积小,加热速度慢,能源转换效率低,并且在间接传递热量给反应体系的过程中,易造成热量损失、加热不均匀等问题。
又例如采用电热盘加热的方式,主要结构包括外壳体及铝质或不锈钢的内胆,内胆底面紧贴有电热盘,利用电流通过导体产生热量,借助铝质内胆或不锈钢内胆对液体进行加热,进而对反应容器加热为反应体系供热。或是直接利用电热盘对反应容器进行加热进而间接为反应体系供热。加热盘主要由发热管构成,发热管外表面加有绝缘隔离层,金属管内有电阻丝,在电阻丝的两端连接有电极端,在金属管与电阻丝之间隙用氧化镁填充,形成导热层,由于发热丝的体积小,又被埋在导热效果差的氧化镁粉中,电阻丝发的热量积聚在电阻丝上难以散发,导致电能转换效率低;加上,在传热过程中易出现能耗损失,导致这种加热效率非常低。
这些传统的加热方法普遍存在能源转化效率低、热传递效果差、加热速度慢、加热不均匀等问题,对反应体系中的化学反应过程有很大的不利影响,易造成一些副反应的发生,影响产品纯度等。
发明内容
本发明的目的在于提供一种磁性离子液体的新用途,即磁性离子液体在作为加热介质中的应用;利用磁性离子液体具有良好的导电性、较高的热容以及优良的传热效果,通过施加可控电压产生电场,使磁性离子液体的阴阳离子在电场力的作用下发生运动迁移和剧烈碰撞,在其内部形成电流,由此产生热量,将电能转换为热能,同时作为良好的生热、传热及储热介质,在反应体系内部与反应物质直接接触进行快速加热,并通过良好的传热效果和储热性能,使反应体系受热均匀、稳定,让化学反应过程更加稳定、快速;这种加热方法不仅提高了能源转化效率,还有利于化学反应过程的顺利发生,消除了因升温慢、受热不均等问题而引起副反应的发生、产物纯度低等不利影响,这对加热技术以及对反应体系供热形式的发展有重大意义。
本发明所述磁性离子液体物化性质稳定、热稳定性良好,在常温或高达350℃条件下为液体,具有良好的导电性、传热效果及储热性能。
本发明所述磁性离子液体为咪唑类磁性离子液体[Cnmim]ABx、吡啶类磁性离子液体[CnPy]ABx、吡咯类磁性离子液体[CnmP]ABx、季铵类磁性离子液体[NCn]ABx、季磷类磁性离子液体[PCn]ABx中的一种或几种,其中A可为Fe、Eu、Dy、Ni、Co、Mn或Pd;B可为Cl、Br或羰基;P为磷;N为氮;Cn为烷基;n为2~14。
本发明所述可控电压为:可以是直流电压,电压范围为10~220V;可以是交流电压,电压范围为10~220V。
本发明所述磁性离子液体可应用于各种需要加热的反应体系,特别是要求生热速率快、加热温度高、加热均匀的反应体系;反应体系为生物质热裂解反应、加热催化脱卤反应、加热聚合反应、加热解聚反应等。
本发明另一目的是提供一种利用磁性离子液体电生热作为加热介质的反应装置,该装置包括壳体1、耐高温绝缘体层2、电极板3、导线4、温度检测器5、电源6;耐高温绝缘体层2设置在壳体1内,电极板3设置在高温绝缘体层2内侧,电极板3通过导线4与电源6连接,温度检测器5设置在壳体1内用于检测壳体中温度变化,并与电源6连接进行反馈,壳体1为矩形,电极板3为矩形且贴合覆盖于高温绝缘体层2内侧,形成一个类似“电容器”的结构。
其中,电压对磁性离子液体生热效率和升温极限具有决定性控制,电压越大,电场力越大,升温也会越快。电极板3用于通电加压后产生电场;电源6可切换直流和交流电压、调节电压大小、设定温度,并通过温度检测器5来为电极板3进行自动断电和通电加压,以保证反应装置内温度恒定在设定的温度。
本发明反应装置适用温度为0℃~400℃,运行方式依据处理要求而定,为连续式或间歇式。
在利用磁性离子液体作为介质加电压内生热为反应体系供热时,使磁性离子液体与反应物质混合于反应装置中。通过施加可控电压,使电极板产生可控电场,使得磁性离子液体的阴阳离子在电场力的作用下进行运动迁移,在其内部形成电流,并且磁性离子液体之间及与反应物质之间发生摩擦碰撞,产生热量,将电能转换为热能,快速升温为反应体系进行直接加热。另一方面,磁性离子液体本身也是一种良好的溶剂和催化剂,可以对很多有机或无机化合物有很好的溶解能力,对很多化学反应过程也具有良好的金属催化性能。在化学反应过程中,磁性离子液体可以与反应物质直接接触,对某些化学键进行直接加热和催化,使其断裂或形成,使化学反应过程的发生更加精准,效率更高。
本发明的优点与效果如下:
(1)本发明通过施加可控电压产生电场,能使磁性离子液体同时成为良好的生热、传热及储热反应介质,在反应体系内部直接为反应过程进行快速、稳定、均匀的供热,克服了传统外部加热方法的缓慢、不均匀等缺点,消除了因升温慢、受热不均等问题而引起副反应的发生、产物纯度低等不利影响。
(2)本发明方法中利用磁性离子液体作为生热、传热、储热反应介质,将电能转化为热能,进而实现对反应体系的内部直接加热,大大增加了发热源与反应体系的换热面积,其能源转化效率、热传递效率等均比传统的加热方式有很大的提高,具有升温迅速,传热速度快且均匀,传热模式科学,热损失少,大幅度降低能耗等特点。
(3)本发明中使用的磁性离子液体是一种新型具有磁性的绿色溶剂,热稳定相良好,呈现较宽的液态可操作范围,蒸汽压低,不挥发,不易燃易爆,具有良好的导电性和溶解性等;在分离方面,磁性离子液体可通过外加磁场实现快速分离和回收利用,避免了使用精馏、萃取等传统方法而造成环境污染和资源浪费等问题;在催化方面,磁性离子液体一般都含有过渡金属元素,因而对某些反应体系具有良好金属催化效果,又可通过外加磁场对催化体系进行控制,使反应体系能够达到最佳的催化效果;在传质传热方面,磁性离子液体具有较高的热容、良好的热稳定性、分散性以及磁可控性,是一种新型的绿色磁性介质。
(4)相比传统外部间接加热的的方法,利用磁性离子液体电生热进行加热不仅生热效率高、传热速率快,还能使反应体系受热均匀,让反应过程更加稳定、效率更高,避免了能源转化效率低,生热慢及受热不均匀等对化学反应过程带来的不利影响;本发明利用磁性离子液体电生热作为加热介质是一种新型的高效、稳定、安全、绿色环保、操作简便的加热方法,是一种对反应体系加热方式上的革新,并且可应用于诸多需要加热的反应体系。
附图说明
图1是本发明利用磁性离子液体电生热加热的装置示意图;
图中:1-壳体;2-耐高温绝缘体层;3-电极板;4-导线;5-温度检测器;6-电源。
具体实施方式
下面通过附图和实施例对本发明作进一步详细说明,但本发明保护范围不局限于所述内容。
实施例1:利用磁性离子液体电生热进行加热合成聚3,4-乙烯二氧噻吩纳米微球
(1)磁性离子液体的制备,参考文献《Discovery of a magnetic ionic liquid[bmim]FeCl4》中方法制备1-丁基-3-甲基四氯化铁盐([bmim]FeCl4)待用;
(2)按体积比2:1的比例称取磁性离子液体 [bmim]FeCl4和3,4-乙烯二氧噻吩混合于图1所示反应装置中,设置电压30V、设置反应温度45℃,这时电极板3之间形成电场,磁性离子液体的阴阳离子在电场力的作用下发生运动迁移、摩擦碰撞,将电能转换为热能,快速升温并为聚合反应提供热量。当温度检测器5检测到反应装置内温度达到设定的温度值后,会自动停止电源6对电极板3的加压,使反应装置内温度不再升高;当反应器温度低于设定值时,电源又会自动对电极板3进行加压,使反应装置内的温度达到设定值。反应5h后关闭电源,通过过滤得到聚3,4-乙烯二氧噻吩粗产物,进一步用甲醇洗涤提纯,最后室温下真空干燥即得聚3,4-乙烯二氧噻吩纳米微球。
在本发明方法下合成的聚3,4-乙烯二氧噻吩纳米微球,其粒径均匀分布在60nm左右的窄区域内,磁性离子液体不仅作为加热介质发挥作用,还具有液相模版剂的作用。此种方法合成的聚3,4-乙烯二氧噻吩纳米微球与传统的溶液相或乳化聚合所得到的聚合物具有相似的结构,但是收率及电导率比在常规溶剂或乳液中聚合的要好的多,如表1所示:
表1 在不同聚合体系中得到的聚3,4-乙烯二氧噻吩的收率及电导率
实施例2:利用磁性离子液体电生热进行热裂解纤维素
(1)磁性离子液体的制备,参考文献《Synthesis and characterization of theiron-containing magnetic ionic liquids》中方法制备磁性离子液体N-丁基吡啶四氯化铁盐([bPy]FeCl4)和N-丁基吡啶四氯化铁盐([bmP]FeCl4)待用;
(2)按质量比5:5:1称取磁性离子液体[bPy]FeCl4、[bmP]FeCl4和纤维素粉末混合于反应装置中,分别设置直流电压80V,反应温度140℃;交流电压150V,温度240℃;交流电压220V,温度340℃三组条件下进行维素热裂解反应2h,反应完成后关闭电源;纤维素主要热裂解产物分布如表2所示。
表2 不同温度下纤维素热裂解产物分布
由表2可知在140℃条件下主要裂解产物为2-乙基己醇、2-糠醇、4-苯氧基苯酚;240℃条件下主要裂解产物为4-羟基丁酸、5-甲基糠醛、呋喃甲酸四氢呋喃甲醇酯;340℃条件下主要裂解产物为2-糠醇、4-羟基丁酸、2-丁基-1,3-环戊二酮。相比传统加热裂解方法,本发明方法具有升温速率快、加热均匀且稳定,使得纤维素在发生裂解时过程较稳定、单一,减少了由于加热不均匀而引起的副反应,产物纯度大大提高。另外,由于磁性离子液体中金属元素的存在,对纤维素的热裂解具有很好的金属催化效果,使得纤维素在较低的温度下就开始裂解。所以,本发明加热方法还可以应用于定向调控纤维素热裂解,能够调控纤维素的热裂解过程,提高裂解产物的纯度。
实施例3:利用磁性离子液体电生热进行加热催化脱卤反应
(1)磁性离子液体的制备,参考文献《1-Butyl-3-methylimidazolium cobalttetracarbonyl [bmim][Co(CO)4]:a catalytically active organometallic ionicliquid》中方法制备1-丁基-3-甲基四羰基钴盐([bmim][Co(CO)4])待用;
(2)按质量比为10:5:1称取磁性离子液体[bmim][Co(CO)4]、NaOH和2-萘基溴甲基酮混合于反应装置中,设置直流电压55V,温度85℃,加热催化反应1h,反应完成后关闭电源。本方法可加热催化2-萘基溴甲基酮脱除溴转化为2-萘乙酮(如式1所示),并且转化率可达到100%。
式1 。
实施例4:利用磁性离子液体电生热进行加热催化芳烃格氏交叉偶联反应
(1)磁性离子液体的制备,参考文献《A group contribution method for theinfluence of the temperature in the viscosity of magnetic ionic liquids》中方法制备三己基十四烷基磷四氯化铁盐([P(C6)3C14]FeCl4)待用;
(2)按体积比为2:1称取磁性离子液体[P(C6)3C14]FeCl4、3-氟苯基溴化镁混合于反应装置中,设置直流电压35V,温度55℃,加热催化反应15minh,反应完成后关闭电源。本方法可加热催化3-氟苯基溴化镁进行芳烃格氏交叉偶联反应(如式2所示),收率可以达到90%。
式2。

Claims (2)

1.磁性离子液体在作为加热介质中的应用,其特征在于:通过对磁性离子液体施加可控电压产生电场,使磁性离子液体的阴阳离子在电场力的作用下发生运动迁移和剧烈碰撞,在磁性离子液体内部形成电流,并由此产生热量并为反应体系供热;
所述磁性离子液体为咪唑类磁性离子液体[Cnmim]ABx、吡啶类磁性离子液体[CnPy]ABx、吡咯类磁性离子液体[CnmP]ABx、季铵类磁性离子液体[NCn]ABx、季磷类磁性离子液体[PCn]ABx中的一种或几种,其中A为Fe、Eu、Dy、Ni、Co、Mn或Pd;B为Cl、Br或羰基;P为磷;N为氮;Cn为烷基;n为2~14。
2.根据权利要求1所述的应用,其特征在于:施加可控电压为直流电压或交流电压,电压为10~220V。
CN201510686962.1A 2015-10-22 2015-10-22 磁性离子液体的新用途 Active CN105368405B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510686962.1A CN105368405B (zh) 2015-10-22 2015-10-22 磁性离子液体的新用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510686962.1A CN105368405B (zh) 2015-10-22 2015-10-22 磁性离子液体的新用途

Publications (2)

Publication Number Publication Date
CN105368405A CN105368405A (zh) 2016-03-02
CN105368405B true CN105368405B (zh) 2019-01-04

Family

ID=55371052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510686962.1A Active CN105368405B (zh) 2015-10-22 2015-10-22 磁性离子液体的新用途

Country Status (1)

Country Link
CN (1) CN105368405B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107760350A (zh) * 2017-11-02 2018-03-06 昆明理工大学 电磁协同强化生物质低温液相催化裂解的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193998A (zh) * 2005-06-13 2008-06-04 迈克尔·H·古林 纳米离子液体及其使用方法
CN101773785A (zh) * 2009-01-09 2010-07-14 北京化工大学 一种利用电渗析浓缩离子液体的方法
CN102817040A (zh) * 2012-07-20 2012-12-12 中国科学院大连化学物理研究所 一种磷铝分子筛膜的电化学合成方法
CN103130718A (zh) * 2012-10-10 2013-06-05 江苏大学 一种磁性离子液体及其制备方法和用途
CN103971946A (zh) * 2013-01-28 2014-08-06 海洋王照明科技股份有限公司 石墨烯-离子液体复合材料及超级电容器的制备方法
CN104861183A (zh) * 2015-05-13 2015-08-26 杭州师范大学 一种纳米构造的聚偏氟乙烯复合材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193998A (zh) * 2005-06-13 2008-06-04 迈克尔·H·古林 纳米离子液体及其使用方法
CN101773785A (zh) * 2009-01-09 2010-07-14 北京化工大学 一种利用电渗析浓缩离子液体的方法
CN102817040A (zh) * 2012-07-20 2012-12-12 中国科学院大连化学物理研究所 一种磷铝分子筛膜的电化学合成方法
CN103130718A (zh) * 2012-10-10 2013-06-05 江苏大学 一种磁性离子液体及其制备方法和用途
CN103971946A (zh) * 2013-01-28 2014-08-06 海洋王照明科技股份有限公司 石墨烯-离子液体复合材料及超级电容器的制备方法
CN104861183A (zh) * 2015-05-13 2015-08-26 杭州师范大学 一种纳米构造的聚偏氟乙烯复合材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Ionothermal synthesis of zeolitic imidazolate frameworks and the synthesis dissolution-crystallization mechanism;Yasong;《Chinese Journal of Catalysis》;20150620;第36卷(第6期);第855-865页
基于离子液体再生的纤维素热解特性;王鹏等;《化工学报》;20141231;第65卷(第12期);第4793-4798页
磁性离子液体的应用研究;陈彪;《化学进展》;20120331;第24卷(第2/3期);第225-234页
离子液体在双电层电容器中的应用研究;王毅等;《电源技术》;20050731;第29卷(第7期);第466-481页

Also Published As

Publication number Publication date
CN105368405A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
Choedkiatsakul et al. Biodiesel production in a novel continuous flow microwave reactor
Aafaqi et al. Kinetics of esterification of palmitic acid with isopropanol using p‐toluene sulfonic acid and zinc ethanoate supported over silica gel as catalysts
Silva et al. Ohmic heating: An emerging concept in organic synthesis
Cantero et al. Kinetic analysis of cellulose depolymerization reactions in near critical water
Choedkiatsakul et al. Integrated flow reactor that combines high-shear mixing and microwave irradiation for biodiesel production
Kim et al. Microwave-accelerated energy-efficient esterification of free fatty acid with a heterogeneous catalyst
CN204699671U (zh) 化学实验室用反应釜
CN105368405B (zh) 磁性离子液体的新用途
CN205227828U (zh) 利用磁性离子液体电生热作为加热介质的装置
Suttisawat et al. Enhanced conversion of tetralin dehydrogenation under microwave heating: Effects of temperature variation
CN103773315B (zh) 一种烃类相变蓄热材料及以天然酸为原料的制备方法
Bruchmüller et al. Tar formation variations during fluidised bed pyrolytic biomass conversion
CN103801240A (zh) 常温制备相变纳米胶囊的方法
CN104650812B (zh) 一种制备硬脂酸‑二氧化硅复合相变储热浆体的方法
Quan et al. Effects of electric field on microbubble growth in a microchannel under pulse heating
Das et al. Microwave system
CN107043133B (zh) 花状γ‑Fe2O3微球的制备方法
CN203671884U (zh) 用于胶膜类加工的水浴加热系统
Xin et al. Characteristic and kinetic of liquid-phase isopropanol dehydrogenation over Raney nickel catalysts for chemical heat pump
CN202460673U (zh) 一种便于有机化学反应加热的海沙浴装置
Zhang et al. CFD simulation of homogeneous reaction characteristics of dehydration of fructose to HMF in micro-channel reactors
CN202191903U (zh) 反应釜
CN103055793A (zh) 喷雾裂解器
CN208791523U (zh) 一种精制α-吡咯烷酮蒸渣的装置
CN201415459Y (zh) 双面辐射制膜箱

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant