CN105367891B - 一种低阻尼发泡材料及其制备方法 - Google Patents

一种低阻尼发泡材料及其制备方法 Download PDF

Info

Publication number
CN105367891B
CN105367891B CN201510951747.XA CN201510951747A CN105367891B CN 105367891 B CN105367891 B CN 105367891B CN 201510951747 A CN201510951747 A CN 201510951747A CN 105367891 B CN105367891 B CN 105367891B
Authority
CN
China
Prior art keywords
low resistance
parts
expanded material
eva
elastomers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510951747.XA
Other languages
English (en)
Other versions
CN105367891A (zh
Inventor
卢鑫
罗显发
丁思博
廖毅彬
王育玲
郭彩莲
林臭知
金校红
郑荣大
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maotai Fujian New Material Technology Co ltd
Original Assignee
Maotai Fujian Shoes Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maotai Fujian Shoes Material Co Ltd filed Critical Maotai Fujian Shoes Material Co Ltd
Priority to CN201510951747.XA priority Critical patent/CN105367891B/zh
Publication of CN105367891A publication Critical patent/CN105367891A/zh
Application granted granted Critical
Publication of CN105367891B publication Critical patent/CN105367891B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明涉及有机高分子化合物技术领域,提供一种低阻尼发泡材料及其制备方法,该低阻尼发泡材料随着运动频率的增大,阻尼因子先减小后增大,并在0.1‑10Hz区间保持较小的阻尼因子,最小达到0.07,能最大化地提供反弹力;该低阻尼发泡材料由原料EVA、乙烯辛烯共聚物、PP弹性体、成核剂、发泡剂、交联剂、硬脂酸锌、硬脂酸经过密炼、开炼、造粒制得低阻尼发泡料米,再经一次射出成型得到,所述低阻尼发泡材料具有宽频率的低阻尼、低压缩变形、尺寸稳定性好等特点,特别适合生产高档环保的低阻尼材料,尤其是需要低阻尼的短跑鞋中底。

Description

一种低阻尼发泡材料及其制备方法
技术领域
本发明属于有机高分子化合物技术领域,特别涉及一种低阻尼发泡材料及其制备方法。
背景技术
阻尼材料是将固体机械振动能转变为热能而耗散的材料,评价阻尼大小的标准是阻尼因子。高分子材料阻尼性能可以用测回弹的方法直观的展现出来,如鞋材的回弹率,但是这种方法太过粗略只能简单的定性,而比较常用的一种方法就是动态力学实验法,采用动态热机械分析仪(简称DMA)测试,通过对材料的测试可以同时获得阻尼因子Tanδ随温度变化、频率变化的数据,能够直观的体现出该材料的阻尼性能,阻尼因子的大小代表了动态变形下能量损耗的大小。材料要与制品的使用温度和频率相匹配,才更具有实用性。现有技术都是研究如何拓宽橡胶阻尼温度范围、如何提高材料阻尼因子,极少研究报道发泡材料的低阻尼性能。
运动休闲发泡鞋材,通常使用温度在0-50摄氏度之间,运动频率通常在0.1-10Hz之间,如何改善发泡鞋材的阻尼性能应引起研究人员的重视。塑料发泡制品具有挺性好、收缩率小、定型后易保持形状等优点,广泛应用于发泡鞋材,回弹率是鞋材的一个重要性能指标,弹性好,能量损耗小,鞋底会因形变的恢复而将能量归还给穿着者,给穿着者以跑或跳的动力。一般地,高分子材料的大分子中侧基越大越多,内摩擦越强;分子的极性越强,其分子间作用力越大,内摩擦越强,内摩擦越强则内耗越大,阻尼性大,吸收冲击能量较大,体现为回弹性较差,相反则回弹性更好。
发明内容
本发明的目的就是针对现有技术存在的不足而提供一种低阻尼发泡材料及其制备方法,所述低阻尼发泡材料随着运动频率的增大,阻尼因子先减小后增大,并在0.1-10Hz区间保持较小的阻尼因子,最小达到0.07,尽可能地减少能量损耗、最大化地提供反弹力,具有宽频率的低阻尼、低压缩变形、尺寸稳定性好等特点,特别适合生产高档环保的低阻尼材料,尤其是需要低阻尼的短跑鞋中底。
为实现上述目的,本发明采取的解决方案为:一种低阻尼发泡材料,由以下原料组成制得:EVA、乙烯辛烯共聚物、PP弹性体、成核剂、发泡剂、交联剂、硬脂酸锌、硬脂酸。
进一步的是,各原料的重量份如下:
进一步优选的,各组分按下列重量份配置:
进一步的是:所述EVA是VA含量大于25%的EVA。
进一步的是:所述PP弹性体为DSC熔点在65-80度之间。
进一步的是:所述PP弹性体至少包括埃克森美孚3020、埃克森美孚3000中的一种。
进一步的是:所述乙烯辛烯共聚物为陶氏EngageTM系列共聚物。
进一步的是:所述陶氏EngageTM系列共聚物至少包括8150、8100中的一种。
进一步的是:所述成核剂是聚烯烃成核剂。
进一步的是:所述发泡剂是AC发泡剂。
进一步的是:所述交联剂是BIBP。
一种制备所述低阻尼发泡材料的制备方法,包括步骤:
步骤1:制备低阻尼发泡料米,先将原料EVA、乙烯辛烯共聚物、PP弹性体、成核剂、发泡剂、交联剂、硬脂酸锌、硬脂酸混合进行密炼,调整密炼温度为92-95℃,保持4-6min,然后翻料2次,继续密炼升温,出料温度为100-103℃,密炼结束后进行开炼、造粒,得到低阻尼发泡料米;
步骤2:将低阻尼发泡料米倒入一次EVA注射机台的吸料桶,经一次射出成型得到低阻尼发泡材料。
通过采取前述技术方案,本发明具有如下有益效果:
1,现有技术的高弹发泡材料均使用回弹率表示材料的回弹性能,却忽略了聚合物材料本身阻尼性能差异产生的能量吸收问题,本发明使用动态机械分析仪测试材料平台区的阻尼随运动频率的变化趋势,测试发现本发明低阻尼发泡材料随着运动频率的增大,阻尼因子先减小后增大,并在0.1-10Hz区间保持较小的阻尼因子,最小达到0.07,使得鞋底材料的载荷周期与裸足时的步态周期相接近,使鞋足系统高度整合,实现真正的回归自然,有效地减少能量损耗、最大化地提供反弹力,应用在短跑鞋上,可以更快地提供更多弹跳力,帮助运动员减少触地时间、扩大布幅宽度,有效提高运动速度。
2,研究发现,填料增加、单位面积内微孔数量增多、泡孔壁变薄都会增加发泡材料的阻尼因子,本发明使用少量聚烯烃成核剂完全替代无机填充剂,有效控制泡孔尺寸,降低了材料的密度,得到的低阻尼发泡材料定型速度快、结晶均匀,有效提高了材料的透光性,适合生产半透明、透明发泡材料。
3,本发明低阻尼发泡材料所用材料具有聚乙烯和聚丙烯的主链,饱和度高,内聚能低,分子链在较宽的温度范围内保持柔顺性,具有较好的力学性能和工艺性能。制得的低阻尼发泡材料具有低密度、宽频率的低阻尼、低压缩变形、尺寸稳定性好、力学性能优异等特点,可以广泛应用于轮胎、运动器材、鞋材等低阻尼材料领域,尤其是需要低阻尼的短跑鞋中底,具有很好的市场前景。
附图说明
图1是本发明实施例1-4中制备得到的发泡材料的动态机械分析仪测试数据。
测试说明:美国TA公司的动态机械分析仪RSA G2,使用8mm平行板,压缩模式,测试温度30度,扫描频率0.05-500rad/s,应变0.5%,静态力1000g,测试样品为直径12mm、高10mm的圆柱体。
具体实施方式
现结合具体实施例对本发明进一步说明。
实施例1:
本实施例中,所述低阻尼发泡材料由以下组分按重量份组成:
所述低阻尼发泡材料的制备方法,包括步骤:
步骤1:制备低阻尼发泡料米,先将原料EVA、乙烯辛烯共聚物、PP弹性体、成核剂、发泡剂、交联剂、硬脂酸锌、硬脂酸混合进行密炼,调整密炼温度为94℃,保持6min,然后翻料2次,继续密炼升温,出料温度为101℃,密炼结束后进行开炼、造粒,得到低阻尼发泡料米;
步骤2:将低阻尼发泡料米倒入一次EVA注射机台的吸料桶,经一次射出成型得到低阻尼发泡材料。
上述制备得到的低阻尼发泡材料,密度0.196g/cm3,硬度46,尺寸收缩0.2%,回弹率67%,压缩变形率18%,撕裂强度12.2N/mm,拉伸强度2.7MPa,1.4Hz的阻尼因子0.070。
实施例2:
本实施例中,一种低阻尼发泡材料的制备方法与实施例1中的制备方法相同,所不同的是原料配比中:
EVA 7470M 20份、EVA 40W 5份、乙烯辛烯共聚物8100 25份、乙烯辛烯共聚物815040份、PP弹性体3020 10份。
上述制备得到的低阻尼发泡材料,密度0.214g/cm3,硬度48,尺寸收缩0.1%,回弹率66%,压缩变形率21%,撕裂强度11.7N/mm,拉伸强度2.4MPa,1.4Hz的阻尼因子0.075。
实施例3:
本实施例中,一种低阻尼发泡材料的制备方法与实施例1中的制备方法相同,所不同的是原料配比中:
EVA 265 30份、乙烯辛烯共聚物8100 32份、乙烯辛烯共聚物8150 23份、PP弹性体3980 10份、成核剂0.4份、硬脂酸锌1.2份、硬脂酸1.8份。
上述制备得到的低阻尼发泡材料,密度0.223g/cm3,硬度51,尺寸收缩0.4%,回弹率61%,压缩变形率21%,撕裂强度13.4N/mm,拉伸强度2.6MPa,1.4Hz的阻尼因子0.091。
实施例4:
本实施例中,一种低阻尼发泡材料的制备方法与实施例1中的制备方法相同,所不同的是原料配比中:
EVA 7470M 20份、EVA 40W 15份、乙烯辛烯共聚物8450 30份、乙烯辛烯共聚物8150 30份、PP弹性体5份。
上述制备得到的低阻尼发泡材料,密度0.182g/cm3,硬度47,尺寸收缩2.8%,回弹率59%,压缩变形率36%,撕裂强度7.5N/mm,拉伸强度2.9MPa,1.4Hz的阻尼因子0.107。
将上述实施例1~4的数据整理后,得到如下表1(注:硬度采用GS-701N硬度计测试,尺寸收缩率按照60度1小时测试,回弹率测试采用GT-7042-RE型冲击弹性试验机,压缩变形率按照50度6小时测试,撕裂强度按照GB/T 529-2008测试直角撕裂,拉伸强度按照GB/T 528-2009测试):
实施例 1 2 3 4
密度(g/cm3) 0.196 0.214 0.223 0.182
硬度 46 48 51 47
尺寸收缩率(%) 0.2 0.1 0.4 2.7
回弹性(%) 67 66 61 59
压缩变形率(%) 18 21 21 36
撕裂强度(N/mm) 12.2 11.7 13.4 7.5
拉伸强度(MPa) 2.7 2.4 2.6 2.9
Tanδ(1.4Hz) 0.070 0.075 0.091 0.107
表1、实施例1-4的性能参数对照表
综上所述,按照本发明的低阻尼发泡材料的制备方法,制得的低阻尼发泡材料随着运动频率的增大,阻尼因子先减小后增大,并在0.1-10Hz区间保持较小的阻尼因子,最小达到0.07,尽可能地减少能量损耗、最大化地提供反弹力,具有宽频率的低阻尼、低压缩变形、尺寸稳定性好等特点,特别适合生产高档环保的低阻尼材料,尤其是需要低阻尼的短跑鞋中底。
以上所记载,仅为利用本创作技术内容的实施例,任何熟悉本项技艺者运用本创作所做的修饰、变化,皆属本创作主张的专利范围,而不限于实施例所揭示者。

Claims (8)

1.一种低阻尼发泡材料,其特征在于,该发泡材料随着运动频率的增大,阻尼因子先减小后增大,在0.1-10Hz区间保持较小的阻尼因子,最小达到0.07;所述低阻尼发泡材料,由以下原料组成制得:EVA、乙烯辛烯共聚物、PP弹性体、成核剂、发泡剂、交联剂、硬脂酸锌、硬脂酸;所述低阻尼发泡材料的各原料的重量份如下:
EVA 25 - 35 份
乙烯辛烯共聚物 55 - 65 份
PP弹性体 5 - 10 份
成核剂 0.3 - 0.5 份
发泡剂 2.3 - 2.6 份
交联剂 1.2 - 1.4 份
硬脂酸锌 1.2 - 1.5 份
硬脂酸 1.8 - 2.0 份。
2.根据权利要求1所述的低阻尼发泡材料,其特征在于,由以下组分按下列重量份原料制备而成:
EVA 30 份
乙烯辛烯共聚物 62 份
PP弹性体 8 份
成核剂 0.5 份
发泡剂 2.5 份
交联剂 1.3 份
硬脂酸锌 1.4 份
硬脂酸 2.0 份。
3.根据权利要求1所述低阻尼发泡材料,其特征在于:所述EVA为VA含量在25%-42%之间;所述PP弹性体为DSC熔点在65-80度之间。
4.根据权利要求1所述低阻尼发泡材料,其特征在于:所述PP弹性体至少包括埃克森美孚3020、埃克森美孚3000中的一种。
5.根据权利要求1所述低阻尼发泡材料,其特征在于:所述乙烯辛烯共聚物为陶氏EngageTM系列共聚物。
6.根据权利要求5所述低阻尼发泡材料,其特征在于:所述陶氏EngageTM系列共聚物至少包括8150、8100中的一种。
7.根据权利要求1所述低阻尼发泡材料,其特征在于:所述成核剂是聚烯烃成核剂HPN-20E。
8.一种制备权利要求1-7任一所述低阻尼发泡材料的制备方法,其特征在于,包括步骤:
步骤1:制备低阻尼发泡料米,先将原料EVA、乙烯辛烯共聚物、PP弹性体、成核剂、发泡剂、交联剂、硬脂酸锌、硬脂酸混合进行密炼,调整密炼温度为92-95℃,保持4-6min,然后翻料2次,继续密炼升温,出料温度为100-103℃,密炼结束后进行开炼、造粒,得到低阻尼发泡料米;
步骤2:将低阻尼发泡料米倒入一次EVA注射机台的吸料桶,经一次射出成型得到低阻尼发泡材料。
CN201510951747.XA 2015-12-17 2015-12-17 一种低阻尼发泡材料及其制备方法 Active CN105367891B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510951747.XA CN105367891B (zh) 2015-12-17 2015-12-17 一种低阻尼发泡材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510951747.XA CN105367891B (zh) 2015-12-17 2015-12-17 一种低阻尼发泡材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105367891A CN105367891A (zh) 2016-03-02
CN105367891B true CN105367891B (zh) 2018-03-30

Family

ID=55370554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510951747.XA Active CN105367891B (zh) 2015-12-17 2015-12-17 一种低阻尼发泡材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105367891B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102016005628B1 (pt) * 2016-03-15 2022-01-04 Orisol Do Brasil Indústria E Comércio De Máquinas Ltda Processo de conformação de solas e entressolas poliméricas utilizando alta- frequência
TWI665249B (zh) 2017-09-30 2019-07-11 元盛材料科技股份有限公司 鞋中底
CN108503938B (zh) * 2018-03-20 2021-02-19 华南理工大学 一种宽温域橡塑共交联型阻尼材料及其制备方法
CN112898784A (zh) * 2021-02-03 2021-06-04 中国工程物理研究院化工材料研究所 一种力学自适应弹性体制件的制备方法
JP7100933B1 (ja) 2022-03-03 2022-07-14 株式会社Tbm 積層シート及び食品包装容器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101080179A (zh) * 2005-05-10 2007-11-28 株式会社爱世克私 鞋底用构件
CN103194017A (zh) * 2013-04-28 2013-07-10 泰亚鞋业股份有限公司 抗皱eva发泡鞋材及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101080179A (zh) * 2005-05-10 2007-11-28 株式会社爱世克私 鞋底用构件
CN103194017A (zh) * 2013-04-28 2013-07-10 泰亚鞋业股份有限公司 抗皱eva发泡鞋材及其制造方法

Also Published As

Publication number Publication date
CN105367891A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
CN105367891B (zh) 一种低阻尼发泡材料及其制备方法
Najib et al. Effect of blowing agent concentration on cell morphology and impact properties of natural rubber foam
CN105419070B (zh) 一种迷彩eva长跑鞋中底及其制备方法
CN107075163A (zh) 膨胀聚酰胺粒料及使用其制造模制部件的方法
Zheng et al. Fundamental influences of crosslinking structure on the cell morphology, creep property, thermal property, and recycling behavior of microcellular EPDM foams blown with compressed CO2
CN105694484B (zh) 一种热塑性弹性体tpe发泡母料及其制备方法
CN108774378B (zh) 一种高弹缓震橡塑材料、缓震高弹鞋底及其制备工艺
CN102229709A (zh) 无毒、无异味、可回收的环保型聚氨酯发泡型材及其制备方法
CN106589908B (zh) 一种低压缩变形的发泡鞋底及其制备方法
CN104277318A (zh) 一种质轻、减震橡塑发泡材料及其制备方法
US20170009029A1 (en) Epoxidised natural rubber-based blend with reversible electrical behaviour
CN103289118A (zh) 一种发泡聚丙烯材料的制备方法
CN103897228A (zh) 一种新型高效止滑橡胶材料及其制备工艺
CN109135039B (zh) 植物微粉高分子发泡材料及其制备方法和应用
Lunchev et al. Mechanical characteristics of poly (ethylene vinyl acetate) foams with graphene for the applications in sport footwear
Zakaria et al. Effects of parameter changes on the structure and properties of low‐density polyethylene foam
CN105237947A (zh) 耐磨塑料袋及其制备方法
CN106674997A (zh) 一种发泡tpu材料及其发泡工艺
RU2011154336A (ru) Материалы, включающие матрицу, и способ их изготовления
CN106243681B (zh) 一种苎麻微晶/石墨烯纳米片改性tpu微孔片材的制备方法
Chang et al. Enhancing dynamic impact performance and cushioning of EVA copolymer foams with thermoplastic elastomers
CN108410058A (zh) 一种长跑鞋鞋底及其制备方法
Luo et al. High-quality 3D printing of ethylene vinyl acetate with direct pellet-based FDM for medical applications: Mechanical analysis, energy absorption and recovery evaluation
CN104177831A (zh) 食品级硅橡胶发泡制品及其制作方法
CN107501843B (zh) 一种用于增韧abs泡沫塑料的低成本膨胀微球的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
CB03 Change of inventor or designer information

Inventor after: Ding Sibo

Inventor after: Zheng Rongda

Inventor after: Lu Xin

Inventor after: Luo Xianfa

Inventor after: Liao Yibin

Inventor after: Guo Cailian

Inventor after: Wang Yuling

Inventor after: Zhou Xiaolan

Inventor after: Lin Jiang

Inventor after: Jin Xiaohong

Inventor before: Lu Xin

Inventor before: Zheng Rongda

Inventor before: Ding Sibo

Inventor before: Luo Xianfa

Inventor before: Liao Yibin

Inventor before: Guo Cailian

Inventor before: Wang Yuling

Inventor before: Zhou Xiaolan

Inventor before: Lin Jiang

Inventor before: Jin Xiaohong

COR Change of bibliographic data
TA01 Transfer of patent application right

Effective date of registration: 20160722

Address after: 362200 Jinjiang City, Quanzhou Province, the first industrial zone of the village of the village of Fujian

Applicant after: FUJIAN DENGTAI SCIENCE AND TECHNOLOGY Co.,Ltd.

Address before: Chen Dai Zhen Jiang tou Cun 362000 Fujian city of Quanzhou province Jinjiang City

Applicant before: Maotai(Fujian) Soles Co.,Ltd.

C41 Transfer of patent application or patent right or utility model
CB03 Change of inventor or designer information

Inventor after: Lu Xin

Inventor after: Luo Xianfa

Inventor after: Ding Sibo

Inventor after: Liao Yibin

Inventor after: Wang Yuling

Inventor after: Guo Cailian

Inventor after: Lin Chouzhi

Inventor after: Jin Xiaohong

Inventor after: Zheng Rongda

Inventor before: Ding Sibo

Inventor before: Zheng Rongda

Inventor before: Lu Xin

Inventor before: Luo Xianfa

Inventor before: Liao Yibin

Inventor before: Guo Cailian

Inventor before: Wang Yuling

Inventor before: Zhou Xiaolan

Inventor before: Lin Jiang

Inventor before: Jin Xiaohong

COR Change of bibliographic data
TA01 Transfer of patent application right

Effective date of registration: 20161031

Address after: 362200 Jinjiang Province, Quanzhou City, the first village of the town of

Applicant after: Maotai(Fujian) Soles Co.,Ltd.

Address before: 362200 Jinjiang City, Quanzhou Province, the first industrial zone of the village of the village of Fujian

Applicant before: FUJIAN DENGTAI SCIENCE AND TECHNOLOGY Co.,Ltd.

GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No. 588, Jinxin Road, Jiangtou Village, Chendai Town, Jinjiang City, Quanzhou City, Fujian Province, 362000

Patentee after: Maotai (Fujian) New Material Technology Co.,Ltd.

Address before: 362200 Chen Dai Jiang tou Cun, Jinjiang City, Quanzhou City, Fujian Province

Patentee before: Maotai(Fujian) Soles Co.,Ltd.

CP03 Change of name, title or address