CN105344362A - 一种Cu2SnS3花球/RGO复合纳米材料及其制备方法与应用 - Google Patents

一种Cu2SnS3花球/RGO复合纳米材料及其制备方法与应用 Download PDF

Info

Publication number
CN105344362A
CN105344362A CN201510931671.4A CN201510931671A CN105344362A CN 105344362 A CN105344362 A CN 105344362A CN 201510931671 A CN201510931671 A CN 201510931671A CN 105344362 A CN105344362 A CN 105344362A
Authority
CN
China
Prior art keywords
solution
rgo composite
sns
bouquet
rgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510931671.4A
Other languages
English (en)
Inventor
姚淑娟
李利
郜庆伟
王晓庆
胥嫘嫘
蒲锡鹏
李文智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaocheng University
Original Assignee
Liaocheng University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaocheng University filed Critical Liaocheng University
Priority to CN201510931671.4A priority Critical patent/CN105344362A/zh
Publication of CN105344362A publication Critical patent/CN105344362A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Cu2SnS3花球/RGO复合纳米材料,通过以下方法制备得到:(1)将氧化石墨烯超声分散于水中得溶液A;(2)将氯化亚铜,氯化锡,以及螯合剂溶于水中,形成溶液B;(3)将溶液B加入到溶液A中,滴加硫源,得混合液;(4)将混合液装入不锈钢高压釜的聚四氟乙烯内衬中恒温反应,之后过滤得沉淀;(5)依次用蒸馏水、无水乙醇各洗涤沉淀数次后,离心分离,烘干,即得。本发明的Cu2SnS3花球/RGO复合纳米材料,可以作为光催化剂,用于降解有机污染物,也可以作为抑菌剂应用。本发明的Cu2SnS3/RGO复合材料具有Cu2SnS3花球自组装形貌完好、均匀包裹于透明薄层RGO中、制备条件温和、光催化活性高、抑菌效果显著等优点。

Description

一种Cu2SnS3花球/RGO复合纳米材料及其制备方法与应用
技术领域
本发明涉及一种Cu2SnS3花球/RGO复合纳米材料及其制备方法,以及在光催化降解有机物和抑菌中的应用,属于光催化、环境保护、无机材料技术领域。
背景技术
应用半导体光催化技术处理水中有机污染物是最为有效的环境污染治理新技术。光催化型纳米材料具有极强的氧化能力,可以分解有机物、抑制/杀死细菌等,将有害物质转化为二氧化碳、水、无机氧化物等无害物质。
光催化技术以半导体TiO2为代表,但TiO2禁带宽度大,只有波长较短的太阳光才能被吸收,太阳能利用率很低;而且,所用的TiO2粉末颗粒细小,回收困难,容易造成浪费,因而不能满足实际应用的要求。另外,受光激发形成的电子和空穴易于复合,降低了光量子效率,以及光催化的负载技术难以达到既保持较高的活性又满足特定材料的理性要求,故以TiO2半导体为基础的光催化技术在工业应用上还存在一些问题。因此,研究新型的光催化剂和提高催化剂催化效率是重要的研究课题。
目前比较成熟的抗菌材料可分为有机和无机两类。其中有机抗菌剂种类繁多,广泛应用于医疗领域及工业领域,但存在毒性较大,持久性、耐热性、光谱抗菌性和稳定性差等不足之处。与有机抗菌剂相比,无机抗菌剂具有低毒、耐高温、抗菌广谱、长效、无二次污染等特点,其中银系纳米材料比表面积大、杀菌效率高,正逐渐成为抗菌领域的研究热点。但是由于银系纳米材料成本高昂,限制了其推广应用的速度。铜离子在抑菌方面亦表现出了较好的应用前景,中国专利申请《纳米核壳式铜-锡双金属粉体及其制备方法和应用》(申请号:200310108339.5,公开号:CN1539577)研究了铜及锡金属制备纳米颗粒,并发现了其具有较好的抑菌效果。但是,众所周知,金属单质在自然界中稳定性较差,很容易受到氧化和酸碱腐蚀,着严重影响了其实践应用中的效果。中国专利申请《一种Cu3SnS4/石墨烯复合可见光催化剂及其制备方法》(申请号:201410068296.0,公开号:CN103977821A)分析了铜及锡硫化物的制备及光催化活性,该专利申请中并未提及其得到的二元硫化物具有抑菌活性。
石墨烯是一种新型的二维碳纳米材料,其能隙为零,具有较大的比表面积(2630m2·g-1)、室温下超高的载流子迁移率(2×105cm2·V-1·s-1)、良好的化学稳定性及优异的力学性能等诸多特点。这些特性使得石墨烯与金属氧化物、硫化物的复合可能解决金属氧化物、硫化物在光催化及抗菌领域中存在的不足。
发明内容
针对上述现有技术,本发明提供了一种新型的纳米复合光催化剂——Cu2SnS3花球/RGO复合纳米材料及其制备方法,以及在光催化降解有机污染物和抑菌中的应用。本发明的产品是将石墨烯包裹于铜-锡硫化物花球中,实现了更加稳定持久的光催化和抑菌作用。
本发明是通过以下技术方案实现的:
一种Cu2SnS3花球/RGO复合纳米材料的制备方法,包括以下步骤:
(1)将氧化石墨烯分散于去离子水中,磁力搅拌并超声,得浓度为0.5~2mg/mL的氧化石墨烯溶液(溶液A);
(2)将氯化亚铜,氯化锡以及螯合剂,依次溶于去离子水中,磁力搅拌充分溶解,形成溶液B;
所述溶液B中,氯化亚铜的浓度为50~100mmol/L;氯化锡的浓度为25~50mmol/L;
所述螯合剂选择EDTA-Na2、聚乙烯吡咯烷酮(PVP)中的任一种;螯合剂的摩尔量与金属离子的总摩尔量(Cu2+与Sn4+之和)比为1:1~2:1;
(3)搅拌条件下将溶液B缓慢加入到溶液A中,搅拌0.5h后缓慢滴加硫源,滴加完毕后继续搅拌0.5~1h,得混合液;
所述溶液A与溶液B的体积比控制在2:1~1:2;
所述硫源选自β-巯基乙醇,L-半胱氨酸,硫脲中的任意一种;
所述氯化亚铜、氯化锡、硫源的摩尔比控制在2:1:3;
(4)将混合液装入不锈钢高压釜的聚四氟乙烯内衬中,填充率50~80%,密封后放入烘箱,于180℃恒温反应12~24h,反应后自然冷却至室温,过滤得沉淀;
(5)依次用蒸馏水、无水乙醇各洗涤沉淀数次后,离心分离得沉淀,于60~90℃真空烘干,得到Cu2SnS3/RGO复合材料。
一种Cu2SnS3花球/RGO复合纳米材料,是通过以上方法制备得到的。
本发明的Cu2SnS3花球/RGO复合纳米材料,可以作为光催化剂,用于降解有机污染物,如有机染料罗丹明B。本发明的Cu2SnS3花球/RGO复合纳米材料,还具有抑菌作用,可以作为抑制细菌生长的抑菌剂应用,如:大肠杆菌、铜绿假单胞菌、肺炎克雷伯杆菌等。
本发明取得了如下的优点及有益效果:
(1)本发明采用水热合成法制备Cu2SnS3花球/RGO复合材料,制备条件温和,操作简单,工艺条件易控,运行成本低。
(2)本发明采用控制金属离子与硫源的反应速率,金属离子与氧化石墨烯的比例,硫源的种类等达到控制产品形貌的目的。
(3)制备的复合材料中Cu2SnS3花球与石墨烯接触紧密,且均匀包裹于石墨烯透明薄片中,Cu2SnS3花球自组装良好,形貌均一。
(4)得到的Cu2SnS3/RGO复合材料有很高的光催化活性,且抑菌效果明显。
附图说明
图1:实施例1样品的XRD图。
图2:实施例1样品的SEM和EDS图,其中,图2(a)为SEM图,图2(b)为EDS图。
图3:实施例1样品的放大倍数SEM图。
图4:实施例1样品和对比例的光催化性能曲线。
图5:抑菌实验结果照片,其中,A:空白对照的结果(大肠杆菌);B:对照组的抑菌结果(大肠杆菌);C:本发明的材料的抑菌结果(大肠杆菌);D:空白对照的结果(肺炎克雷伯杆菌);E:对照组的抑菌结果(肺炎克雷伯杆菌);F:本发明的材料的抑菌结果(肺炎克雷伯杆菌)。
图6:实施例2样品的SEM图。
图7:实施例3样品的SEM图。
具体实施方式
下面结合实施例对本发明作进一步的说明。
下述实施例中所涉及的仪器、试剂、材料等,若无特别说明,均为现有技术中已有的常规仪器、试剂、材料等,可通过正规商业途径获得。下述实施例中所涉及的实验方法,检测方法等,若无特别说明,均为现有技术中已有的常规实验方法,检测方法等。
实施例1制备Cu2SnS3花球/RGO复合纳米材料
制备方法如下:
(1)将氧化石墨分散于去离子水中,磁力搅拌并超声,配成1mg/mL的氧化石墨烯溶液(溶液A);
(2)将1mmol氯化亚铜,0.5mmol氯化锡,以及3mmolEDTA-Na2,依次溶于20mL去离子水中,磁力搅拌充分溶解,形成均匀的溶液B;
(3)搅拌条件下将上述制备的溶液B缓慢加入到溶液A(20mL)中,搅拌0.5h后缓慢滴加3mmol硫脲,滴加完后继续磁力搅拌1h,获得混合液;
(4)将混合液装入不锈钢高压釜的聚四氟乙烯内衬中,填充率为80%,密封后放入烘箱,于180℃恒温反应24h,后自然冷却至室温,过滤得沉淀;
(5)依次用蒸馏水、无水乙醇各洗涤沉淀数次后,离心(6000rpm/min,10min)分离得沉淀,于80℃真空烘干,得到Cu2SnS3/RGO复合材料。
对比例:依据中国专利申请《一种Cu3SnS4/石墨烯复合可见光催化剂及其制备方法》(公开号:CN103977821A)中公开的方法制备的Cu3SnS4/RGO复合材料。
本发明所得Cu2SnS3/RGO复合材料的XRD结果如图1所示。由图1可以看出,所得产品表现出非常尖锐的特征衍射峰,其衍射峰可归属为三斜晶系结构,与标准卡片JCPDS(27-0198)相吻合。衍射峰峰形尖锐、强度大,说明产品的结晶度很高。Cu2SnS3/RGO体系在2θ=10°附近出现了氧化石墨烯层状结构(001)面的特征峰。其余无任何杂质峰,也说明产品较纯净。图2和图3为Cu2SnS3/RGO复合材料的SEM图片和EDS图片。由图可以看出,铜和锡的硫化物自组装成明显的花球状,形貌较为规整,直径平均2μm,且被透明褶皱结构的大面积薄层石墨烯均匀包裹。
将所得Cu2SnS3/RGO复合材料与对比例的复合材料在相同用量条件下分别光催化降解罗丹明B染料,结果如图4所示。由图显示,在光照150min内,本发明的Cu2SnS3/RGO复合材料对罗丹明染料的降解率达到90%,而对比例Cu3SnS4/RGO复合材料对罗丹明染料的降解率为84%。
将所得Cu2SnS3/RGO复合材料依据GB15979-2002中C5非溶出性抗(抑)菌产品抑菌性能试验方法检测抑菌性能,同时设置空白对照(不加抑菌产品)、对照(对比例的材料)。结果:本发明的Cu2SnS3/RGO复合材料对大肠杆菌抑菌率为99.7%,对比例材料在相同条件下抑菌率为68.9%(如图5A、B、C所示);本发明的Cu2SnS3/RGO复合材料对肺炎克雷伯杆菌抑菌率为98.2%,对比例材料在相同条件下抑菌率为64.3%(如图5D、E、F所示)。结论:本发明的Cu2SnS3/RGO复合材料具有良好的抑菌活性,抑菌效果显著高于对比例的Cu3SnS4/RGO复合材料。
实施例2制备Cu2SnS3花球/RGO复合纳米材料
制备方法如下:
(1)将氧化石墨分散于去离子水中,磁力搅拌并超声,配成2mg/mL氧化石墨烯溶液(溶液A);
(2)将2mmol氯化亚铜,1mmol氯化锡,以及6mmolEDTA-Na2依次溶于20mL去离子水中,磁力搅拌充分溶解,形成均匀的溶液B;
(3)搅拌条件下将溶液B缓慢加入到20mL溶液A中,搅拌0.5h后缓慢滴加3mmol半胱氨酸,完后继续搅拌0.5h;
(4)将混合液装入不锈钢高压釜的聚四氟乙烯内衬中,填充率为80%,密封后放入烘箱,于180℃恒温反应24h,后自然冷却至室温;
(5)用蒸馏水、无水乙醇洗涤沉淀数次后,离心分离,于90℃真空烘干,得到Cu2SnS3/RGO复合材料。
样品的SEM照片如图6所示。将得到的材料依据GB15979-2002中C5非溶出性抗(抑)菌产品抑菌性能试验方法检测抑菌性能,结果提示该微纳米材料具有良好的抑菌活性,对铜绿假单胞菌抑菌率为95.7%。
实施例3制备Cu2SnS3花球/RGO复合纳米材料
制备方法如下:
(1)将氧化石墨分散于去离子水中,磁力搅拌并超声,配成0.5mg/mL氧化石墨烯溶液(溶液A);
(2)将0.2g氯化亚铜,0.35g结晶四氯化锡,以及0.6gPVP依次溶于10mL去离子水中,磁力搅拌充分溶解,形成均匀的溶液B;
(3)搅拌条件下将溶液B缓慢加入到20mL溶液A中,搅拌0.5h后缓慢滴加0.5mLβ-巯基乙醇,完后继续搅拌1h;
(4)将混合液装入不锈钢高压釜的聚四氟乙烯内衬中,填充率为60%,密封后放入烘箱,于180℃恒温反应24h,后自然冷却至室温;
(5)用蒸馏水、无水乙醇洗涤沉淀数次后,离心分离,于60℃真空烘干,得到Cu2SnS3/RGO复合材料。
样品的SEM照片如图7所示。将得到的材料依据GB15979-2002中C5非溶出性抗(抑)菌产品抑菌性能试验方法检测抑菌性能,结果提示该微纳米材料具有良好的抑菌活性,对肺炎克雷伯杆菌抑菌率为96.9%。

Claims (7)

1.一种Cu2SnS3花球/RGO复合纳米材料的制备方法,其特征在于:包括以下步骤:
(1)将氧化石墨烯分散于水中,得浓度为0.5~2mg/mL的氧化石墨烯溶液,为溶液A;
(2)将氯化亚铜,氯化锡以及螯合剂,溶于水中,形成溶液B;
所述溶液B中,氯化亚铜的浓度为50~100mmol/L;氯化锡的浓度为25~50mmol/L;
所述螯合剂选择EDTA-Na2、聚乙烯吡咯烷酮中的任一种;螯合剂的摩尔量与金属离子的总摩尔量的比例为1:1~2:1;
(3)搅拌条件下将溶液B加入到溶液A中,搅拌0.5h后滴加硫源,滴加完毕后继续搅拌0.5~1h,得混合液;
所述溶液A与溶液B的体积比在2:1~1:2;
所述硫源选自β-巯基乙醇,L-半胱氨酸,硫脲中的任意一种;
(4)将混合液装入不锈钢高压釜的聚四氟乙烯内衬中,密封后放入烘箱,于180℃恒温反应12~24h,反应后自然冷却至室温,过滤得沉淀;
(5)依次用蒸馏水、无水乙醇各洗涤沉淀数次后,离心分离得沉淀,于60~90℃真空烘干,得到Cu2SnS3/RGO复合材料。
2.根据权利要求1所述的Cu2SnS3花球/RGO复合纳米材料的制备方法,其特征在于:所述步骤(3)中,氯化亚铜、氯化锡、硫源三者的摩尔比控制在2:1:3。
3.一种利用权利要求1或2所述的制备方法制备得到的Cu2SnS3花球/RGO复合纳米材料。
4.权利要求3所述的Cu2SnS3花球/RGO复合材料作为光催化剂在降解有机污染物中的应用。
5.根据权利要求4所述的应用,其特征在于:所述有机污染物为有机染料罗丹明B。
6.权利要求3所述的Cu2SnS3花球/RGO复合纳米材料作为抑菌剂在抑制细菌中的应用。
7.根据权利要求6所述的应用,其特征在于:所述细菌为大肠杆菌、铜绿假单胞菌或/和肺炎克雷伯杆菌。
CN201510931671.4A 2015-12-11 2015-12-11 一种Cu2SnS3花球/RGO复合纳米材料及其制备方法与应用 Pending CN105344362A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510931671.4A CN105344362A (zh) 2015-12-11 2015-12-11 一种Cu2SnS3花球/RGO复合纳米材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510931671.4A CN105344362A (zh) 2015-12-11 2015-12-11 一种Cu2SnS3花球/RGO复合纳米材料及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN105344362A true CN105344362A (zh) 2016-02-24

Family

ID=55320504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510931671.4A Pending CN105344362A (zh) 2015-12-11 2015-12-11 一种Cu2SnS3花球/RGO复合纳米材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN105344362A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106477622A (zh) * 2016-10-18 2017-03-08 吉林大学 以GeO2为原料制备含锗的三元或四元硫族半导体中空纳米粒子的方法
CN106732659A (zh) * 2016-12-20 2017-05-31 盐城工学院 石墨烯‑CdLa2S4复合可见光催化剂及其制备工艺
CN107815720A (zh) * 2017-09-15 2018-03-20 广东工业大学 一种自支撑还原氧化石墨烯涂层及其制备方法和应用
CN108441885A (zh) * 2018-04-27 2018-08-24 中国科学院福建物质结构研究所 一种复合材料及其在尿素氧化协助酸-碱电解池电解水制氢装置中的应用
CN109022325A (zh) * 2018-08-28 2018-12-18 包平 一种降解水体中有机锡的方法
CN110335757A (zh) * 2019-04-22 2019-10-15 华南师范大学 一种铜锡硫Cu2SnS3/碳量子点复合材料及其制备方法和在超级电容器中的应用
WO2023272412A1 (zh) * 2021-06-27 2023-01-05 苏州大学 金属离子掺杂二硫化锡纳米花及其在压电催化降解污染物中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YU TAN ET AL.,: "Facile solvothermal synthesis of Cu2SnS3 architectures and their visible-light-driven photocatalytic properties", 《MATERIALS LETTERS》 *
周成坤: "金属硫化物的制备、修饰及其储锂性能研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106477622A (zh) * 2016-10-18 2017-03-08 吉林大学 以GeO2为原料制备含锗的三元或四元硫族半导体中空纳米粒子的方法
CN106732659A (zh) * 2016-12-20 2017-05-31 盐城工学院 石墨烯‑CdLa2S4复合可见光催化剂及其制备工艺
CN107815720A (zh) * 2017-09-15 2018-03-20 广东工业大学 一种自支撑还原氧化石墨烯涂层及其制备方法和应用
CN107815720B (zh) * 2017-09-15 2020-04-17 广东工业大学 一种自支撑还原氧化石墨烯涂层及其制备方法和应用
CN108441885A (zh) * 2018-04-27 2018-08-24 中国科学院福建物质结构研究所 一种复合材料及其在尿素氧化协助酸-碱电解池电解水制氢装置中的应用
CN109022325A (zh) * 2018-08-28 2018-12-18 包平 一种降解水体中有机锡的方法
CN110335757A (zh) * 2019-04-22 2019-10-15 华南师范大学 一种铜锡硫Cu2SnS3/碳量子点复合材料及其制备方法和在超级电容器中的应用
CN110335757B (zh) * 2019-04-22 2021-07-16 华南师范大学 一种铜锡硫Cu2SnS3/碳量子点复合材料及其制备方法和在超级电容器中的应用
WO2023272412A1 (zh) * 2021-06-27 2023-01-05 苏州大学 金属离子掺杂二硫化锡纳米花及其在压电催化降解污染物中的应用

Similar Documents

Publication Publication Date Title
CN105344362A (zh) 一种Cu2SnS3花球/RGO复合纳米材料及其制备方法与应用
Pathania et al. Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye
Ghanbari et al. Copper iodide decorated graphitic carbon nitride sheets with enhanced visible-light response for photocatalytic organic pollutant removal and antibacterial activities
Sharma et al. Visible light induced bactericidal and photocatalytic activity of hydrothermally synthesized BiVO4 nano-octahedrals
Li et al. Palladium oxide nanoparticles on nitrogen‐doped titanium oxide: accelerated photocatalytic disinfection and post‐illumination catalytic “memory”
CN107950570A (zh) 一种石墨烯/二氧化钛/纳米银复合材料的制备方法
CN100500003C (zh) 纳米复合抗菌剂
Yan et al. Recent advances in graphite carbon nitride-based nanocomposites: structure, antibacterial properties and synergies
Zhu et al. Fabrication of a Z-scheme g-C3N4/Fe-TiO2 photocatalytic composite with enhanced photocatalytic activity under visible light irradiation
Yan et al. In-situ intercalation of MoO3-x in g-C3N4 for the enhancement of photocatalytic and antibacterial activities
Liu et al. Ultrasound-assisted two-step water-bath synthesis of gC 3 N 4/BiOBr composites: visible light-driven photocatalysis, sterilization, and reaction mechanism
CN104475129B (zh) 硫化铜/氧化钛异质结光催化剂的低温制备方法
Nithya et al. Chitosan assisted synthesis of ZnO nanoparticles: an efficient solar light driven photocatalyst and evaluation of antibacterial activity
Kokilavani et al. Integrating Ag2WO4 on VS4 nanoplates with synergy of plasmonic photocatalysis and boosted visible-light harvesting and its antibacterial applications
Handoko et al. Green synthesis of silver nanoparticle and its antibacterial activity
CN101044848A (zh) 一种以丝素固载的纳米银抗菌粉体及其制备方法
Lin et al. Construction of Z-scheme Ag-AgBr/BiVO4/graphene aerogel with enhanced photocatalytic degradation and antibacterial activities
CN104707658A (zh) 一种Pd/金属有机骨架化合物催化剂及其制备方法和应用
Guo et al. S-scheme Ti0. 7Sn0. 3O2/g-C3N4 heterojunction composite for enhanced photocatalytic pollutants degradation
Zhang et al. Graphitic carbon nitride loaded with bismuth nanoparticles displays antibacterial photocatalytic activity
Hosseini et al. Immobilized WO3 nanoparticles on graphene oxide as a photo-induced antibacterial agent against UV-resistant Bacillus pumilus
Li et al. Fabrication of carbon quantum dots/1D MoO3-x hybrid junction with enhanced LED light efficiency in photocatalytic inactivation of E. ácoli and S. áaureus
Xu et al. The effective photocatalysis and antibacterial properties of AgBr/Ag2MoO4@ ZnO composites under visible light irradiation
Padmanabhan et al. Antibacterial self-cleaning binary and ternary hybrid photocatalysts of titanium dioxide with silver and graphene
Pan et al. CuO/TiO2 nanobelt with oxygen vacancies for visible-light-driven photocatalytic bacterial inactivation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160224