CN105337584B - 一种利用负阻提高运放增益的方法 - Google Patents

一种利用负阻提高运放增益的方法 Download PDF

Info

Publication number
CN105337584B
CN105337584B CN201510862700.6A CN201510862700A CN105337584B CN 105337584 B CN105337584 B CN 105337584B CN 201510862700 A CN201510862700 A CN 201510862700A CN 105337584 B CN105337584 B CN 105337584B
Authority
CN
China
Prior art keywords
operational amplifier
negative resistance
gain
analog
resistance unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510862700.6A
Other languages
English (en)
Other versions
CN105337584A (zh
Inventor
丁洋
任咏林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUXI BIXUN TECHNOLOGY Co Ltd
Original Assignee
WUXI BIXUN TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUXI BIXUN TECHNOLOGY Co Ltd filed Critical WUXI BIXUN TECHNOLOGY Co Ltd
Priority to CN201510862700.6A priority Critical patent/CN105337584B/zh
Publication of CN105337584A publication Critical patent/CN105337584A/zh
Application granted granted Critical
Publication of CN105337584B publication Critical patent/CN105337584B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Amplifiers (AREA)

Abstract

本发明提供一种利用负阻提高运放增益的方法,在运放第一级的输出端加入由多个交叉耦合NMOS差分对组成的负阻单元,每对差分对由片上运放增益检测控制环路产生的N位运放负阻单元控制信号SW控制NMOS管源端是否接地。这样,就可以在芯片使用过程中根据具体情况控制负阻阻值大小,从而可以在保证运放稳定性的前提下达到目标增益值。本发明不额外增加功耗,对低功耗设计有重要意义。

Description

一种利用负阻提高运放增益的方法
技术领域
本发明属于运放设计领域,涉及一种利用负阻提高运放增益的方法。
背景技术
高增益运放在反馈系统中有着广泛的需求,以高精度流水线型模数转换器为例,流水级中的高增益运放是保证转换精度的重要条件。为了提高运放增益,带增益自举的两级运放是通常会采用的运放结构,如图1所示。为了满足越来越高的增益要求,设计中需要更大的器件尺寸更高的功耗,而这在目前的低功耗应用中显然是无法忍受的。
发明内容
本发明提供一种利用负阻提高运放增益的方法,不额外增加功耗,对低功耗设计有重要意义。
本发明的技术方案如下:
一种利用负阻提高运放增益的方法,包括如下步骤:
步骤1,设置负阻单元;所述负阻单元设置在运放第一级的输出端,由多个交叉耦合的NMOS差分对组成;
步骤2,构建片上运放增益检测控制环路;由所述片上运放增益检测控制环路产生N位运放负阻单元控制信号SW,对所述负阻单元的每对差分对的NMOS管的源端是否接地进行控制;
所述片上运放增益检测控制环路由运放、第一模数转换器、第二模数转换器、数字处理模块、开关、第一至第四电阻组成;其中运放为电路中实际使用的运放的复制,第一电阻一端、第二电阻一端、第三电阻一端、第一模数转换器输入端共接于X点,第二电阻另一端、运放输出端、第二模数转换器输入端共接于Y点,第三电阻另一端、第四电阻一端、运放反相输入端共接于P点,第四电阻另一端、运放同相输入端共接于V1电压,第一电阻另一端通过开关接于V2电压或V3电压,第一模数转换器、第二模数转换器的输出端连接数字处理模块输入端,数字处理模块输出N位运放负阻单元控制信号SW;
步骤3,N位运放负阻单元控制信号SW的计算与调节,包括步骤3a~3e;
步骤3a,设置N位运放负阻单元控制信号SW的初始值为0;
步骤3b,令第一电阻通过开关接V2电压,通过第一模数转换器和第二模数转换器分别检测X点和Y点的电压得到D_X_1、D_Y_1;
步骤3c,切换开关,令第一电阻连接V3电压,通过第一模数转换器和第二模数转换器分别检测X点和Y点的电压得到D_X_2、D_Y_2;
步骤3d,根据所述片上运放增益检测控制环路得到公式如下,其中Vos是运放运放的输入失调电压,V_s0由开关控制与V2或者V3相等;
VY=Aop·(V1-VP-Vos) (2)
当V_s0=V2,得到
当V_s0=V3,得到
公式(4)-公式(5)得到运放实际增益:
VX与VY经过模数转换器量化得到:
数字处理模块根据公式(7)计算得到运放实际增益Aop;
步骤3e,如果运放实际增益Aop小于运放目标增益A,则增加输出N位运放负阻单元控制信号SW中高电平位数;再次检测运放增益,如果此时运放实际增益Aop大于运放目标增益A,则对N位运放负阻单元控制信号SW的计算结束;如果运放实际增益Aop仍然小于运放目标增益A,则再次增加N位运放负阻单元控制信号SW的高电平位数,循环直到运放实际增益Aop大于运放目标增益A。
本发明的有益技术效果是:
本发明在运放第一级的输出端加入由多个交叉耦合NMOS差分对组成的负阻单元,每对差分对由片上运放增益检测控制环路产生的N位运放负阻单元控制信号SW控制NMOS管源端是否接地,可以在芯片使用过程中根据具体情况控制负阻阻值大小,从而可以在保证运放稳定性的前提下达到目标增益值。
本发明的优点将在下面具体实施方式部分的描述中给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1是现有的两级运放结构图。
图2是采用本发明的两级运放结构图。
图3是本发明的负阻单元结构图。
图4是本发明的片上运放增益检测控制环路结构图。
图5是本发明的N位运放负阻单元控制信号SW计算过程图。
具体实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
如图2所示是本发明的运放结构图。在运放第一级的输出端,加入如图3所示的负阻单元。负阻单元包括一对NMOS管,交叉耦合构成正反馈,于是输出阻抗为负。假设运放本身输出阻抗是r0,负阻单元的输出阻抗是-1/gm,那么加入负阻单元后的运放整体输出阻抗为:
可以看到,在保证gm·r0<1的条件下,运放的输出阻抗得到了提高。并且,通过负阻单元中NMOS管gm的选取,可以将输出阻抗提高任意倍数。
然而,当gm·r0≥1时,运放不再工作在稳定状态。因此,考虑到工艺参数偏差、工作环境温度变化等因素的影响,为了保证带负阻单元的运放工作稳定,gm值需要选择在一个相对保守的区域,而这不利于充分发挥负阻提高增益的潜力。
本发明中的负阻单元由多个交叉耦合NMOS差分对组成,每对差分对由N位运放负阻单元控制信号SW控制NMOS管源端是否接地。这样,就可以在芯片使用过程中根据具体情况控制负阻阻值大小,从而可以在保证运放稳定性的前提下达到目标增益值。
本发明的N位运放负阻单元控制信号SW由如图4所示的片上运放增益检测控制环路产生。复制电路中实际使用的运放得到图4中的运放A_op;模数转换器ADC1、ADC2分别检测X点和Y点的电压得到D_X和D_Y;数字处理模块DSP根据模数转换器ADC1、ADC2的输出计算运放实际增益Aop,将运放实际增益Aop与运放目标增益A比较得到N位运放负阻单元控制信号SW;SW控制连入运放的负阻单元个数。
根据图4电路得到公式如下,其中Vos是运放A_op的输入失调电压,V_s0由开关控制与V2或者V3相等。
VY=Aop·(V1-VP-Vos) (2)
当V_s0=V2,得到
当V_s0=V3,得到
(4)-(5)得到运放增益:
VX与VY经过ADC量化得到:
这里,根据不同的运放目标增益,合理选择R3、R4电阻比例可以有效降低AD量化所需的量化精度。
具体的N位运放负阻单元控制信号SW计算过程如图5所示。
首先,设置N位运放负阻单元控制信号SW初始值为0;电阻R1左端通过开关S0接V2电压,通过模数转换器ADC1、ADC2得到X点和Y点电压的量化值D_X_1、D_Y_1;切换开关S0,令电阻R1左端连接V3电位,得到模数转换器ADC1、ADC2输出D_X_2、D_Y_2;数字处理模块DSP根据上述公式(7)计算得到运放实际增益Aop;如果Aop小于运放目标增益A,则增加输出N位运放负阻单元控制信号SW中高电平位数;再次检测运放增益,如果运放实际增益大于运放目标增益,则N位运放负阻单元控制信号SW计算结束,如果Aop<A,则再次增加N位运放负阻单元控制信号SW高电平位数,循环直到Aop>A。
以上所述的仅是本发明的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的基本构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。

Claims (1)

1.一种利用负阻提高运放增益的方法,其特征在于,包括如下步骤:
步骤1,设置负阻单元;所述负阻单元设置在运放第一级的输出端,由多个交叉耦合的NMOS差分对组成;
步骤2,构建片上运放增益检测控制环路;由所述片上运放增益检测控制环路产生N位运放负阻单元控制信号SW,对所述负阻单元的每对差分对的NMOS管的源端是否接地进行控制;
所述片上运放增益检测控制环路由运放(A_op)、第一模数转换器(ADC1)、第二模数转换器(ADC2)、数字处理模块(DSP)、开关(S0)、第一至第四电阻(R1~R4)组成;其中运放(A_op)为电路中实际使用的运放的复制,第一电阻(R1)一端、第二电阻(R2)一端、第三电阻(R3)一端、第一模数转换器(ADC1)输入端共接于X点,第二电阻(R2)另一端、运放(A_op)输出端、第二模数转换器(ADC2)输入端共接于Y点,第三电阻(R3)另一端、第四电阻(R4)一端、运放(A_op)反相输入端共接于P点,第四电阻(R4)另一端、运放(A_op)同相输入端共接于V1电压,第一电阻(R1)另一端通过开关(S0)接于V2电压或V3电压,第一模数转换器(ADC1)、第二模数转换器(ADC2)的输出端连接数字处理模块(DSP)输入端,数字处理模块(DSP)输出N位运放负阻单元控制信号SW;
步骤3,N位运放负阻单元控制信号SW的计算与调节,包括步骤3a~3e;
步骤3a,设置N位运放负阻单元控制信号SW的初始值为0;
步骤3b,令第一电阻(R1)通过开关(S0)接V2电压,通过第一模数转换器(ADC1)和第二模数转换器(ADC2)分别检测X点和Y点的电压得到D_X_1、D_Y_1;
步骤3c,切换开关(S0),令第一电阻(R1)连接V3电压,通过第一模数转换器(ADC1)和第二模数转换器(ADC2)分别检测X点和Y点的电压得到D_X_2、D_Y_2;
步骤3d,根据所述片上运放增益检测控制环路得到公式如下,其中Vos是运放运放(A_op)的输入失调电压,V_s0由开关(S0)控制与V2或者V3相等;
<mrow> <mi>V</mi> <mn>1</mn> <mo>-</mo> <mi>V</mi> <mi>P</mi> <mo>=</mo> <mfrac> <mrow> <mi>R</mi> <mn>4</mn> </mrow> <mrow> <mi>R</mi> <mn>3</mn> <mo>+</mo> <mi>R</mi> <mn>4</mn> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mi>V</mi> <mn>1</mn> <mo>-</mo> <mi>V</mi> <mi>X</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
VY=Aop·(V1-VP-Vos) (2)
<mrow> <mi>V</mi> <mi>Y</mi> <mo>&amp;ap;</mo> <mn>2</mn> <mo>&amp;CenterDot;</mo> <mi>V</mi> <mi>X</mi> <mo>-</mo> <mfrac> <mrow> <mi>R</mi> <mn>2</mn> </mrow> <mrow> <mi>R</mi> <mn>1</mn> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mi>V</mi> <mo>_</mo> <mi>s</mi> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
当V_s0=V2,得到
<mrow> <mi>V</mi> <mi>Y</mi> <mn>1</mn> <mo>=</mo> <msub> <mi>A</mi> <mrow> <mi>o</mi> <mi>p</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mi>R</mi> <mn>4</mn> </mrow> <mrow> <mi>R</mi> <mn>3</mn> <mo>+</mo> <mi>R</mi> <mn>4</mn> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mi>V</mi> <mn>1</mn> <mo>-</mo> <mi>V</mi> <mi>X</mi> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mi>s</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
当V_s0=V3,得到
<mrow> <mi>V</mi> <mi>Y</mi> <mn>2</mn> <mo>=</mo> <msub> <mi>A</mi> <mrow> <mi>o</mi> <mi>p</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mi>R</mi> <mn>4</mn> </mrow> <mrow> <mi>R</mi> <mn>3</mn> <mo>+</mo> <mi>R</mi> <mn>4</mn> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mi>V</mi> <mn>1</mn> <mo>-</mo> <mi>V</mi> <mi>X</mi> <mn>2</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mi>s</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
公式(4)-公式(5)得到运放实际增益:
<mrow> <msub> <mi>A</mi> <mrow> <mi>o</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>20</mn> <mi>l</mi> <mi>g</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>V</mi> <mi>Y</mi> <mn>1</mn> <mo>-</mo> <mi>V</mi> <mi>Y</mi> <mn>2</mn> </mrow> <mrow> <mi>V</mi> <mi>X</mi> <mn>2</mn> <mo>-</mo> <mi>V</mi> <mi>X</mi> <mn>1</mn> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <mi>R</mi> <mn>3</mn> <mo>+</mo> <mi>R</mi> <mn>4</mn> </mrow> <mrow> <mi>R</mi> <mn>4</mn> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
VX与VY经过模数转换器量化得到:
<mrow> <msub> <mi>A</mi> <mrow> <mi>o</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mn>20</mn> <mi>l</mi> <mi>g</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>D</mi> <mo>_</mo> <mi>Y</mi> <mo>_</mo> <mn>1</mn> <mo>-</mo> <mi>D</mi> <mo>_</mo> <mi>Y</mi> <mo>_</mo> <mn>2</mn> </mrow> <mrow> <mi>D</mi> <mo>_</mo> <mi>X</mi> <mo>_</mo> <mn>2</mn> <mo>-</mo> <mi>D</mi> <mo>_</mo> <mi>X</mi> <mo>_</mo> <mn>1</mn> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <mi>R</mi> <mn>3</mn> <mo>+</mo> <mi>R</mi> <mn>4</mn> </mrow> <mrow> <mi>R</mi> <mn>4</mn> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
数字处理模块(DSP)根据公式(7)计算得到运放实际增益Aop;
步骤3e,如果运放实际增益Aop小于运放目标增益A,则增加输出N位运放负阻单元控制信号SW中高电平位数;再次检测运放增益,如果此时运放实际增益Aop大于运放目标增益A,则对N位运放负阻单元控制信号SW的计算结束;如果运放实际增益Aop仍然小于运放目标增益A,则再次增加N位运放负阻单元控制信号SW的高电平位数,循环直到运放实际增益Aop大于运放目标增益A。
CN201510862700.6A 2015-12-01 2015-12-01 一种利用负阻提高运放增益的方法 Active CN105337584B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510862700.6A CN105337584B (zh) 2015-12-01 2015-12-01 一种利用负阻提高运放增益的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510862700.6A CN105337584B (zh) 2015-12-01 2015-12-01 一种利用负阻提高运放增益的方法

Publications (2)

Publication Number Publication Date
CN105337584A CN105337584A (zh) 2016-02-17
CN105337584B true CN105337584B (zh) 2018-03-20

Family

ID=55287928

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510862700.6A Active CN105337584B (zh) 2015-12-01 2015-12-01 一种利用负阻提高运放增益的方法

Country Status (1)

Country Link
CN (1) CN105337584B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108880543B (zh) * 2017-05-10 2022-04-01 深圳清华大学研究院 流水线模数转换器及其运放自适应配置电路及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136258A (en) * 1989-04-28 1992-08-04 Sgs-Thomson Microelectronics S.R.L. Circuit arrangement for enhancing the transconductance of a differential amplifier stage comprising MOS transistors
CN103338015A (zh) * 2013-05-28 2013-10-02 南京邮电大学 一种提高增益的放大器及其设计方法
CN104883136A (zh) * 2015-05-05 2015-09-02 电子科技大学 一种负阻式单端共栅cmos低噪声放大器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136258A (en) * 1989-04-28 1992-08-04 Sgs-Thomson Microelectronics S.R.L. Circuit arrangement for enhancing the transconductance of a differential amplifier stage comprising MOS transistors
CN103338015A (zh) * 2013-05-28 2013-10-02 南京邮电大学 一种提高增益的放大器及其设计方法
CN104883136A (zh) * 2015-05-05 2015-09-02 电子科技大学 一种负阻式单端共栅cmos低噪声放大器

Also Published As

Publication number Publication date
CN105337584A (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
WO2013002957A2 (en) Two-stage analog-to-digital converter using sar and tdc
US8797455B2 (en) Analog-to-digital converter, image sensor including the same, and apparatus including image sensor
TW201810957A (zh) 具有可變解析度之以時間為基礎之延遲線類比數位轉換器
CN111431532B (zh) 一种宽输出范围高精度的积分器
US9087567B2 (en) Method and apparatus for amplifier offset calibration
CN106788429B (zh) 基于电荷域信号处理的dac失调误差校准电路
WO2020020092A1 (zh) 数模转换器
US6850180B2 (en) Asynchronous self-timed analog-to-digital converter
CN106257840B (zh) 动态比较器和包括该动态比较器的模数转换器
CN109309498B (zh) 一种基于温度计码的电流舵型数模转换器
CN103499991B (zh) 具温度感测的模拟数字转换电路及其电子装置
US10735016B2 (en) D/A conversion circuit, quantization circuit, and A/D conversion circuit
CN105337584B (zh) 一种利用负阻提高运放增益的方法
JP2010278952A (ja) 逐次比較型ad変換回路及び半導体集積回路
US10084465B2 (en) Analog-to-digital converters with a plurality of comparators
CN110138386A (zh) 一种比较器失调漂移后台校正电路和方法
CN111034052A (zh) 用于在不具有附加有源电路的sar adc中启用宽输入共模范围的方法和装置
CN106788439B (zh) 积分型模数转换器转移特性的调节系统及方法
TW201716970A (zh) 觸控裝置及其電容式觸控感測電路與觸控感測方法
CN209134390U (zh) 一种动态比较器电路
CN203554417U (zh) Sar adc电路及电子设备
US8587465B2 (en) Successive approximation analog to digital converter with comparator input toggling
KR20150072972A (ko) 타이밍 켈리브레이션을 이용한 인터폴레이션을 위한 아날로그 디지털 변환기
CN110022110B (zh) 音圈马达阻尼控制电路
CN105353295A (zh) 一种运放增益测量电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant