CN105317543A - 高效率的线性内燃机 - Google Patents

高效率的线性内燃机 Download PDF

Info

Publication number
CN105317543A
CN105317543A CN201510762767.2A CN201510762767A CN105317543A CN 105317543 A CN105317543 A CN 105317543A CN 201510762767 A CN201510762767 A CN 201510762767A CN 105317543 A CN105317543 A CN 105317543A
Authority
CN
China
Prior art keywords
piston
piston assembly
linear
motor
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510762767.2A
Other languages
English (en)
Inventor
A·辛普森
S·米勒
M·斯维塞克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mainspring Energy Inc
Original Assignee
Etagen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/953,277 external-priority patent/US8413617B2/en
Priority claimed from US12/953,270 external-priority patent/US20120126543A1/en
Priority claimed from US13/102,916 external-priority patent/US8453612B2/en
Application filed by Etagen Inc filed Critical Etagen Inc
Publication of CN105317543A publication Critical patent/CN105317543A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B71/00Free-piston engines; Engines without rotary main shaft
    • F02B71/02Starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B71/00Free-piston engines; Engines without rotary main shaft
    • F02B71/04Adaptations of such engines for special use; Combinations of such engines with apparatus driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B11/00Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type
    • F01B11/001Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type in which the movement in the two directions is obtained by one double acting piston motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/02Engines characterised by using fresh charge for scavenging cylinders using unidirectional scavenging
    • F02B25/08Engines with oppositely-moving reciprocating working pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • F02B63/041Linear electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B71/00Free-piston engines; Engines without rotary main shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F02B75/282Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders the pistons having equal strokes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1892Generators with parts oscillating or vibrating about an axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B11/00Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type
    • F01B11/007Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type in which the movement in only one direction is obtained by a single acting piston motor, e.g. with actuation in the other direction by spring means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B7/00Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F01B7/02Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

本发明的各种实施例涉及一种线性内燃机,其包括:具有汽缸壁和一对末端的汽缸,该汽缸包括设在汽缸中间部分的燃烧段;一对相对设置的活塞组件,其适于在汽缸内线性运动,各个活塞组件与另一活塞组件相对地设在燃烧段的一侧上,各活塞组件包括弹簧杆和活塞,所述活塞包括位于燃烧段附近的实心前段和气体段;以及一对线性电磁电机,其适于直接将活塞组件的动能转换成电能,并且适于直接将电能转换成活塞组件的动能以用于在压缩行程期间提供压缩功。

Description

高效率的线性内燃机
本申请是名称为“高效率的线性内燃机”、国际申请日为2011年11月17日、国际申请号为PCT/US2011/061145、国家申请号为201180062604.3的发明专利申请的分案申请。
相关申请参考
本申请是2011年11月16日提交的13/298,206号美国专利申请的继续部分申请,13/298,206号申请是2011年5月6日提交的13/102,916号美国专利申请的继续部分申请,13/102,916号申请是2010年11月23日提交的12/953,277号和12/953,270号美国专利申请的继续部分申请,所有这些文献均全文并入以作为参考。
技术领域
本发明涉及高效率的线性内燃机,更具体地,一些实施例涉及通过利用与用于提取功的线性电磁电机结合的自由活塞发动机结构和一种创新的燃烧控制策略能够达到高的压缩/膨胀比的高效率的线性内燃机。
背景技术
发动机功率的密度及发射在过去30年中已得到改善;然而总效率仍保持相对不变。在发动机界公知的是,提高发动机的几何压缩比提高了发动机的理论效率极限。此外,提高发动机的几何膨胀比使得其大于压缩比更进一步地提高了它的理论效率极限。为了简洁起见,“压缩比”和“膨胀比”分别被用于指“几何压缩比”和“几何膨胀比”。
图1(现有技术)示出了内燃机中常用的两种循环-Otto和Atkinson-的理论效率极限。具体地,图1是随压缩比变化的、Otto和Atkinson循环的理想效率之间的比较。该模型的假设包括:(i)下止点(“BDC”)处的压力等于一个大气压;以及(ii)预混的、化学计算的、理想的气体甲烷和包括可变的性质的空气,离解的产物,并且在膨胀过程中均衡。
如图1所示,这两种循环的理论效率极限随着压缩比增大而显著提高。理想的Otto循环被分解为三个阶段:1)等熵压缩,2)绝热的等体积燃烧,以及3)等熵膨胀至BDC处的原始体积。Otto循环的膨胀比等于其压缩比。理想的Atkinson循环也被分解为三个阶段:1)等熵压缩,2)绝热的等体积燃烧,以及3)等熵膨胀至原始的BDC压力(在该实例中等于一个大气压)。Atkinson循环的膨胀比总是大于其压缩比,如图1所示。尽管在给定压缩比下,Atkinson循环的理论效率极限高于Otto循环,但是它具有明显较低的能量密度(单位质量的功率)。在实际应用中,在效率和能量密度之间存在折衷。
目前市场上设计/制造良好的发动机通常获得介于其理论效率极限的70-80%之间的制动效率。图2(现有技术)中示出了几种市场上可购得的发动机的效率。确切地说,图2为理想的Otto循环效率极限与目前市场上可购得的几种发动机之间的比较。模型假设包括预混的、化学计算的、理想的气体甲烷和包括可变的性质的空气,离解的产物,并且在膨胀过程中均衡。有效的压缩比被定义为上止点(”TDC”)处的气体密度与BDC处的气体密度之比。有效的压缩比提供了在公平竞争环境下将增压发动机与自然吸气式发动机机作比较的手段。为使具有类似的良好设计的发动机具有高于50%的制动效率(即其理论效率的至少70%),按照Otto循环工作的发动机必须具有大于102的压缩比,按照Atkinson循环工作的发动机必须具有大于14的压缩比,其对应于54的膨胀比,如图1中所示。
在常规的曲柄滑块的往复式发动机(“常规发动机”)中,由于其内在结构,难以达到高的压缩/膨胀比(高于30)。图3(现有技术)中示出了一个示意图,其说明了常规发动机的结构以及限制它们达到高压缩比的问题。典型的内燃(“IC”)发动机具有0.5-1.2的缸径-行程比以及8-24的压缩比。(Heywood,J.(1988).InternalCombustionEngineFundamentals.McGraw-Hill)。在提高发动机的压缩比同时保持相同的缸径-行程比时,上止点(TDC)处的面容比增大,温度升高且压力变大。它具有三个主要后果:1)来自燃烧室的热传递增大,2)燃烧定相变得困难,以及3)摩擦和机械损耗变大。热传递增大的原因是热边界层在总体积中占据更大比例(即TDC处的高宽比变小)。高宽比被定义为缸径与燃烧室长度的比值。燃烧定相和实现完全燃烧比较困难的原因是在TDC处实现的体积小。增大的燃烧室压力直接转化成增大的力。这种大的力会使机械连杆和活塞环过载。
尽管自由活塞内燃机并不是新颖的,但是除了Sandia国家实验室的工作之外,它们通常不被利用或研制以用于实现高于30:1的压缩/膨胀比。参见第6,199,519号美国专利。围绕自由活塞发动机具有大量的文献和专利。然而,这种文献涉及具有短行程长度的自由活塞发动机,因此在追求高的压缩/膨胀比时具有与往复式发动机类似的问题-即燃烧控制问题和大的热传递损耗。自由活塞发动机构造可以分成三类:1)两个相对的活塞,单个燃烧室,2)单个活塞,两个燃烧室,以及3)单个活塞,单个燃烧室。图4(现有技术)是示出了三种常见的自由活塞发动机构造的示意图。单个活塞、双燃烧室的自由活塞发动机构造在压缩比上受限,因为在高压缩比下承受的大力不能被平衡,这会导致机械不稳定。
如前面提及的那样,在研究和专利文献中已经提出了几种自由活塞发动机。在所提出的大量自由活塞发动机中,(就我们所知)实际上只在物理上实现了几种。在西弗吉尼亚大学、Sandia国家实验室和瑞典的皇家技术研究所,Mikalsen和Roskilly的研究描述了自由活塞发动机。MikalsenR.,RoskillyA.Previewoffree-pistonenginehistoryandapplications.AppliedThermalEngineering,2007;27:2339-2352。据报导,在CzechTechnicalUniversity(http://www.lceproject.org/en/)、荷兰的INNASBV(http://www.innas.com/)和澳大利亚的PempekSystems(http://www.freepistonpower.com/)进行着其它研究努力。所有已知的物理上实现的自由活塞发动机具有短的行程长度,因此在追求高的压缩/膨胀比时具有与往复式发动机类似的问题-即燃烧控制问题和大的热传递损耗。此外,除了Sandia国家实验室的原型机(Aichlmayr.H.T..VanBlarigan.P.ModelingandExperimentalCharacterizationofaPermanentMagnetLinearAlernatorforFree-PostonEngineApplicationsASMEEnergySustainabilityConferenceSanFranciscoCA,July19-232009)和OPOC研制的原型机(InternationalPatentApplicationWO03/078835)之外,所有发动机均具有单个活塞、双燃烧室构造,且因而在压缩比上受限,因为在高压缩比下承受的大力不能被平衡,这会导致机械不稳定。
考虑到上述常规发动机的内在结构限制,数个制造商已经且继续尝试借助使用涡轮增压器或超级增压器(super-charger)达到高的有效压缩比来提高发动机效率。通过涡轮增压器超级增压器给发动机增压提供了在保持几何压缩比不变的同时实现高的有效压缩比的手段。给发动机增压不能避免因在TDC处和附近承受的高于正常值的压力和力导致的问题。因此,这些力会使发动机内的机械连杆(活塞销、活塞杆和曲轴)过载,从而引发机械故障,以及使压力激励的环过载,从而导致增大的摩擦、磨损或故障。给发动机增压还通常导致更大的热传递,因为在TDC处或附近(即温度最高时)花费的时间没有被减少到足以解释TDC处或附近承受的高于正常值的温度。
发明内容
本发明的各个实施例提供了高效率的线性内燃机。这些实施例通过利用与用于提取功的线性电磁电机结合的自由活塞发动机结构和一种创新的燃烧控制策略纠正了禁止常规发动机达到高的压缩/膨胀比的问题。文中公开的本发明提供了一种在适于分布式发电和/或混合动力电动汽车(5kW-5MW)的规模下将内燃机的热效率提高至50%以上的手段。
本发明的一个实施例涉及一种线性内燃机,其包括:具有汽缸壁和一对末端的汽缸,该汽缸包括设在汽缸中间部分的燃烧段;一对相对设置的活塞组件,其适于在汽缸内线性运动,各个活塞组件与另一活塞组件相对地设在燃烧段的一侧上,每个活塞组件包括弹簧杆和活塞,所述活塞包括位于燃烧段附近的实心前段以及中空后段,所述后段包括气弹簧,所述气弹簧在发动机的压缩行程期间直接提供至少一些压缩功;以及一对线性电磁电机,其适于直接将活塞组件的动能转换成电能,并且适于直接将电能转换成活塞组件的动能以在压缩行程期间提供压缩功,其中发动机包括高于50:1的可变膨胀比。
本发明的另一个实施例涉及一种线性内燃机,其包括:汽缸,所述汽缸具有汽缸壁及设在汽缸一端上的燃烧段;活塞组件,其适于在汽缸内线性运动,所述活塞组件包括弹簧杆和活塞,所述活塞包括位于燃烧段附近的实心前段以及中空后段,所述后段包括气弹簧,所述气弹簧在发动机的压缩行程期间直接提供至少一些压缩功;以及线性电磁电机,其适于直接将活塞组件的动能转换成电能,并且适于直接将电能转换成活塞组件的动能以在压缩行程期间提供压缩功;其中发动机包括高于50:1的可变膨胀比。
结合附图,本发明的其它特征和方面将从下列具体说明中变得显而易见,其中所述附图是以举例的方式说明了根据本发明实施例的特征。这种概括不期望限制本发明的范围,所述范围仅由所附权利要求来限定。
附图说明
根据一个或多个各种实施例,参见附图对本发明进行了详细描述。这些附图只是用于说明目的,并且仅仅描述本发明的典型或示例实施例。提供这些附图是为了方便读者理解本发明,不应被视为限制本发明的宽度、范围或应用。应当注意,出于简洁和方便图示的目的,这些附图不一定是成比例的。
图1(现有技术)是示出内燃机中常用的两种循环的理论效率极限的图表;
图2(现有技术)是将理想的Otto循环效率极限与目前市场上可购得的几种发动机之间作比较的图表;
图3(现有技术)为示意图,其说明了常规发动机的结构以及限制它们达到高压缩比的问题;
图4(现有技术)是示出三种常见的自由活塞发动机构造的示意图;
图5是示出来自斯坦福大学的原型机的实验数据与理想的Otto循环的效率极限之间的比较结果的图表;
图6为横截面图,其示出了根据本发明原理的内燃机的双活塞、双行程、一体的气弹簧的实施例;
图7是说明图6的双活塞的、一体的气弹簧的发动机的双行程活塞循环的示意图;
图8为横截面图,其示出了根据本发明原理的内燃机的双活塞、四行程、一体的气弹簧的实施例;
图9是说明根据本发明原理的图8的双活塞、一体的气弹簧的发动机的四行程活塞循环的示意图;
图10为横截面图,其示出了根据本发明原理的替换性的双活塞、双行程、单燃烧段、完全一体的气弹簧和线性电磁电机的发动机;
图11为横截面图,其示出了根据本发明原理的替换性的双活塞、双行程、单燃烧段、分开的气弹簧的发动机;
图12为横截面图,其示出根据本发明原理的单活塞、双行程、一体的气弹簧的发动机;
图13为示意图,其说明了根据本发明原理的图12的单活塞、双行程、一体的气弹簧的发动机的双行程活塞循环;
图14为横截面图,其示出了根据本发明原理的单活塞、四行程、一体的气弹簧的发动机;
图15为示意图,其说明了根据本发明原理的图14的单活塞、双行程、一体的气弹簧的发动机的四行程活塞循环;
图16为示意图,其示出了根据本发明原理的另一个单活塞、双行程、单燃烧段、完全一体的气弹簧和线性电磁电机的发动机;
图17为横截面图,其示出了根据本发明原理的另一个单活塞、双行程、单燃烧段、分开的气弹簧的发动机;
图18为横截面图,其示出了根据本发明实施例的IIGS结构的单活塞、双行程版本;
图19为横截面图,其示出了根据本发明原理的气弹簧杆的实施例;
图20为横截面图,其示出了根据本发明实施例的IIGS发动机的双活塞、双行程的版本。
这些附图不期望是详尽的或者将本发明限制为所公开的精确形式。应当理解,本发明可以在具有改进和改变的情况下实施,并且本发明只受权利要求及其等效的限制。
具体实施方式
本发明总体上涉及高效率的线性内燃机,其能够通过利用与用于提取功的线性电磁电机结合的自由活塞发动机结构和一种创新的燃烧控制策略达到高的压缩/膨胀比。
一种单发、单活塞的原型机已在斯坦福大学建立并运行。这种原型机验证了概念的可行性,并且获得了60%的指示工作效率。图5示出了某个实验结果的曲线。具体地,图5的图表示出了来自斯坦福大学的原型机的实验数据与理想的Otto循环的效率极限之间的比较。模型假设如下:0.3的当量比,#2柴油和包括可变的性质的空气,离解的产物,并且在膨胀过程中均衡。
本发明的各个实施例涉及自由活塞,线性内燃机的特征在于高于50%的热效率。在至少一个实施例中,发动机包括:(i)至少一个汽缸,(ii)每个汽缸至少一个活塞组件,其被设置用于在汽缸内线性位移,(iii)至少一个线性电磁电机,其直接将活塞组件的动能转换成电能,以及(iV)至少一个气体段,其在压缩行程期间提供压缩功的至少一些。此外,在一些构造中,内燃机具有下列物理特性:(i)高于50:1的可变膨胀比,(ii)等于或小于该膨胀比的可变压缩比,以及(iii)在TDC处的燃烧段长度为0.2-4英寸。然而应当注意,其它实施例可以包括上述特征和物理特性的各种组合。
图6为横截面图,其示出了内燃机100的双活塞、双行程、一体的气弹簧的实施例。该自由活塞的内燃机100通过一对线性电磁电机200直接将燃料中的化学能转换成电能。如这里所述的,术语“燃料”是指与氧化剂发生反应的物质。这种燃料包括但不限于:(i)碳氢化合物燃料,诸如天然气、沼气、汽油、柴油和生物柴油;(ii)酒精燃料,诸如乙醇、甲醇及丁醇;以及(iii)上述材料的混合物。文中所述发动机适于固定式发电和便携式发电(例如用在车辆中)。
图6示出了双活塞、双行程、一体的气弹簧的发动机100的一个实施例。具体地,发动机100包括一个汽缸105,其具有两个相对的活塞组件120,所述组件在汽缸105中间的燃烧段130(或燃烧室)处相遇。将燃烧段130置于发动机100中间使燃烧力平衡。各活塞组件120包括活塞125、活塞密封件135和活塞杆145。活塞组件120可以在汽缸105内自由地线性运动。活塞杆145沿轴承移动,并且通过固定于汽缸105上的气密密封件150得到密封。在所示实施例中,气密密封件150为活塞杆密封件。如这里所述的,术语“轴承”是指机器上的可由另一部件在其上移动、滑动或旋转的部件,包括但不限于:滑动轴承、挠性轴承、滚珠轴承、滚珠轴承、空气轴承和/或磁性轴承。此外,术语“周围”是指汽缸105的外部区域,包括但不限于:最接近的环境,辅助管路,和/或辅助设备。
进一步参见图6,活塞125、活塞杆145的背部与汽缸105之间的空间在本文中被称作驱动器段160。驱动器段160在本文中也可以被称作“气体段”、“气弹簧”或“气弹簧段”。各驱动器段160均通过活塞杆密封件150和活塞密封件135相对于周围和燃烧段130密封。在所示实施例中,驱动器段160中的气体在循环期间用作飞轮(即气弹簧)以在压缩行程期间提供压缩功的至少一些。相应地,本发明的一些实施例的特征是用于提供功的气弹簧。其它实施例包括用作电机的高效率线性交流发电机,并且不需要气弹簧来生成压缩功。
在一些实施例中,为了获得高的热效率,发动机100具有大于50:1的可变膨胀比。在另外的实施例中,这种可变的膨胀比大于75:1。在其它实施例中,这种可变的膨胀比大于100:1。此外,一些实施例的特征在于压缩比等于或小于膨胀比,且TDC处的燃烧段长度在0.2-4英寸之间。如这里所述的,术语“TDC处的燃烧段长度”为TDC处两个活塞125的正面之间的距离。
上述说明书要求发动机100的行程长度明显大于常规发动机中的,其中术语“行程长度”是指各个活塞125在TDC和BDC之间行进的距离。燃烧点火可以通过压缩点火和/或火花点火来实现。燃料能通过燃料注入器直接注入燃烧室130(“直接注入”),并且/或者在进气之前和/或期间与空气混合(“预混合注入”)。发动机100能利用液态和/或气态燃料在贫油燃烧、计量燃烧或富油燃烧下工作。
继续参见图6,汽缸105包括排气/注入器端口170,进气端口180、驱动器气体移除端口185、以及驱动器气体补充端口190,以用于与周围交换物质(固体、液体、气体或等离子体)。如这里所述的,术语“端口”包括允许汽缸105内部与其周围进行物质交换的任何开口或成组的开口(例如多孔材料)。一些实施例不需要图6中示出的所有端口。端口的数量和类型取决于发动机构造、注入策略和活塞循环(例如双行程或四行程活塞循环)。对于双活塞、双行程的实施例,排气/注入器端口170允许废弃气体和流体进入和离开汽缸,进气端口180用于空气和/或空气/燃料混合物的吸入,驱动器气体移除端口185用于驱动器气体的去除,驱动器气体补充端口190用于驱动器段160的补充气体的吸入。各个端口的位置不一定是要固定的。例如,在所示实施例中,排气/注入器端口170大体设在汽缸的中间点上。然而,作为替换方式,这些端口可远离中间点设在进气端口180附近。
上述端口可以是或可以不是通过阀打开和关闭的。术语“阀”能指任何致动的流量控制器或者其它用于选择性将物质传递通过开口的致动机构,其包括但不限于:球阀,塞阀,蝶形阀,阻风门,止回阀,闸阀,舌阀,活塞阀,提升阀,旋转阀,滑阀,电磁阀,两通阀,或者三通阀。阀可通过任何装置来致动,这些装置包括但不限于:机械的,电的,磁的,凸轮轴驱动的,液压的,或者气动的装置。在大多数情况下,在排气、驱动器气体移除及驱动器气体补充时需要端口。在直接注入为期望的点火策略的实施例中,还需要注入器端口和进气端口。在预混合式压缩点火或者预混合式火花点火为期望的燃烧策略的实施例中,还需要空气/燃料吸入端口。在采用压缩点火和/或火花点火的混合式预混合/直接注入策略为期望的燃烧策略的实施例中,还可能需要注入器端口和空气/燃料吸入端口。在所有的发动机构造中,来自上一循环的废气能与吸入的空气或空气/燃料混合物进行混合以用于当前进行的循环。这一过程称作废气再循环(EGR),并且能被用于缓和燃烧的定时和峰值温度。
进一步参见图6,发动机100还包括一对线性电磁电机(LEMs)200,以用于直接将活塞组件120的动能转换成电能。各个LEM200还能够直接将电能转换成活塞组件120的动能以便在压缩行程期间提供压缩功。如图所示,LEM200包括定子210和转换器220。确切地说,转换器220附连在活塞杆145上,并且在固定的定子210内线性运动。转换器220与定子210之间的体积称作气隙。LEM200可包括任意种构造。图6示出了一种构造,其中转换器220比定子210短。然而,转换器220能比定子210长,或者它们能具有大致相同的长度。此外,LEM200能为永磁性电机,感应式电机,开关磁阻电机,或者这三种电机的某种组合。定子210和转换器220能分别包括磁体、线圈、铁或者它们的某种组合。由于LEM200直接将活塞的动能转换成电能和将电能转换成动能(即无机械连杆),与常规的发动机-发电机构造相比,机械和摩擦损耗达到最小。
图6中示出的实施例采用双行程活塞循环工作。图7中示出的示意图说明了图6的双活塞的、一体的气弹簧的发动机100的双行程活塞循环250。如这里所述的,术语“活塞循环”是指其开始和结束时活塞125均处于大致相同构造下的活塞运动系列。一个常见的实例是四行程的活塞循环,其包括吸气行程、压缩行程、膨胀(功率)行程和排气行程。其它替换性行程能构成整个说明书所描述的活塞循环的一部分。双行程活塞循环的特征是具有膨胀(功率)行程和压缩行程。
如图7中所示,在膨胀行程和压缩行程之间在BDC附近,发动机排出燃烧产物(通过排气端口170),并且吸入空气或者空气/燃料混合物或者空气/燃料/燃烧产物混合物(通过进气端口180)。这一过程在本文中可被称作“呼吸”或者“在BDC处或附近呼吸”。本领域普通技术人员将意识到,在不背离本发明范围的情况下也能具有很多其它类型的端口和呼吸构造。当处于BDC处或其附近时,如果驱动器段要被用于提供压缩功,驱动器段160内的气压大于燃烧段130的压力,这使得活塞125朝向对方向内推动。驱动器段160中的气体能被用于提供实施压缩行程所需能量的至少一些。LEM200也可提供实施压缩行程所需能量的一些。
实施压缩行程所需能量的数量取决于期望的压缩比、压缩行程开始时燃烧段130的压力、以及活塞组件120的质量。压缩行程持续至燃烧开始,其发生在活塞125的速度为零或者接近零的时刻。活塞125的速度为零的点标明它们有关该循环的TDC位置。燃烧导致燃烧段130内的温度和压力升高,这使得活塞125朝向LEM200而向外。在膨胀行程期间,活塞组件120的动能的一部分通过LEM200转换成电能,动能的另一部分对驱动器段160中的气体作压缩功。膨胀行程持续至活塞125的速度为零,其标明它们有关该循环的BDC位置。
图7示出了一种用于呼吸的端口构造,其中进气端口180在BDC附近位于两个活塞的前方,排气端口170在TDC附近。存在各种可能的替换性的端口构造,诸如但不限于在BDC附近将排气端口170设在一个活塞125前方,以及在BDC附近将进气端口180设在另一活塞125前方-从而实现所谓单向流动的(uni-flow)扫气或者单向流动的呼吸。排气端口170和进气端口180的打开和关闭均独立进行控制。排气端口170和进气端口180的位置能被选择成使得压缩比和/或膨胀比的范围成为可能。循环中排气端口170和进气端口180被致动(打开和关闭)的时期能在循环期间和/或循环之间进行调节,以改变压缩比和/或膨胀比和/或压缩行程开始时留在燃烧段130中的燃烧产物的数量。将燃烧气体保留在燃烧段130中被称作残余气体收集(RGT),且能被用于缓和燃烧的定时及峰值温度。
在活塞循环期间,气体可能会转移通过燃烧段130和驱动器段160之间的活塞密封件135。这种气体转移被称作“渗漏”。渗漏的气体可能含有空气和/或燃料和/或燃烧产物。发动机100被设计成通过在每个驱动器段160中具有至少两个端口来管理渗透气体-一个端口185用于去除驱动器气体,另一个端口190用于提供补充的驱动器气体。驱动器气体的去除和补充驱动器气体的吸入独立进行控制,并且使得损耗最少,效率最高。
图7示出了一种用于交换驱动器气体的策略,其中驱动器气体的移除发生在膨胀行程期间某一点上,补充驱动器气体的吸入发生在压缩行程期间某一点上。驱动器气体的移除和吸入也能按照相反的行程顺序或者在同一行程期间发生。移除的驱动器气体能被用作当前进行的燃烧循环期间有关燃烧段130的进气的一部分。驱动器段160中的气体数量能进行调节以改变压缩比和/或膨胀比。膨胀比被定义为膨胀行程之后当活塞125具有零速度时燃烧段130的体积与压缩行程之后当活塞125具有零速度时燃烧段130的体积之比。压缩比被定义为当燃烧段130内的压力因活塞125的向内运动而开始增大时燃烧段130的体积与压缩行程之后当活塞125具有零速度时燃烧段130的体积之比。
通过在燃烧之前缓和(例如冷却)燃烧段130内气体的温度对燃烧进行优化控制。能通过预先冷却燃烧段的进气和/或在压缩行程期间冷却燃烧段130内的气体来实现温度控制。当燃烧段130达到使发动机100的热效率最大的体积时,达到最佳燃烧。这种体积被称作最佳体积,且它能出现在TDC之前或之后。根据燃烧策略(点火和注入策略),燃烧段的进气能是空气、空气/燃料混合物、或者空气/燃料/燃烧产物混合物(其中燃烧产物来自EGR和/或循环的驱动器气体),燃烧段130内的气体能是空气、空气/燃料混合物、或者空气/燃料/燃烧产物混合物(其中燃烧产物来自EGR和/或RGT和/或循环的驱动器气体)。
当压缩点火为期望的点火策略时,通过缓和燃烧段130内的气体温度使得它在最佳体积处达到自动点火温度来实现最佳燃烧。当火花点火为期望的点火策略时,通过缓和燃烧段130内的气体温度使得它在火花在最佳体积处点火之前保持低于其自动点火温度来实现最佳燃烧。从外部将火花控制成在最佳体积处点火。能通过制冷循环对燃烧段的进气进行预先降温。能通过将液体注入燃烧段130(所述液体随后蒸发)在压缩行程期间对燃烧段130内的气体进行冷却。该液体能是水和/或其它液体,诸如但不限于燃料或制冷剂。该液体能在注入燃烧段130之前进行冷却。
对于给定的发动机几何形状和排气及进气端口位置,能通过在燃烧之前改变空气/燃料比和/或燃烧段130中燃烧产物的数量和/或压缩比和/或膨胀比使得来自发动机100的功率输出在不同循环之间发生变化。在循环中空气/燃料比给定的情况下,能通过在燃烧之前改变燃烧段气体中存在的来自上一循环的燃烧产物的数量来控制峰值燃烧温度。燃烧之前的燃烧段气体中的燃烧产物能来自EGR和/或RGT和/或再循环的驱动器气体。通过利用有关活塞位置、活塞速度、燃烧段组分和汽缸压力的信息来调节LEMs和驱动器段的操作特性的控制策略来实现活塞同步。
图6和7的构造包括称作发动机100且由汽缸105定义的单个单元、活塞组件120和LEMs200。然而,很多单元能并行放置,其可统称为“发动机”。本发明的一些实施例是模块化的,因此它们能被设置成并行操作以使得能够根据终端用户的需要增大发动机的规模。此外,并非所有单元都需要为同一尺寸或者在相同条件(例如频率、化学计量、或呼吸)下工作。当这些单元并行工作时,存在在这些发动机之间进行一体化的可能,诸如但不限于单元之间的气体交换和/或单元的LEM200之间的反馈。
自由活塞结构允许较大且可变的压缩和膨胀比,同时在TDC处维持足够大的体积以使热传递最小化和实现充足的燃烧。此外,与活塞与曲柄轴机械联接时相比,活塞在TDC处或附近花费的时间更少些。这有助于最小化热传递(和使效率最大化),因为在最高温度处花费较少时间。此外,由于自由活塞结构不具有机械连杆,机械和摩擦损耗与常规发动机相比最小。大且可变的压缩和膨胀比、TDC处足够大的体积、通过LEM200将动能直接转换成电能、在TDC处和附近花费固有短的时间、以及控制燃烧的能力共同使得发动机100能够实现大于50%的热效率。
在操作过程中,发动机100内的损耗包括:燃烧损耗、热传递损耗、电转换损耗、摩擦损耗、和泄漏损耗。在本发明的一些实施例中,通过在高内能状态下实施燃烧使燃烧损耗最小化,这通过具有在缓和燃烧段温度的同时达到高压缩比的能力来实现。通过在燃烧发生时和附近具有足够大的体积使得热边界层占体积的一小部分来使热传递损耗最小化。通过采用自由活塞曲线(profile)而非曲柄滑块曲线在高温下花费较少时间也使热传递损耗最小化。由于没有机械连杆,使得摩擦损耗最小化。通过具有设计良好的活塞密封件和使用含有未燃烧的燃料作为下一燃烧循环的进气的一部分的驱动器气体使得泄漏损耗最小化。
如所提及的那样,上面关于图6和7描述的实施例包括双活塞、单燃烧段、双行程内燃机100。下面描述和在相应附图中示出的是几个替换实施例。这些实施例不期望形成限制。本领域普通技术人员将认识到,可采用各种改进和替换构造并且可进行其它改变,而不背离本发明的范围。除非以其它方式说明,下面描述的实施例的物理和操作特性与图6和7的实施例中描述的类似,且相似的元件已作了相应标记。此外,所有实施例均能如上述那样进行并行配置(即配置成多单元构造以按比例增加)。
图8示出了本发明的四行程实施例,其包括双活塞、四行程、一体的气弹簧的发动机300。图8的四行程发动机300与图6的双行程发动机100之间的主要物理差异涉及端口的位置。具体地,在四行程发动机300中,排气、注入器和进气端口370设在介于两个活塞125之间的汽缸105的中间点处和/或附近。
图9示出了有关图8的双活塞、一体的气弹簧的发动机300的四行程活塞循环400。四行程活塞循环的特征在于具有膨胀(功率)行程、排气行程、进气行程和压缩行程。膨胀行程在燃烧(其在最佳体积下进行)之后开始,并且持续至活塞125的速度为零,其标明它们有关该循环的膨胀行程BDC位置。
在膨胀行程期间,活塞组件120的动能的一部分通过LEM200转换成电能,动能的另一部分对驱动器段160中的气体作压缩功。当处于膨胀行程BDC和其附近时,如果驱动器段要提供压缩功的至少一些,驱动器段160中的气压大于燃烧段130中的气压,其将活塞125朝内推向汽缸105的中间点。在所示实施例中,驱动器段160中的气体能被用于提供实施排气行程所需要的能量的至少一些。在一些情况下,LEM200也可提供实施排气行程所需要的能量的一些。排气端口370在膨胀行程BDC处或附近的某一点上打开,这能在排气行程开始之前或之后。排气行程持续至活塞125的速度为零,其标明它们有关该循环的排气行程TDC位置。在活塞125达到它们的排气行程TDC位置之前,排气端口370在某一点上关闭。因此,至少一些燃烧产物保留在燃烧段130中。这一过程被称作残余气体收集。
进一步参见图9,在排气行程TDC处和附近,燃烧段130的压力大于驱动器段160的压力,这迫使活塞125向外。收集的残余气体用作气弹簧以提供实施进气行程所需要的能量的至少一些。LEM200也可提供实施进气行程所需要的能量的一些。在燃烧段130内的压力低于进气压力之后,进气端口370在进气行程期间在某一点处打开。进气行程持续至活塞125的速度为零,其标明它们有关该循环的进气行程BDC位置。有关给定循环的进气行程BDC位置不一定要与膨胀行程BDC位置相同。进气端口370在进气行程BDC处或附近的某一点上关闭。压缩行程持续至燃烧发生,这是活塞125的速度为零或接近零的时刻。活塞125的速度为零时所处的位置标明它们有关该循环的压缩行程TDC位置。在压缩行程TDC处和附近,驱动器段160中的气压大于燃烧段130中的气压,这向内推动活塞125。驱动器段160中的气体被用于提供实施压缩行程所需要的能量的至少一些。LEM200也能提供实施压缩行程所需要的能量的一些。
图9示出了一种用于交换驱动器气体的策略,其中驱动器气体的移除发生在膨胀行程期间某一点上,补充驱动器气体的吸入发生在压缩行程期间某一点上。如双行程实施例中那样,驱动器气体的移除和吸入也能按照相反的行程顺序或者在相同行程期间发生。然而,由于四行程实施例具有单独的排气行程,其中实施排气行程所需要的能量小于压缩行程,因此对驱动器段160中空气数量的调节可能需要不同的方法,其取决于在四行程期间LEM200被用于提供和提取多少能量。
图10示出了内燃机500的第二双活塞、双行程、完全气弹簧和一体的线性电磁电机的实施例。类似于图10的发动机100,发动机500包括汽缸105、两个相对的活塞组件520、以及位于汽缸105中间的燃烧段130。在所示构造中,各个活塞组件520包括两个活塞525、活塞密封件535和活塞杆545。不同于先前的实施例,活塞组件520和转换器620完全设在汽缸内,LEM600(包括定子610)设在汽缸105的外周周围。活塞组件520在汽缸105内自由地线性运动。汽缸105进一步包括排气/注入器端口170、进气端口180、驱动器气体移除端口185、以及驱动器气体补充端口190。进一步参见图10,该实施例能利用上面关于图7和9提出的相同方法采用双行程或四行程活塞循环工作。
图11示出了内燃机700的第三双活塞、双行程、单燃烧段、分开的气弹簧的实施例。类似于图6的发动机100,发动机700包括主汽缸105、两个相对的活塞组件120、以及位于汽缸705中间的燃烧段130。然而,所示发动机700与发动机100相比具有某些物理差异。确切地说,发动机700包括一对外部汽缸705,所述外部汽缸705包含有附加的活塞135,且LEMs200设在主汽缸105和外部汽缸705之间。每个外部汽缸705包括设在活塞125与汽缸705的远端之间的驱动器段710和设在活塞125与汽缸705的近端之间的驱动器后段(driverbacksection)720。此外,汽缸105包括设在活塞125与汽缸105的远端之间的一对燃烧后段730。驱动器后段720和燃烧后段730维持在大气压上或其附近。因此,驱动器后段720未被密封(即线性轴承740未设有气密密封件),而燃烧后段730被密封(即通过密封件150),但是具有用于移除渗漏气体的端口(即渗漏移除端口750)和用于补充气体的端口(即补充空气端口760)。在所示构造中,每个活塞组件120包括两个活塞125、活塞密封件135和活塞杆145。活塞组件120能在主汽缸105和外部汽缸705之间自由地线性运动,如图11所描绘的那样。活塞杆145沿轴承移动,并且通过固定于主汽缸105上的气密密封件150得到密封。汽缸105进一步包括排气/注入器端口170和进气端口180。然而,驱动器气体移除端口185和驱动器气体补充端口190设在一对外部汽缸705上,所述汽缸包含各个活塞组件120的两个活塞125中的一个。进一步参见图11,该实施例能利用上面关于图7和9提出的相同方法采用双行程或四行程活塞循环工作。
图12示出了单活塞、双行程、一体的气弹簧的发动机1000的一个实施例。具体地,发动机1000包括竖直设置的汽缸105,其具有活塞组件120,所述组件的尺寸被设计成在汽缸105的底端附近响应于燃烧段130(或燃烧室)内的反应在汽缸105内移动。在竖直设置的汽缸的底端处设置冲击板230以在燃烧期间提供稳定性和抗冲击性。活塞组件120包括活塞125、活塞密封件135及活塞杆145。活塞组件120在汽缸105内自由地线性运动。活塞杆145沿轴承移动,并且通过固定于汽缸105上的气密密封件150得到密封。在所示实施例中,气密密封件150为活塞杆密封件。
进一步参见图12,活塞125、活塞杆145的背部与汽缸105之间的空间在本文中被称作驱动器段160。驱动器段160在本文中也可被称作“气弹簧”或“气弹簧段”。驱动器段160通过活塞杆密封件150和活塞密封件135与周围和燃烧段130密封。在所示实施例中,驱动器段160中的气体在循环期间用作飞轮(即气弹簧)以在压缩行程期间提供压缩功的至少一些。相应地,本发明的一些实施例的特征是用于提供功的气弹簧。其它实施例包括用作电机的高效率线性交流发电机,并且不需要气弹簧来生成压缩功。
在一些实施例中,为了获得高的热效率,发动机1000具有大于50:1的可变膨胀比。在另外的实施例中,这种可变的膨胀比大于75:1。在其它实施例中,这种可变的膨胀比大于100:1。此外,一些实施例的特征在于压缩比等于或小于膨胀比,且TDC处的燃烧段长度在0.1-2英寸之间。如这里所述的,术语“TDC处的燃烧段长度”为燃烧段头部与活塞125的正面之间的距离。
上述说明书要求发动机1000的行程长度明显大于常规发动机中的,其中术语“行程长度”是指活塞125在TDC和BDC之间行进的距离。行程为活塞在TDC和BDC之间行进的距离。燃烧点火能通过压缩点火和/或火花点火来实现。燃料能通过燃料注入器直接注入燃烧室130(“直接注入”),并且/或者在进气之前和/或期间与空气混合(“预混合注入”)。发动机1000能利用液态和/或气态燃料在贫油燃烧、计量燃烧或富油燃烧下工作。
继续参见图12,汽缸105包括排气/注入器端口170,进气端口180、驱动器气体移除端口185、以及驱动器气体补充端口190,以用于与周围交换物质(固体、液体、气体或等离子体)。如这里所述的,术语“端口”包括允许汽缸105内部与其周围进行物质交换的任何开口或带开口的装置(例如多孔材料)。一些实施例不需要图12中示出的所有端口。端口的数量和类型取决于发动机构造、注入策略和活塞循环(例如双行程或四行程活塞循环)。对于单活塞、双行程的实施例,排气/注入器端口170允许废弃气体和流体进入和离开汽缸,进气端口180用于空气和/或空气/燃料混合物的吸入,驱动器气体移除端口185用于驱动器气体的去除,驱动器气体补充端口190用于驱动器段160的补充气体的吸入。各个端口的位置不一定是要固定的。例如,在所示实施例中,排气/注入器端口170近似设在汽缸的中间点上。然而,作为替换方式,这些端口可远离中间点设在进气端口180附近。
进一步参见图12,发动机1000还包括线性电磁电机(LEM)200,以用于直接将活塞组件120的动能转换成电能。LEM200还能够直接将电能转换成活塞组件120的动能以便在压缩行程期间提供压缩功。如图所示,LEM200包括定子210和转换器220。确切地说,转换器220附连在活塞杆145上,并且在固定的定子210内线性运动。转换器220与定子210之间的体积称作气隙。LEM200可包括任意种构造。图6示出了一种构造,其中转换器220比定子210短。然而,转换器220能比定子210长,或者它们能具有大致相同的长度。此外,LEM200能为永磁性电机,感应式电机,开关磁阻电机,或者这三种电机的某种组合。定子210和转换器220能分别包括磁体、线圈、铁或者它们的某种组合。由于LEM200直接将活塞的动能转换成电能和将电能转换成动能(即无机械连杆),与常规的发动机-发电机构造相比,机械和摩擦损耗达到最小。
图12中示出的实施例采用双行程活塞循环工作。图13中示出的示意图说明了图12的单活塞一体的气弹簧的发动机1000的双行程活塞循环1250。在膨胀行程和压缩行程之间在BDC附近,发动机排出燃烧产物(通过排气端口170),并且吸入空气或者空气/燃料混合物或者空气/燃料/燃烧产物混合物(通过进气端口180)。这一过程在本文中可被称作“呼吸”或者“在BDC处或附近呼吸”。本领域普通技术人员将意识到,在不背离本发明范围的情况下也能具有很多其它类型的端口和呼吸构造。当处于BDC处或其附近时,如果驱动器段要被用于提供压缩功,驱动器段160内的气压大于燃烧段130的压力,这使得活塞125朝向对方向内推动。驱动器段160中的气体能被用于提供实施压缩行程所需能量的至少一些。LEM200也可提供实施压缩行程所需能量的一些。
实施压缩行程所需能量的数量取决于期望的压缩比、压缩行程开始时燃烧段130的压力、以及活塞组件120的质量。压缩行程持续至燃烧开始,其发生在活塞125的速度为零或者接近零的时刻。活塞125的速度为零的点标明它们有关该循环的TDC位置。燃烧导致燃烧段130内的温度和压力升高,这使得活塞125朝向LEM200而向外。在膨胀行程期间,活塞组件120的动能的一部分通过LEM200转换成电能,动能的另一部分对驱动器段160中的气体作压缩功。膨胀行程持续至活塞125的速度为零,其标明它们有关该循环的BDC位置。
图13示出了一种用于呼吸的端口构造1300,其中进气端口180在BDC附近位于活塞前方,排气端口170在TDC附近。排气端口170和进气端口180的打开和关闭均独立进行控制。排气端口170和进气端口180的位置能被选择成使得压缩比和/或膨胀比的范围成为可能。循环中排气端口170和进气端口180被致动(打开和关闭)的时期能在循环期间和/或循环之间进行调节,以改变压缩比和/或膨胀比和/或压缩行程开始时留在燃烧段130中的燃烧产物的数量。将燃烧气体保留在燃烧段130中被称作残余气体收集(RGT),且能被用于缓和燃烧的定时及峰值温度。
在活塞循环期间,气体可能会转移通过燃烧段130和驱动器段160之间的活塞密封件135。这种气体转移被称作“渗漏”。渗漏的气体可能含有空气和/或燃料和/或燃烧产物。发动机1000被设计成通过在驱动器段160中具有至少两个端口来管理渗透气体-一个端口185用于去除驱动器气体,另一个端口190用于提供补充的驱动器气体。驱动器气体的去除和补充驱动器气体的吸入独立进行控制,并且使得损耗最少,效率最高。
图13示出了一种用于交换驱动器气体的策略,其中驱动器气体的移除发生在膨胀行程期间某一点上,补充驱动器气体的吸入发生在压缩行程期间某一点上。驱动器气体的移除和吸入也能按照相反的行程顺序或者在同一行程期间发生。移除的驱动器气体能被用作当前进行的燃烧循环期间有关燃烧段130的进气的一部分。驱动器段160中的气体数量能进行调节以改变压缩比和/或膨胀比。膨胀比被定义为膨胀行程之后当活塞125具有零速度时燃烧段130的体积与压缩行程之后当活塞125具有零速度时燃烧段130的体积之比。压缩比被定义为当燃烧段130内的压力因活塞125的向内运动而开始增大时燃烧段130的体积与压缩行程之后当活塞125具有零速度时燃烧段130的体积之比。
图12和13的构造包括称作发动机1000且由汽缸105定义的单个单元、活塞组件120和LEM200。然而,很多单元能并行放置,其可统称为“发动机”。本发明的一些实施例是模块化的,因此它们能被设置成并行操作以使得能够根据终端用户的需要增大发动机的规模。此外,并非所有单元都需要为同一尺寸或者在相同条件(例如频率、化学计量、或呼吸)下工作。当这些单元并行工作时,存在在这些发动机之间进行一体化的可能,诸如但不限于单元之间的气体交换和/或单元的LEM200之间的反馈。
如所提及的那样,上面关于图12和13描述的实施例包括单活塞、单燃烧段、双行程内燃机1000。下面描述和在相应附图中示出的是几个替换实施例。这些实施例不期望形成限制。本领域普通技术人员将认识到,可采用各种改进和替换构造,并且可进行其它改变,而不背离本发明的范围。除非以其它方式说明,下面描述的实施例的物理和操作特性与图12和13的实施例中描述的类似,且相似的元件已作了相应标记。此外,所有实施例均能如上述那样进行并行配置(即配置成多单元构造以按比例增加)。
图14示出了本发明的四行程实施例,其包括单活塞、四行程、一体的气弹簧的发动机1400。图14的四行程发动机1400与图12的双行程发动机1000之间的主要物理差异涉及端口的位置。具体地,在四行程发动机1400中,排气、注入器和进气端口370设在汽缸105的底部处和/或附近靠近冲击板230。
图15示出了有关图14的单活塞、一体的气弹簧的发动机1400的四行程活塞循环1500。四行程活塞循环的特征在于具有膨胀(功率)行程、排气行程、进气行程和压缩行程。膨胀行程在燃烧(其在最佳体积下进行)之后开始,并且持续至活塞125的速度为零,其标明它们有关该循环的膨胀行程BDC位置。
在膨胀行程期间,活塞组件120的动能的一部分通过LEM200转换成电能,动能的另一部分对驱动器段160中的气体作压缩功。当处于膨胀行程BDC和其附近时,如果驱动器段要提供压缩功的至少一些,驱动器段160中的气压大于燃烧段130中的气压,其将活塞125朝内推向汽缸105的中间点。在所示实施例中,驱动器段160中的气体能被用于提供实施排气行程所需要的能量的至少一些。在一些情况下,LEM200也可提供实施排气行程所需要的能量的一些。排气端口370在膨胀行程BDC处或附近的某一点上打开,这能在排气行程开始之前或之后。排气行程持续至活塞125的速度为零,其标明它们有关该循环的排气行程TDC位置。在活塞125达到它们的排气行程TDC位置之前,排气端口370在某一点上关闭。因此,至少一些燃烧产物保留在燃烧段130中。这一过程被称作残余气体收集。
进一步参见图15,在排气行程TDC处和附近,燃烧段130的压力大于驱动器段160的压力,这将活塞125向上推动。收集的残余气体用作气弹簧以提供实施进气行程所需要的能量的至少一些。LEM200也可提供实施进气行程所需要的能量的一些。在燃烧段130内的压力低于进气压力之后,进气端口370在进气行程期间在某一点处打开。进气行程持续至活塞125的速度为零,其标明它们有关该循环的进气行程BDC位置。有关给定循环的进气行程BDC位置不一定要与膨胀行程BDC位置相同。进气端口370在进气行程BDC处或附近的某一点上关闭。压缩行程持续至燃烧发生,这是活塞125的速度为零或接近零的时刻。活塞125的速度为零时所处的位置标明它们有关该循环的压缩行程TDC位置。在压缩行程TDC处和附近,驱动器段160中的气压大于燃烧段130中的气压,这向下推动活塞125。驱动器段160中的气体被用于提供实施压缩行程所需要的能量的至少一些。LEM200也可提供实施压缩行程所需要的能量的一些。
图15示出了一种用于交换驱动器气体的策略,其中驱动器气体的移除发生在膨胀行程期间某一点上,补充驱动器气体的吸入发生在压缩行程期间某一点上。如双行程实施例中那样,驱动器气体的移除和吸入也能按照相反的行程顺序或者在相同行程期间发生。然而,由于四行程实施例具有单独的排气行程,其中实施排气行程所需要的能量小于压缩行程,因此对驱动器段160中空气数量的调节可能需要不同的方法,其取决于在四行程期间LEM200被用于提供和提取多少能量。
图16示出了内燃机1600的第二单活塞、双行程、完全气弹簧和一体的线性电磁电机的实施例。发动机1600包括汽缸105、活塞组件520、以及燃烧段130。在所示构造中,活塞组件520包括两个活塞525、活塞密封件535和活塞杆545。不同于先前的实施例,活塞组件120和转换器620完全设在汽缸内,LEM600(包括定子610)设置为围绕汽缸105的外周。活塞组件520能在汽缸105内自由地线性运动。汽缸105进一步包括排气/注入器端口170、进气端口180、驱动器气体移除端口185、以及驱动器气体补充端口190。进一步参见图16,该实施例能利用上述相同方法采用双行程或四行程活塞循环工作。
图17示出了内燃机1700的第三双活塞、双行程、单燃烧段、分开的气弹簧的实施例。类似于发动机1000,发动机1700包括主汽缸105、活塞组件120、以及燃烧段130。然而,所示发动机1700与发动机1000相比具有某些物理差异。确切地说,发动机1700包括外部汽缸705,其包含有附加的活塞125,且LEM200设在主汽缸105和外部汽缸705之间。外部汽缸705包括设在活塞125与汽缸705的远端之间的驱动器段710和设在活塞135与汽缸705的近端之间的驱动器后段720。此外,汽缸105包括设在活塞135与汽缸105的远端之间的燃烧后段730。驱动器后段720和燃烧后段730维持在大气压上或其附近。因此,驱动器后段720未被密封(即线性轴承740未设有气密密封件),而燃烧后段730被密封(即通过密封件150),但是具有用于移除渗漏气体的端口(即渗漏移除端口750)和用于补充气体的端口(即补充空气端口760)。在所示构造中,活塞组件120包括两个活塞125、活塞密封件135和活塞杆145。活塞组件120能在主汽缸105和外部汽缸705之间自由地线性运动。活塞杆145沿轴承移动,并且通过固定于主汽缸105上的气密密封件150得到密封。汽缸105进一步包括排气/注入器端口170和进气端口180。然而,驱动器气体移除端口185和驱动器气体补充端口190设在外部汽缸705上,所述外部汽缸包含活塞组件120的两个活塞125中的一个。该实施例能利用上述相同的方法采用双行程或四行程活塞循环工作。
上面公开的实施例包括单活塞和双活塞构造,其包括:(i)具有分开的线性电磁电机的一体的气弹簧(图6-9和12-15);(ii)完全一体的气弹簧和线性电磁电机(图10和16);和(iii)分开的气弹簧和线性电磁电机(图11和17)。图18-20示出了以一体的内部气弹簧以特征的本发明的其它实施例,其中气弹簧一体地形成在活塞内部,线性电磁电机(LEM)关于燃烧室汽缸独立。表1概括了文中描述的四种结构之间的主要区别,其包括:
表1.四种结构之间的主要区别的概括
一体的内部气弹簧
如图18-20中所示和表1中所概括的,一体的内部气弹簧(IIGS)结构在长度上类似于图6-9和12-15中所示的具有独立LEM的一体的气弹簧结构。然而,IIGS消除了有关渗透气体从燃烧段进入气弹簧的问题,这也发生在完全一体的气弹簧和LEM结构中。
图18为横截面图,其示出了根据本发明实施例的IIGS结构的单活塞、双行程版本。诸如燃烧段130等很多部件均类似于之前实施例(例如图12)中的部件,并且进行相应地标记。发动机1800包括竖直设置的汽缸105,其具有活塞组件1820,所述活塞组件的尺寸被设计成在汽缸105的底端附近响应于燃烧段130内的反应而在汽缸105内移动。冲击板可设在竖直设置的汽缸的底端上以在燃烧过程中提供稳定性和抗冲击性。活塞组件1820包括活塞1830、活塞密封件1835和弹簧杆1845。活塞组件1820在汽缸105内自由地线性运动。活塞杆1845沿轴承移动,并且通过固定于汽缸105上的气密密封件150得到密封。在所示实施例中,气密密封件150为活塞杆密封件。汽缸105包括排气/注入器端口1870、1880,以用于空气、燃料、废气、空气/燃料混合物和/或空气/废气/燃料混合物的吸入,燃烧产物的排出,和/或注入器。一些实施例不需要图18中示出的所有端口。端口的数量和类型取决于发动机构造、注入策略和活塞循环(例如双行程或四行程活塞循环)。
在所示实施例中,发动机1800还包括LEM1850(包括定子210和磁体1825),以用于直接将活塞组件1820的动能转换成电能。LEM1850还能够直接将电能转换成活塞组件1820的动能以便在压缩行程期间提供压缩功。LEM1850能为永磁性电机,感应式电机,开关磁阻电机,或者这三种电机的某种组合。定子210能包括磁体、线圈、铁或者它们的某种组合。由于LEM1850直接将活塞的动能转换成电能和将电能转换成动能(即无机械连杆),与常规的发动机-发电机构造相比,机械和摩擦损耗达到最小。
进一步参见图18,活塞1820包括实心的前段(燃烧器侧)和中空后段(气弹簧侧)。位于活塞正面和弹簧杆1845之间的、活塞1830的中空段的内侧区域包括用作气弹簧160的气体,其提供实施压缩行程所需要的功的至少一些。活塞1830在燃烧段130和LEM1850的定子210内线性运动。活塞的运动由轴承1860、1865引导,所述轴承能是整体轴承、液压轴承和/或空气轴承。在所示实施例中,发动机1800既包括外部轴承1860,又包括内部轴承1865。具体地,外部轴承1860设在燃烧段130和LEM1850之间,内部轴承1865设在活塞1830的中空段的内侧上。外部轴承1860从外部固定,并且不随活塞1830运动。内部轴承1865固定在活塞1830上,并且抵抗弹簧杆1845随着活塞1830运动。
继续参见图18,弹簧杆1845用作气弹簧160的一个面,并且从外部固定。弹簧杆1845具有设在其末端处或附近的至少一个密封件1885,其起到将气体保持在气弹簧段160内的目的。磁体1825附连在活塞1830的背部,并且随着活塞1830在LEM1850的定子210内线性运动。活塞1830具有密封件1835以将气体保持在各自的段中。所示实施例包括:(i)前部密封件,其在活塞1830的前段处或附近固定于活塞1830上以阻止气体从燃烧段130发生转移;和(ii)后部密封件,其固定在汽缸105上且阻止吸入气体和/或渗透气体转移至周围。
图19为横截面图,其示出了根据本发明原理的气弹簧杆1845的实施例1900。确切地说,弹簧杆1845包括中心管腔1910,其允许质量在气弹簧段160至与周围连通的储存器段1920之间转移。与周围的连通通过阀1930进行控制。气弹簧1845中的物质数量受到调节以控制气弹簧1845内的压力,使得存在充足的压缩功以用于下一活塞循环。
图20为横截面图,其示出了根据本发明实施例的IIGS发动机2000的双活塞、双行程的版本。该双活塞实施例的大部分元件与图18的单活塞实施例中的类似,且相似的元件进行相应地标记。此外,该单活塞和双活塞的实施例的工作特性类似于先前实施例中所描述的,包括线性交流发电机、呼吸、燃烧策略等的所有方面。
尽管上面已经描述了本发明的各种实施例,但是应理解它们只是以举例而非限制性方式给出。同样地,各个示意图能描绘有关本发明的示例结构或其它构造,这样作是为了帮助理解可包含在本发明中的特征和功能。本发明不限于所示的示例性结构或构造,而是期望的特征能利用各种替换性结构和构造来实现。实际上,将对于本领域技术人员显而易见的是替换性的功能、逻辑或物理分区(partitioning)及构造如何能够被实现以实现本发明的其它特征。而且,除了文中所描述的,还有大量不同的组成模块名能被用于各种分区。此外,关于流程图、操作性描述和方法权利要求,文中给出的步骤顺序不应要求各种实施例被实现成按照相同顺序实现所列举的功能,除非上下文中有特别要求。
尽管上文中已就各种示例性实施例和实施方式对本发明进行了描述,但是应理解,在这些个别实施例中的一个或多个中描述的各种特征、方面和功能在其应用上均不限于对它们进行描述时所涉及的特定实施例,而是作为替换能单独或在各种组合下被用于本发明的其它实施例中的一个或多个,无论这些实施例是否进行了描述,以及这些特征是否作为所描述的实施例的一部分被提出。因此,本发明的宽度及范围应当不受上述任何示例性实施例的限制。
除非有特别说明,本文档中使用的术语和短语及变型应作开放式而非限制性解释。作为上述内容的示例:术语“包括”应被理解成“包括但不限于”或类似之意;术语“示例”被用于提供讨论事项的示例性事例,而非它的详尽性或限制性列举;术语“a”或“an”应被解释成“至少一个”、“一个或多个”或类似之意;以及诸如“常规的”、“传统的”、“一般的”、“标准的”、“已知的”及类似含义的术语等形容词不应被解释成将所描述的事项限制至给定的时期或者给定时间上有效的事项,而是应当被视为包括可以是现在或者将来任意时间上有效或已知的普通、传统、一般或标准技术。同样地,在本文档提及对于本领域普通技术人员显而易见或已知的技术的情况下,这些技术包括那些现在或将来任意时间上对于本领域普通技术人员显而易见或已知的。
某些场合下扩大性单词和短语(诸如“一个或多个”、“至少”、“但不限于”或其它类似短语)的存在不应被解读成表明在可能没有这种扩大性短语的场合中期望或者要求较窄的例子。术语“模块”的使用并不暗示作为模块的一部分进行描述或要求的部件或功能均配置在共同的包装中。实际上,模块的各种部件中的任何一个或全部,无论是控制逻辑还是其它部件,均可以结合在单个包装或者独立保持,并且可以进一步分配在多个分组或者包装或者多个位置上。
此外,文中提出的各个实施例均是关于示例性的方框图、流程图或其它视图进行描述的。正如本领域普通技术人员在阅读本文档之后显而易见的那样,所示实施例及其各种替换实施例均可以不受所示实例限制地实施。例如,方框图及其附图说明不应被解释成要求特定的结构或构造。

Claims (18)

1.一种线性燃烧式发动机,所述线性燃烧式发动机包括:
汽缸,所述汽缸包括燃烧段;
所述汽缸外部的壳体,所述壳体包括驱动器段,所述驱动器段包括的气体用作飞轮以提供用于压缩行程的至少一部分能量;
活塞组件,所述活塞组件包括:
第一活塞,所述第一活塞包括与所述燃烧段接触的第一活塞面,和
第二活塞,所述第二活塞刚性地联接到所述第一活塞并且包括与所述驱动器段接触的第二活塞面,以及
线性电磁电机,所述线性电磁电机将所述活塞组件的动能转换成电能。
2.如权利要求1所述的线性燃烧式发动机,其中,所述活塞组件是自由活塞组件。
3.如权利要求1所述的线性燃烧式发动机,其中,所述线性燃烧式发动机构造成实现小于或等于可变膨胀比的可变压缩比。
4.如权利要求1所述的线性燃烧式发动机,还包括用于在所述驱动器段中补充气体的端口。
5.如权利要求1所述的线性燃烧式发动机,其中,所述线性电磁电机还包括:
联接到所述活塞组件的转换器;和
定子,所述定子基于所述转换器的相对运动将所述活塞组件的动能转换成电能。
6.如权利要求5所述的线性燃烧式发动机,其中,所述定子设置在所述汽缸和所述壳体之间,并且所述活塞组件还包括刚性地联接所述第一活塞和所述第二活塞的活塞杆,所述活塞杆延伸到所述汽缸和所述壳体中。
7.如权利要求6所述的线性燃烧式发动机,其中,所述活塞组件还包括围绕所述活塞杆的气密密封件,所述气密密封件构造成将所述汽缸的内部与所述壳体的外部密封隔离。
8.如权利要求1所述的线性燃烧式发动机,其中,所述线性电磁电机选自如下的组:永磁性电机、感应式电机、开关磁阻式电机、以及它们的组合。
9.如权利要求1所述的线性燃烧式发动机,其中:
所述壳体是第一壳体;
所述驱动器段是第一驱动器段;
所述活塞组件是第一活塞组件;并且
所述线性电磁电机是第一线性电磁电机,所述线性燃烧式发动机还包括:
所述汽缸外部的第二壳体,所述第二壳体包括第二驱动器段,所述第二驱动器段包括的气体用作飞轮以提供用于压缩行程的至少一部分能量;
第二活塞组件,所述第二活塞组件包括:
第三活塞,所述第三活塞包括与所述燃烧段接触的第三活塞面,和
第四活塞,所述第四活塞刚性地联接到所述第三活塞并且包括与所述第二驱动器段接触的第四活塞面,以及
第二线性电磁电机,所述第二线性电磁电机将所述第二活塞组件的动能转换成电能。
10.如权利要求9所述的线性燃烧式发动机,其中,所述第一活塞组件是第一自由活塞组件,并且所述第二活塞组件是第二自由活塞组件。
11.如权利要求9所述的线性燃烧式发动机,其中:
所述第一线性电磁电机选自如下的组:永磁性电机、感应式电机、开关磁阻式电机、以及它们的组合;并且
所述第二线性电磁电机选自如下的组:永磁性电机、感应式电机、开关磁阻式电机、以及它们的组合。
12.一种线性燃烧式发动机,所述线性燃烧式发动机包括:
主汽缸,所述主汽缸包括燃烧段;
外部汽缸,所述外部汽缸包括驱动器段,所述驱动器段构造成在所述线性燃烧式发动机的压缩行程期间提供至少一部分压缩功;
构造成线性行进的活塞组件,所述活塞组件包括:
在所述主汽缸中处于上止点位置和下止点位置之间的第一活塞,
在所述外部汽缸中的第二活塞,和
活塞杆,所述活塞杆联接到所述第一活塞和所述第二活塞;
构造成与所述活塞组件一起运动的转换器;以及
定子,所述定子构造成:
基于所述转换器的相对运动将所述活塞组件的动能转换成电能,以及
将电能转换成所述活塞组件的动能。
13.如权利要求12所述的线性燃烧式发动机,其中,所述线性燃烧式发动机构造成实现小于或等于可变膨胀比的可变压缩比。
14.如权利要求12所述的线性燃烧式发动机,其中:
所述定子设置在所述主汽缸和所述外部汽缸之间;并且
所述活塞杆延伸到所述主汽缸和所述外部汽缸中。
15.如权利要求14所述的线性燃烧式发动机,其中,所述主汽缸包括围绕所述活塞杆的气密密封件,所述气密密封件构造成将所述主汽缸的内部与所述主汽缸的外部密封隔离。
16.如权利要求12所述的线性燃烧式发动机,其中,所述转换器和所述定子形成线性电磁电机,所述线性电磁电机选自如下的组:永磁性电机、感应式电机、开关磁阻式电机、以及它们的组合。
17.如权利要求12所述的线性燃烧式发动机,还包括一个或多个端口,所述一个或多个端口构造成允许在所述主汽缸的内部与所述主汽缸的外部之间进行物质交换。
18.如权利要求12所述的线性燃烧式发动机,其中:
所述外部汽缸是第一外部汽缸
所述活塞组件是第一活塞组件;
所述活塞杆是第一活塞杆;
所述上止点位置是第一上止点位置;并且
所述下止点位置是第一下止点位置,
所述线性燃烧式发动机还包括:
第二外部汽缸,所述第二外部汽缸包括第二驱动器段;
构造成线性行进并且与所述第一活塞组件相对的第二活塞组件,所述第二活塞组件包括:
在所述主汽缸中处于第二上止点位置和第二下止点位置之间的第三活塞,
在所述第二外部汽缸中的第四活塞,和
第二活塞杆,所述第二活塞杆联接到所述第三活塞和所述第四活塞;
联接到所述第二活塞组件的第二转换器;以及
第二定子,所述第二定子构造成基于所述第二转换器的相对运动将所述第二活塞组件的动能转换成电能。
CN201510762767.2A 2010-11-23 2011-11-17 高效率的线性内燃机 Pending CN105317543A (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US12/953,277 US8413617B2 (en) 2010-11-23 2010-11-23 High-efficiency two-piston linear combustion engine
US12/953,270 2010-11-23
US12/953,277 2010-11-23
US12/953,270 US20120126543A1 (en) 2010-11-23 2010-11-23 High-efficiency single-piston linear combustion engine
US13/102,916 US8453612B2 (en) 2010-11-23 2011-05-06 High-efficiency linear combustion engine
US13/102,916 2011-05-06
US13/298,206 2011-11-16
US13/298,206 US8662029B2 (en) 2010-11-23 2011-11-16 High-efficiency linear combustion engine
CN201180062604.3A CN103299046B (zh) 2010-11-23 2011-11-17 高效率的线性内燃机

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201180062604.3A Division CN103299046B (zh) 2010-11-23 2011-11-17 高效率的线性内燃机

Publications (1)

Publication Number Publication Date
CN105317543A true CN105317543A (zh) 2016-02-10

Family

ID=46063127

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510762767.2A Pending CN105317543A (zh) 2010-11-23 2011-11-17 高效率的线性内燃机
CN201180062604.3A Active CN103299046B (zh) 2010-11-23 2011-11-17 高效率的线性内燃机

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201180062604.3A Active CN103299046B (zh) 2010-11-23 2011-11-17 高效率的线性内燃机

Country Status (15)

Country Link
US (8) US8662029B2 (zh)
EP (1) EP2643573B1 (zh)
JP (6) JP2013543084A (zh)
CN (2) CN105317543A (zh)
BR (1) BR112013012536B8 (zh)
CA (2) CA2817970C (zh)
DK (1) DK2643573T3 (zh)
ES (1) ES2939241T3 (zh)
FI (1) FI2643573T3 (zh)
HU (1) HUE060964T2 (zh)
PL (1) PL2643573T3 (zh)
PT (1) PT2643573T (zh)
RU (3) RU2577425C2 (zh)
TW (1) TWI583862B (zh)
WO (1) WO2012071239A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106285783A (zh) * 2015-05-19 2017-01-04 高阳 水平对置气缸对置活塞往复汽轮机气马达直线发电机
CN110529245A (zh) * 2019-09-20 2019-12-03 山东休普动力科技股份有限公司 一种单缸对置双活塞式自由活塞直线发电机

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006056349A1 (de) * 2006-11-29 2008-06-05 Gerhard Schilling Vorrichtung zur Umwandlung thermodynamischer Energie in elektrische Energie
US8662029B2 (en) * 2010-11-23 2014-03-04 Etagen, Inc. High-efficiency linear combustion engine
US9169797B2 (en) 2011-12-29 2015-10-27 Etagen, Inc. Methods and systems for managing a clearance gap in a piston engine
US9097203B2 (en) 2011-12-29 2015-08-04 Etagen, Inc. Methods and systems for managing a clearance gap in a piston engine
US20130167797A1 (en) 2011-12-29 2013-07-04 Matt Svrcek Methods and systems for managing a clearance gap in a piston engine
US9004038B2 (en) 2011-12-29 2015-04-14 Etagen, Inc. Methods and systems for managing a clearance gap in a piston engine
US8720317B2 (en) 2011-12-29 2014-05-13 Etagen, Inc. Methods and systems for managing a clearance gap in a piston engine
US8794200B2 (en) * 2012-11-21 2014-08-05 GM Global Technology Operations LLC Engine assembly with phasing mechanism on eccentric shaft for variable cycle engine
US9038581B2 (en) 2013-02-07 2015-05-26 GM Global Technology Operations LLC Linear alternator assembly with four-stroke working cycle and vehicle having same
US10215229B2 (en) 2013-03-14 2019-02-26 Etagen, Inc. Mechanism for maintaining a clearance gap
EP3176401A1 (en) * 2014-02-12 2017-06-07 Achates Power Inc. A method of operating a low reactivity, compression-ignition, opposed-piston engine
US9719415B2 (en) * 2015-01-15 2017-08-01 Etagen, Inc. Energy storage and conversion in free-piston combustion engines
CN105422258A (zh) * 2015-12-14 2016-03-23 中国北方发动机研究所(天津) 一种适用于对置喷射的双t型燃烧室
US9657675B1 (en) 2016-03-31 2017-05-23 Etagen Inc. Control of piston trajectory in a free-piston combustion engine
JP6944948B2 (ja) * 2016-03-31 2021-10-06 メインスプリング エナジー, インコーポレイテッド 自由ピストン燃焼機関内のピストン軌道の制御
US9856821B1 (en) 2016-10-14 2018-01-02 Etagen, Inc. Open-faced piston assembly
WO2018190156A1 (ja) * 2017-04-13 2018-10-18 アムネクスト・テクノロジ株式会社 エンジン
US10781770B2 (en) * 2017-12-19 2020-09-22 Ibrahim Mounir Hanna Cylinder system with relative motion occupying structure
EP3827507A1 (en) * 2018-07-24 2021-06-02 Mainspring Energy, Inc. Linear electromagnetic machine
KR20210104844A (ko) * 2018-12-18 2021-08-25 메인스프링 에너지, 인크. 통합 선형 발전기 시스템
GB2574689B (en) * 2019-01-04 2020-07-15 Libertine Fpe Ltd Linear electrical machine
RU2722201C1 (ru) * 2019-04-22 2020-05-28 Валерий Иванович Семенов Свободнопоршневой двигатель
CN110307085B (zh) * 2019-06-24 2020-05-22 江苏江淮动力有限公司 发电机整机
US11415075B2 (en) * 2019-07-08 2022-08-16 Cummins Inc. Port shapes for enhanced engine breathing
CZ309980B6 (cs) * 2019-07-22 2024-04-03 Ústav Fyziky Plazmatu Av Čr, V. V. I. Zařízení na generaci elektřiny pomocí elektrické jiskry generované v kapalině
CN113389639B (zh) * 2020-03-12 2022-09-27 赵天安 一种带压缩比调节机构的发动机
MX2023005335A (es) 2020-11-05 2023-08-08 Mainspring Energy Inc Sincronización de núcleo para generadores lineales.
US11976730B2 (en) 2020-11-13 2024-05-07 Mainspring Energy, Inc. Manifold interface seal
IL281086A (en) * 2021-02-24 2022-09-01 Yafa Innovations Ltd Linear power generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2362151A (en) * 1943-08-18 1944-11-07 Ostenberg Pontus Electric generator
US3234395A (en) * 1962-02-01 1966-02-08 Richard M Colgate Free piston electrical generator
US3370576A (en) * 1965-10-14 1968-02-27 Generateurs Jarret Soc D Free piston motor
US4016952A (en) * 1975-10-06 1977-04-12 Atlantic Richfield Company Marine gas exploder
DE102008053069A1 (de) * 2008-10-24 2010-05-06 Umc Universal Motor Corporation Gmbh Freikolbenmotor mit variablem Hub und Verfahren zum Betreiben eines Freikolbenmotors

Family Cites Families (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2567042A (en) * 1946-08-22 1951-09-04 Eleanor May Wemp Transmission and control
US2814551A (en) * 1949-10-07 1957-11-26 Shell Dev Method and reciprocating compressionreactor for short period, high temperature and high pressure chemical reactions
FR1163512A (fr) * 1956-12-18 1958-09-29 Perfectionnements apportés aux moyens de synchronisation des deux pistons conjugués d'un cylindre de moteur à pistons libres
US2899565A (en) * 1957-02-07 1959-08-11 Method and apparatus for energy conversion
US3225617A (en) * 1961-01-09 1965-12-28 James R Young Variable ratio friction transmission and control system therefor
US3170406A (en) 1962-11-28 1965-02-23 Raymond A Robertson Free piston engine
FR1384701A (fr) * 1963-11-18 1965-01-08 Generateurs Jarret Soc D Dispositif de lancement d'un moteur à pistons libres dont le rappel est assuré par des ressorts hydrauliques
US3190271A (en) 1964-01-27 1965-06-22 Mcculloch Corp Fuel-air injection system for internal combustion engines
GB1125524A (en) * 1966-08-04 1968-08-28 British Oxygen Co Ltd A reciprocating piston engine
DE1945924A1 (de) 1969-09-11 1971-03-18 Lenger Karl Werner Freikolbenmaschine
FR2133179A5 (zh) * 1971-04-09 1972-11-24 Jarret Jacques
US4154200A (en) 1971-04-09 1979-05-15 Jarret Jacques H Non-polluting heat machine with internal combustion
US4010611A (en) * 1974-12-17 1977-03-08 Zachery James E Compression-expansion power device
DE2636252C2 (de) 1976-08-12 1982-04-15 Klinger AG, 6301 Zug Arbeitszylinder mit Differentialkolben
US4308720A (en) * 1979-11-13 1982-01-05 Pneumo Corporation Linear engine/hydraulic pump
US4455974A (en) 1981-01-08 1984-06-26 Cummins Engine Company, Inc. Gas bearing piston assembly
IT1145573B (it) 1981-10-30 1986-11-05 Egidio Allais Motore a stantuffi liberi con camma autonoma soecialmente per l azionamento di alternatori lineari
US4480599A (en) 1982-09-09 1984-11-06 Egidio Allais Free-piston engine with operatively independent cam
US4924956A (en) 1986-10-24 1990-05-15 Rdg Inventions Corporation Free-piston engine without compressor
JPS643235A (en) * 1987-06-24 1989-01-09 Aisin Seiki Free piston engine
US4846051A (en) 1988-02-23 1989-07-11 Ford Motor Company Uncooled oilless internal combustion engine having uniform gas squeeze film lubrication
JP2690752B2 (ja) 1988-08-30 1997-12-17 富士通株式会社 プラズマディスプレイパネルの輝度調整装置
US4932313A (en) * 1988-09-30 1990-06-12 Gutknecht William H Air bearing piston and cylinder assembly
US4876991A (en) * 1988-12-08 1989-10-31 Galitello Jr Kenneth A Two stroke cycle engine
US5030182A (en) * 1990-02-14 1991-07-09 New Venture Gear, Inc. Full time power transfer case
SU1728515A1 (ru) * 1990-05-03 1992-04-23 В.И.Крал Свободнопоршневой двигатель внутреннего сгорани
RU2045666C1 (ru) * 1993-04-27 1995-10-10 Могила Юрий Петрович Импульсный дизель-генератор
US6035637A (en) * 1997-07-01 2000-03-14 Sunpower, Inc. Free-piston internal combustion engine
US6170442B1 (en) * 1997-07-01 2001-01-09 Sunpower, Inc. Free piston internal combustion engine
US5775273A (en) 1997-07-01 1998-07-07 Sunpower, Inc. Free piston internal combustion engine
US5832880A (en) 1997-07-28 1998-11-10 Southwest Research Institute Apparatus and method for controlling homogeneous charge compression ignition combustion in diesel engines
US6199519B1 (en) * 1998-06-25 2001-03-13 Sandia Corporation Free-piston engine
US6314924B1 (en) * 1999-02-22 2001-11-13 Caterpillar Inc. Method of operating a free piston internal combustion engine with a short bore/stroke ratio
US6065440A (en) * 1999-07-07 2000-05-23 Pasquan; Raymond F. Internal combustion engine with binary cylinder sizing for variable power output
FI112526B (fi) 1999-07-21 2003-12-15 Waertsilae Finland Oy Menetelmä nelitahtisen turboahdetun mäntämoottorin typpioksidipäästöjen (NOx) vähentämiseksi
US6293184B1 (en) * 1999-09-02 2001-09-25 Sunpower, Inc. Gas bearing and method of making a gas bearing for a free piston machine
US6293231B1 (en) 1999-09-29 2001-09-25 Ingo Valentin Free-piston internal combustion engine
DE10026728A1 (de) 1999-11-24 2001-05-31 Mannesmann Rexroth Ag Freikolbenmotor
EP1234097B1 (en) * 1999-11-29 2005-10-12 Shell Internationale Researchmaatschappij B.V. Downhole electric power generator
SE523182C2 (sv) * 1999-12-22 2004-03-30 Abb Ab Anordning innefattande en styrenhet, en elektromagnetisk energiomvandlare innefattande en förbränningsmotor med en mekaniskt fritt rörlig kolv, användning av anordningen samt fordon innefattande nämnda anordning
US6276313B1 (en) 1999-12-30 2001-08-21 Honeywell International Inc. Microcombustion engine/generator
NO20000470D0 (no) * 2000-01-28 2000-01-28 Magomet Sagov Energiomformer
US6374924B2 (en) 2000-02-18 2002-04-23 Halliburton Energy Services, Inc. Downhole drilling apparatus
SE521607C2 (sv) * 2000-04-07 2003-11-18 Abb Ab En linjär elektrisk maskin
US6541875B1 (en) 2000-05-17 2003-04-01 Caterpillar Inc Free piston engine with electrical power output
UA61980C2 (en) * 2000-06-15 2003-12-15 Ihor Olehovych Kyryliuk Opposite internal combustion engine
GB0025610D0 (en) 2000-10-19 2000-12-06 Renishaw Plc Fluid bearing for motor
BR0116140A (pt) * 2000-12-13 2003-09-23 Sharp Kk Motor stirling e refrigerador stirling
US6443104B1 (en) 2000-12-15 2002-09-03 Southwest Research Institute Engine and method for controlling homogenous charge compression ignition combustion in a diesel engine
US6532916B2 (en) 2001-03-28 2003-03-18 Jack L. Kerrebrock Opposed piston linearly oscillating power unit
US6578364B2 (en) * 2001-04-20 2003-06-17 Clever Fellows Innovation Consortium, Inc. Mechanical resonator and method for thermoacoustic systems
JP3692506B2 (ja) 2001-04-25 2005-09-07 韶 松見 自由ピストン型再生スターリング機関
WO2003078809A2 (en) 2002-03-15 2003-09-25 Advanced Propulsion Technologies, Inc. Internal combustion engine
DE10219549B4 (de) * 2002-04-25 2004-03-11 Deutsches Zentrum für Luft- und Raumfahrt e.V. Freikolben-Verbrennungsvorrichtung mit elektrischem Lineartrieb
US7082909B2 (en) 2002-04-25 2006-08-01 Deutsches Zentrum Fur Luft- Und Raumfahrt E.V. Free-piston device with electric linear drive
JP2003343202A (ja) 2002-05-30 2003-12-03 Mitsubishi Heavy Ind Ltd フリーピストンエンジン駆動リニア発電装置
SE525796C2 (sv) 2002-09-16 2005-04-26 Volvo Technology Corp Energiomvandlare inrättad så att den anpassar sin uteffekt beroende på den erforderliga lasten
US7416039B1 (en) 2002-09-20 2008-08-26 Anderson Donald C Regenerative self propelled vehicles
AU2003290579A1 (en) * 2002-11-08 2004-06-03 Freddie Ray Roberts Improved emissions control internal combustion engine
MY144690A (en) 2003-06-20 2011-10-31 Scuderi Group Llc Split-cycle four-stroke engine
EP3081772A1 (en) * 2003-06-25 2016-10-19 Advanced Propulsion Technologies, Inc. Internal combustion engine
US7458215B2 (en) * 2003-10-01 2008-12-02 Toyota Jidosha Kabushiki Kaisha Stirling engine and hybrid system with the same
JP2005155345A (ja) * 2003-11-20 2005-06-16 Denso Corp フリーピストンエンジンおよびこれを用いた発電装置
TWI234898B (en) 2004-03-19 2005-06-21 Ind Tech Res Inst Micro-combustion power engine and power supply device
US7043835B2 (en) * 2004-04-09 2006-05-16 Sunpower, Inc. Method for centering a workpiece on the cylindrical axis of a bore
WO2005100769A2 (en) * 2004-04-19 2005-10-27 Volvo Technology Corporation Method and system for controlling a free-piston energy converter
US20050284427A1 (en) * 2004-04-30 2005-12-29 Barth Eric J Free piston compressor
US8424284B2 (en) * 2004-05-20 2013-04-23 Gilbert Staffend High efficiency positive displacement thermodynamic system
DE102005006340B4 (de) * 2004-07-26 2008-08-07 Dolezal, Horst, Dipl.-Ing. (FH) Freikolben-Energieerzeuger
JP2006170071A (ja) 2004-12-15 2006-06-29 Denso Corp フリーピストンエンジンの制御装置及び制御方法
CN102278229B (zh) 2004-12-27 2014-04-16 丰田自动车株式会社 活塞设备、斯特林发动机和外燃机
JP4530868B2 (ja) 2005-02-14 2010-08-25 ピー・エス・シー株式会社 ピストン駆動機構の静圧気体軸受および気体圧アクチュエータ
CA2598967C (en) * 2005-02-24 2010-10-05 John W. Fitzgerald Variable stroke premixed charge compression ignition engine
US7194989B2 (en) * 2005-03-03 2007-03-27 Samuel Raymond Hallenbeck Energy efficient clean burning two-stroke internal combustion engine
WO2007059565A1 (en) 2005-11-22 2007-05-31 Peter Charles Cheeseman Four-stroke free piston engine
US7690199B2 (en) 2006-01-24 2010-04-06 Altor Limited Lc System and method for electrically-coupled thermal cycle
US7640910B2 (en) 2006-03-16 2010-01-05 Achates Power, Inc Opposed piston internal-combustion engine with hypocycloidal drive and generator apparatus
GB0605298D0 (en) 2006-03-16 2006-04-26 Univ Edinburgh Generator and magnetic flux conducting unit
EP2010772A1 (en) 2006-04-27 2009-01-07 Stichting Administratiekantoor Brinks Westmaas Energy converter having pistons with internal gas passages
DE102006029532A1 (de) 2006-06-20 2007-12-27 Deutsches Zentrum für Luft- und Raumfahrt e.V. Freikolbenvorrichtung und Verfahren zum Betreiben einer Freikolbenvorrichtung
JP4305477B2 (ja) * 2006-07-25 2009-07-29 トヨタ自動車株式会社 火花点火式内燃機関
EP2044305A4 (en) * 2006-07-26 2010-11-17 J Michael Langham WATER ENGINE
US7984684B2 (en) * 2006-10-06 2011-07-26 Mitja Victor Hinderks Marine hulls and drives
JP2008223628A (ja) * 2007-03-13 2008-09-25 Mazda Motor Corp フリーピストンエンジンの制御装置
JP2008223657A (ja) 2007-03-14 2008-09-25 Mazda Motor Corp フリーピストンエンジン
US7685818B2 (en) * 2007-05-30 2010-03-30 Sunpower, Inc. Connection of a free-piston stirling machine and a load or prime mover permitting differing amplitudes of reciprocation
DE102007035914A1 (de) 2007-07-23 2009-01-29 Umc Universal Motor Corporation Gmbh Freikolbenvorrichtung und Verfahren zur Steuerung und/oder Regelung einer Freikolbenvorrichtung
US8011183B2 (en) * 2007-08-09 2011-09-06 Global Cooling Bv Resonant stator balancing of free piston machine coupled to linear motor or alternator
US8607560B2 (en) * 2008-02-28 2013-12-17 Superconductor Technologies, Inc. Method for centering reciprocating bodies and structures manufactured therewith
US7622814B2 (en) 2007-10-04 2009-11-24 Searete Llc Electromagnetic engine
KR20100071087A (ko) * 2007-10-04 2010-06-28 시리트 엘엘씨 전자기 엔진
DE102007056527A1 (de) 2007-11-19 2009-05-20 Golle Motor Ag Schadstoffarmer Verbrennungsmotor mit elektrischen Linearmaschinen und Kolbenpumpen
WO2009067430A2 (en) 2007-11-21 2009-05-28 Emcon Technologies Llc Exhaust valve assembly
US20090179424A1 (en) * 2008-01-14 2009-07-16 Internal Combustion Turbines Llc Internal combustion engine driven turbo-generator for hybrid vehicles and power generation
JP5265210B2 (ja) 2008-02-07 2013-08-14 ピー・エス・シー株式会社 ピストン駆動機構の静圧気体軸受及び気体圧アクチュエータ
US8161921B2 (en) * 2008-02-13 2012-04-24 Marchetti George A Method to convert free-piston linear motion to rotary motion
GB0810391D0 (en) * 2008-06-06 2008-07-09 Isentropic Ltd Fluid servo and applications
US8376070B2 (en) * 2009-01-29 2013-02-19 General Electric Company Modular auxiliary power unit assembly for an electric vehicle
US8181460B2 (en) * 2009-02-20 2012-05-22 e Nova, Inc. Thermoacoustic driven compressor
GB2469279A (en) * 2009-04-07 2010-10-13 Rikard Mikalsen Linear reciprocating free piston external combustion open cycle heat engine
DE102009017713B4 (de) 2009-04-15 2011-06-30 Knöfler, Steffen, 12629 Freikolben-Brennkraftmaschine
JP2011074910A (ja) * 2009-09-04 2011-04-14 Toyota Industries Corp リニア電動式圧縮機及び冷凍回路
US8615993B2 (en) * 2009-09-10 2013-12-31 Global Cooling, Inc. Bearing support system for free-piston stirling machines
GB2476495A (en) * 2009-12-24 2011-06-29 Libertine Fpe Ltd Free piston engine
GB2476496A (en) * 2009-12-24 2011-06-29 Libertine Fpe Ltd Piston for an engine generator, eg a free piston engine
EP2526275A1 (en) 2010-01-19 2012-11-28 Altor Limited LC System and method for electrically-coupled heat engine and thermal cycle
GB2480461B8 (en) * 2010-05-19 2012-11-14 Univ Newcastle Free piston internal combustion engine
RU99072U1 (ru) * 2010-07-07 2010-11-10 Константин Анатольевич Романчев Двухтактный свободнопоршневой двигатель
JP5408062B2 (ja) 2010-07-14 2014-02-05 株式会社豊田中央研究所 フリーピストンエンジン駆動リニア発電装置
EP2596211B1 (en) 2010-07-22 2015-03-11 Lachezar Petkanchin Electric power generator and motor assembly equipped therewith
US8616162B2 (en) * 2010-11-04 2013-12-31 GM Global Technology Operations LLC Opposed free piston linear alternator
US8413617B2 (en) 2010-11-23 2013-04-09 Etagen, Inc. High-efficiency two-piston linear combustion engine
US8662029B2 (en) 2010-11-23 2014-03-04 Etagen, Inc. High-efficiency linear combustion engine
JP5447420B2 (ja) 2011-03-28 2014-03-19 株式会社豊田中央研究所 フリーピストン式発電機
JP5724514B2 (ja) 2011-03-28 2015-05-27 株式会社豊田中央研究所 フリーピストン式発電機
US9038581B2 (en) 2013-02-07 2015-05-26 GM Global Technology Operations LLC Linear alternator assembly with four-stroke working cycle and vehicle having same
US9719415B2 (en) 2015-01-15 2017-08-01 Etagen, Inc. Energy storage and conversion in free-piston combustion engines
US9657675B1 (en) * 2016-03-31 2017-05-23 Etagen Inc. Control of piston trajectory in a free-piston combustion engine
GB201701952D0 (en) 2017-02-06 2017-03-22 Libertine Fpe Ltd Actuator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2362151A (en) * 1943-08-18 1944-11-07 Ostenberg Pontus Electric generator
US3234395A (en) * 1962-02-01 1966-02-08 Richard M Colgate Free piston electrical generator
US3370576A (en) * 1965-10-14 1968-02-27 Generateurs Jarret Soc D Free piston motor
US4016952A (en) * 1975-10-06 1977-04-12 Atlantic Richfield Company Marine gas exploder
DE102008053069A1 (de) * 2008-10-24 2010-05-06 Umc Universal Motor Corporation Gmbh Freikolbenmotor mit variablem Hub und Verfahren zum Betreiben eines Freikolbenmotors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106285783A (zh) * 2015-05-19 2017-01-04 高阳 水平对置气缸对置活塞往复汽轮机气马达直线发电机
CN106285783B (zh) * 2015-05-19 2019-10-29 高阳 水平对置气缸活塞往复式汽轮机
CN110529245A (zh) * 2019-09-20 2019-12-03 山东休普动力科技股份有限公司 一种单缸对置双活塞式自由活塞直线发电机

Also Published As

Publication number Publication date
CN103299046B (zh) 2015-12-16
HUE060964T2 (hu) 2023-04-28
RU2013127022A (ru) 2014-12-27
BR112013012536B1 (pt) 2021-03-16
US9567898B2 (en) 2017-02-14
US20190178157A1 (en) 2019-06-13
US20170241331A1 (en) 2017-08-24
US20230101969A1 (en) 2023-03-30
JP2013543084A (ja) 2013-11-28
US10221759B2 (en) 2019-03-05
JP6790027B2 (ja) 2020-11-25
PT2643573T (pt) 2023-02-13
JP2016138559A (ja) 2016-08-04
BR112013012536B8 (pt) 2021-11-23
WO2012071239A1 (en) 2012-05-31
EP2643573A4 (en) 2015-06-10
FI2643573T3 (fi) 2023-01-13
US20160090908A1 (en) 2016-03-31
CA3076927C (en) 2023-10-10
US11525391B2 (en) 2022-12-13
JP6223485B2 (ja) 2017-11-01
ES2939241T3 (es) 2023-04-20
US8402931B2 (en) 2013-03-26
CA2817970A1 (en) 2012-05-31
PL2643573T3 (pl) 2023-03-06
DK2643573T3 (da) 2023-01-09
US8662029B2 (en) 2014-03-04
RU2016103092A (ru) 2018-11-22
TWI583862B (zh) 2017-05-21
RU2020100897A (ru) 2021-07-14
JP2021001606A (ja) 2021-01-07
TW201229380A (en) 2012-07-16
EP2643573B1 (en) 2022-10-05
BR112013012536A2 (pt) 2020-06-02
US20120235517A1 (en) 2012-09-20
US20210079838A1 (en) 2021-03-18
JP2017082797A (ja) 2017-05-18
RU2577425C2 (ru) 2016-03-20
JP2018184960A (ja) 2018-11-22
CA2817970C (en) 2020-05-12
US10024231B2 (en) 2018-07-17
CN103299046A (zh) 2013-09-11
JP2022188231A (ja) 2022-12-20
RU2016103092A3 (zh) 2019-07-31
US20140130771A1 (en) 2014-05-15
US20120125291A1 (en) 2012-05-24
RU2711803C2 (ru) 2020-01-23
CA3076927A1 (en) 2012-05-31
US10851708B2 (en) 2020-12-01
US20180298814A1 (en) 2018-10-18
EP2643573A1 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
CN103299046B (zh) 高效率的线性内燃机
US8413617B2 (en) High-efficiency two-piston linear combustion engine
US8453612B2 (en) High-efficiency linear combustion engine
US8997699B2 (en) Linear free piston combustion engine with indirect work extraction via gas linkage
CN105637186B (zh) 分裂循环发动机中的线轴梭子跨接阀
EP1866530A2 (en) Double piston cycle engine
US20120126543A1 (en) High-efficiency single-piston linear combustion engine
US12000331B2 (en) High-efficiency linear generator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160210

RJ01 Rejection of invention patent application after publication