CN105291745A - 永磁吸附式Mecanum轮车辆的悬架隔振装置 - Google Patents

永磁吸附式Mecanum轮车辆的悬架隔振装置 Download PDF

Info

Publication number
CN105291745A
CN105291745A CN201510765379.XA CN201510765379A CN105291745A CN 105291745 A CN105291745 A CN 105291745A CN 201510765379 A CN201510765379 A CN 201510765379A CN 105291745 A CN105291745 A CN 105291745A
Authority
CN
China
Prior art keywords
mecanum
spring
permanent magnetic
wheeled vehicle
permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510765379.XA
Other languages
English (en)
Other versions
CN105291745B (zh
Inventor
涂春磊
刘景笑
李士林
王兴松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Special Equipment Safety Supervision Inspection Institute of Jiangsu Province
Original Assignee
Southeast University
Special Equipment Safety Supervision Inspection Institute of Jiangsu Province
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University, Special Equipment Safety Supervision Inspection Institute of Jiangsu Province filed Critical Southeast University
Priority to CN201510765379.XA priority Critical patent/CN105291745B/zh
Publication of CN105291745A publication Critical patent/CN105291745A/zh
Application granted granted Critical
Publication of CN105291745B publication Critical patent/CN105291745B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manipulator (AREA)

Abstract

本发明提供一种永磁吸附式Mecanum轮车辆的悬架隔振装置,包括柔性单元、水平机构,柔性单元的一端设于磁铁固定座的顶部平台,柔性单元的另一端活动连接车架固定座,磁铁固定座的底部连接有永磁磁铁一,车架固定座通过水平机构连接轴承座的凸台,轴承座与磁铁固定座分别通过螺栓连接伺服电机一,伺服电机一通过轮轴连接Mecanum轮一;能够满足Mecanum轮的吸附稳定性和运动稳定性,保证Mecanum与导磁材料表面的接触与压力,保证永磁铁与吸附表面的距离和平行度,使吸附效果跟稳定,同时隔震单元可以实现上下两个方向的隔震,可以满足安装该悬架系统的机器人在各个角度的吸附表面的隔震效果。

Description

永磁吸附式Mecanum轮车辆的悬架隔振装置
技术领域
本发明涉及一种永磁吸附式Mecanum轮车辆的悬架隔振装置。
背景技术
麦克纳姆轮(MecanumWheel)是一种全方位移动车轮,1973年由瑞士人BengtLion发明,所以也叫Lion轮,而他工作于MecanumAB公司。该轮的特点是在传统车轮的基础上,在轮缘上再沿与轴线成45o方向安装若干可以自由旋转的小滚子,这样在车轮滚动时,小滚子就会产生测向运动。通过麦克纳姆轮的组合使用和控制,可以使车体产生运动平面内的任意方向移动和转动。
1975年,Lion获得美国专利(专利号3,746,112,直接稳定自驱动车,“DirectionallyStableSelfPropelledVehicle”),1980年美国海军买得该专利并进行军事应用开发,1996年该专利失效后,美国及世界众多大学、研究机构和公司进行应用开发和再发明,应用领域涉及全方位移动的叉车、搬运车、轮椅、弹药运输车、移动机器人等。
采用全方位移动技术后,可以显著提高搬运效率和灵活性、减小货物存储空间20%~30%、尤其对于狭小空间移动物体,具有不可取代的作用。目前,成功的应用例子有美国AirTrix公司的Sidewinder全方位移动叉车、COBRA全方位移动升降机、MP2全方位搬运拖车、全方位弹药转载机;卡内基梅隆大学的全方位机器人、美国Ominx公司的全方位移动轮椅、喷气发动机全方位移动托架等产品。包括我国在内的世界众多大学也开展了麦克纳姆轮的应用和控制研究,但是多集中在移动机器人方面的应用研究,形成产品的很少。
国内哈工大机器人所等单位进行过基于麦克纳姆轮的全方位移动机器人研究,但国内关于麦克纳姆轮研究的论文较少。
目前,装有麦克纳姆轮的机器人用于爬行机器人的很少,带有永磁磁铁的独立悬架系统更是没有先例,相对于永磁磁铁固定于车架上,该悬架系统保证永磁磁铁与轮子接触表面的距离不受车架刚度的影响,并且磁铁保证和接触表面平行,在接触表面为曲面等复杂表面时,该悬架系统能够满足各种角度曲面的减震效果。
发明内容
本发明的目的是提供一种带有永磁吸附装置的用于Mecanum轮车辆的独立悬架系,能够保证Mecanum轮一与接触表面的持续接触,从而保证机器人的运动轨迹,对称柔性单元保证装有该悬架的机器人可以在任意角度的平面上的减震效果,平行机构保证永磁磁铁与吸附表面平行。
本发明的技术解决方案是:
一种永磁吸附式Mecanum轮车辆的悬架隔振装置,包括柔性单元、水平机构,柔性单元的一端设于磁铁固定座的顶部平台,柔性单元的另一端活动连接车架固定座,磁铁固定座的底部连接有永磁磁铁一,车架固定座通过水平机构连接轴承座的凸台,轴承座与磁铁固定座分别通过螺栓连接伺服电机一,磁铁固定座与伺服电机一间设有电机固定板,伺服电机一通过轮轴连接Mecanum轮一。
水平机构采用一个以上的H型连杆,一个以上的H型连杆平行安装且位于同一竖直面上,H型连杆的两端分别通过销轴连接车架固定座的凸台、轴承座的凸台。
进一步地,柔性单元通过螺栓固定在磁铁固定座的顶部平台和压板间,柔性单元由若干片弹簧叠加构成,片弹簧包括设于中间的长片簧,片弹簧的长度由长片簧向两端递减,长片簧间隙配合在固定座的空槽内。
进一步地,柔性单元由一片长片簧、两片中片簧、两片短片簧五片片弹簧叠加组成,长片簧的两侧对称分布有一片中片簧和一片短片簧。
进一步地,永磁磁铁一的中心位于轮轴所在竖直面上,永磁磁铁一与Mecanum轮一的行走表面平行设置。
进一步地,在Mecanum轮车辆在导磁材料表面爬行时,永磁磁铁一和Mecanum轮车辆自身重量的合力提供正压力,在某一个Mecanum轮一遇到障碍时,该Mecanum轮一抬起,永磁磁铁一与该Mecanum轮一同时抬起,并保持永磁磁铁一下表面与吸附表面平行,其他Mecanum轮一仍紧贴吸附表面,永磁磁铁一与Mecanum轮一同时越过障碍后,重新吸附在导磁材料表面。
进一步地,在Mecanum轮车辆在导磁材料表面爬行时,Mecanum轮车辆所受重力指向吸附表面,长片簧以及长片簧与磁铁固定座的顶部平台之间的片弹簧受力变形;在Mecanum轮车辆所受重力背向吸附表面时,长片簧以及长片簧与压板之间的片弹簧受力变形,来实现Mecanum轮车辆在任意角度的吸附平面上爬行的减震。
本发明的有益效果是,与现有技术相比,该悬架隔振装置具有以下优点:
一、两个H型连杆与车架固定座的凸台、轴承座的凸台组成平行四边形连杆机构,保证Mecanum轮和永磁磁铁等处于平动,可以保证永磁磁铁与Mecanum轮的接触面平行,进而保证永磁磁铁对导磁吸附表面吸附力稳定。
二、柔性单元有五片片弹簧对称分布,叠簧既有很好的柔性,又有较强的承载能力,在Mecanum轮越过障碍时既可以产生较大的变形,又不会因变形过大而失效,对称分布的叠簧可以使装有该悬架系统的机器人在任意角度的平面上爬行都能够具有减震效果。
三、永磁磁铁安装在独立悬架位置上,可以使装有Mecanum轮的悬架即使爬行过程中遇到障碍越障时仍能进贴吸附表面,保证装有Mecanum轮的机器人的运动特性,而且永磁磁铁靠近Mecanum轮,悬架的结构尺寸可以保证磁铁与吸附表面的距离,保证磁铁对吸附表面的吸附力稳定,而且当遇到障碍时磁铁可以和Mecanum轮同时起伏,防止因磁铁与吸附表面距离较小而与障碍相撞。
附图说明
图1是本发明实施例的结构示意图;
图2是实施例中射线源端机器人的结构示意图;
图3是实施例中数字平板探测器端机器人的结构示意图;
图4是实施例中悬架隔振装置与车架一的连接关系示意图;
图5是实施例中悬架隔振装置的结构示意图;
图6是实施例中悬架隔振装置的俯向视图;
图7是实施例中悬架隔振装置的后向视图;
图8是实施例中悬架隔振装置的右向视图;
图9是实施例射线源端机器人、数字平板探测器端机器人与上位机的通讯连接示意图;
图10是实施例中射线源端机器人、数字平板探测器端机器人实现同步跟踪的流程说明示意图;
图11是实施例中检测报告生成模块的说明示意图;
其中:1-射线源端机器人,2-数字平板探测器端机器人,3-上位机,4-球罐,5-悬架隔振装置;
11-前循迹传感器一,12-永磁磁铁一,13-Mecanum轮一,14-车架一,15-后循迹传感器一,16-伺服电机一,17-X射线源,18-运动控制盒一;
21-前循迹传感器二,22-永磁磁铁二,23-Mecanum轮二,24-车架二,25-后循迹传感器二,26-伺服电机二,27-数字平板,28-运动控制盒二;
51-柔性单元,52-电机固定板,53-轴承座,54-轮轴,55-H型连杆,56-车架固定座,57-磁铁固定座,58压板。
具体实施方式
下面结合附图详细说明本发明的优选实施例。
实施例
一种基于Mecanum轮的数字平板射线检测系统,如图1,包括上位机3、射线源端机器人1、数字平板探测器端机器人2,射线源端机器人1与数字平板探测器端机器人2均采用全方位Mecanum轮结构,射线源端机器人1设有运动控制盒一18,运动控制盒一18通过无线通讯模块一与上位机3、数字平板探测器端机器人2连接,运动控制盒一18通过CAN通讯模块一连接伺服电机一16,数字平板探测器端机器人2设有运动控制盒二28,运动控制盒二28通过无线通讯模块二与上位机3、射线源端机器人1连接,运动控制盒二28通过CAN通讯模块二连接伺服电机二26。
射线源端机器人1包括车架一14、Mecanum轮一13、伺服电机一16、前循迹传感器一11、后循迹传感器一15、X射线源17、永磁磁铁一12和运动控制盒一18,如图2,前循迹传感器一11设于车架一14的前端,后循迹传感器一15设于车架一14的后端,车架一14的中部设有运动控制盒一18和X射线源17,车架一14的两侧分别设有Mecanum轮一13,Mecanum轮一13连接有伺服电机一16的转轴,车架一14的底部两侧分别设有永磁磁铁一12。
数字平板探测器端机器人2包括车架二24、Mecanum轮二23、伺服电机二26、前循迹传感器二21、后循迹传感器二25、数字平板27、永磁磁铁二22和运动控制盒一28,如图3,前循迹传感器二21设于车架二24的前端,后循迹传感器二25设于车架二24的后端,车架二24的中部设有运动控制盒二28和数字平板27,数字平板27设于车架二24的底部,车架二24的两侧分别设有Mecanum轮二23,Mecanum轮二23连接有伺服电机二26的转轴,车架二24的底部两侧分别设有永磁磁铁二22。
X射线源17采用连续式X射线源17,相较于脉冲式X射线源,可以获得更清晰更高等级的成像,能够使检测成像达到JB/T4730.2-2005:AB级,可以适用于承压特种设备焊缝内部缺陷检测。例如:对于25mm厚度的钢制工件,使用像质计:IQIEN462-W6FE,AB级技术等级要求:第11号线丝清晰可见,使用连续式X射线源17满足技术等级AB级要求。脉冲式X射线源技术等级较低,无法达到JB/T4730.2-2005:AB级,一般情况下无法满足承压特种设备焊缝内部缺陷检测的需要,主要用于机场、高铁站安检中金属危险品的自动化扫描。
实施例采用图1所示单壁透照,射线源在内,数字平板在外,两个承载机器人小车通过磁力吸附在球罐4表面,两个机器人分为射线源端机器人1和数字平板探测器端机器人2,射线源端机器人1由自身焊缝循迹行走或者远端端遥控控制,数字平板探测器端机器人2跟踪射线源端机器人1,保证数字平板探测器端机器人2与射线源端机器人1同步行走。
如图10,射线源端机器人1自主行走,并记录编码器信息,得到每个轮子所转过的圈数,然后将该信息通过无线发送给数字平板探测器端机器人2,数字平板探测器端机器人2根据射线源端机器人1发送的编码器信息控制数字平板探测器端机器人1各轮子的转动,而数字平板探测器端机器人2运动产生的累积误差的消除可采用两个方案:
方案一,从每次数字平板27曝光得到的图片可以看到方形的数字平板27上有一个圆形的曝光区域,圆形的曝光区域即射线源的位置,即通过图片获得数字平板探测器端机器人2相对于射线源端机器人1的位置偏移距离,并在下一次行走的过程中对平板探测器端机器人2的运动进行校正,从而实现数字平板探测器端机器人2与射线源端机器人1同步跟踪。
方案二,射线源端机器人1装备电阻丝,射线源端机器人1通过电阻丝或者红外射线对热源正对的罐体区域进行加热,当加热到一定程度时,被加热区域会形成正对热源点温度最高,向四周温度逐渐降低的特征,数字平板探测器端机器人2则分布有四个对称的热敏传感器,四个热敏传感器正对点的温度差异会产生压电信号,如果没有对中的情况下,四个热敏传感器正对点温度不同,产生的压电信号会存在压差,根据压差控制数字平板探测器端机器人向着温度最高点运动,从而实现同步跟踪。
每个机器人运动结构采用全方位Mecanum轮结构,即机器人的三个位置以上均采用Mecanum轮即麦克纳姆轮,优选为四个位置。基于四个Mecanum轮的全方位移动机器人通过磁吸附在球罐4表面,并携带数字射线检测系统对焊缝进行检测,全方位移动机器人可以灵活地检测各种走向的焊缝。其中,机器人吸附在球罐4表面通过在车架上安装四块永磁磁铁并且对称布置来实现。
永磁磁铁一12的最底面高于Mecanum轮一13的最底面,永磁磁铁二22的最底面高于Mecanum轮二23的最底面,使永磁磁铁一12、永磁磁铁二22能够提供吸附力的同时与球罐罐壁保持一定间距,避免完全吸附时阻力太太影响行走,以保证Mecanum轮一13、Mecanum轮二23的顺利行走。永磁磁铁一12、永磁磁铁二22还可以采用可翻转式结构,通过调节永磁磁铁一12、永磁磁铁二22的吸附角度,实现不同吸附力的调节。
前循迹传感器一11、后循迹传感器一15分别连接运动控制盒一18,运动控制盒一18通过无线WIFI模块与上位机3连接。前循迹传感器二21、后循迹传感器二25分别连接运动控制盒二28,运动控制盒二28通过无线WIFI模块与上位机3连接。射线源端机器人1焊缝循迹通过机器人首尾两个相机对焊缝记性实时拍摄,然后图像处理后得到机器人相对于焊缝的位置,然后根据位置偏差进行及时调整车速。
射线源端机器人1上连续式X射线源17固定在车架一14中央,放射源向下,数字平板探测器端机器人2上数字平板固定在车架二24的底部中央,数字平板即数字成像平板的接受面向下,射线源端机器人1、数字平板探测器端机器人2运行时,分别位于球罐4内外两侧,射线源端机器人1放射源放射X射线,数字平板探测器端机器人2的数字平板27数字成像,从而实现对焊缝的自动化无损检测。
射线源端机器人1远端遥控控制通过在机器人身上安装无线通讯模块一,在球罐4人孔处即出入口位置安装无线WiFi中继,然后通过WiFi连接远端上位机3与射线源端机器人1,并且射线源端机器人1与数字平板探测器端机器人2通过无线WiFi传输实时拍摄的视频信息。上位机3可以遥控控制射线源端机器人1、数字平板探测器端机器人2的运动和工作模式。
射线源端机器人1、数字平板探测器端机器人2分别设有水平仪,水平仪分别连接运动控制盒一、运动控制盒二,通过水平仪来校准射线源端机器人1、数字平板探测器端机器人2的姿态,使射线源端机器人1、数字平板探测器端机器人2保持平行。
射线源端机器人1的车架一14、数字平板探测器端机器人2的车架二15分别设有结构相同的悬架隔振装置5。如图4,以射线源端机器人1为例进行说明。
如图5,悬架隔振装置5包括柔性单元51、水平机构,柔性单元51的一端设于磁铁固定座57的顶部平台,柔性单元51的另一端活动连接车架固定座56,磁铁固定座57的底部连接有永磁磁铁一12,车架固定座56通过水平机构连接轴承座53的凸台,轴承座53与磁铁固定座57分别通过螺栓连接伺服电机一16,磁铁固定座57与伺服电机一16间设有电机固定板52,伺服电机一16通过轮轴54连接Mecanum轮一13。
水平机构采用一个以上的H型连杆55,如图8,一个以上的H型连杆55平行安装且位于同一竖直面上,H型连杆55的两端分别通过销轴连接车架固定座56的凸台、轴承座53的凸台。
柔性单元51通过螺栓固定在磁铁固定座57的顶部平台和压板58间,如图6,柔性单元51由若干片弹簧叠加构成,片弹簧包括设于中间的长片簧,片弹簧的长度由长片簧向两端递减,长片簧间隙配合在固定座的空槽内,如图7,长片簧可以在槽内来回滑动。
柔性单元51由一片长片簧、两片中片簧、两片短片簧五片片弹簧叠加组成,长片簧的两侧对称分布有一片中片簧和一片短片簧。
永磁磁铁一12的中心位于轮轴54所在竖直面上,永磁磁铁一12与Mecanum轮一13的行走表面平行设置。
如图4所示,在射线源端机器人1、数字平板探测器端机器人2的Mecanum轮车辆装配悬架隔振装置5时,将车架固定座56的顶面与车架一14或车架二24固连在一块,四个悬架隔振装置5按照Mecanum轮一13、Mecanum轮二23运动学规律对称安装。
在Mecanum轮车辆在导磁材料表面爬行时,永磁磁铁一12和Mecanum轮车辆自身重量的合力提供正压力,在某一个Mecanum轮一13遇到障碍时,该Mecanum轮一13抬起,永磁磁铁一12与该Mecanum轮一13同时抬起,并保持磁铁下表面与吸附表面平行,其他Mecanum轮一13仍紧贴吸附表面,永磁磁铁一12与Mecanum轮一13同时越过障碍后,重新吸附在导磁材料表面。
在Mecanum轮车辆在导磁材料表面爬行时,Mecanum轮车辆所受重力指向吸附表面,长片簧以及长片簧与磁铁固定座57的顶部平台之间的片弹簧受力变形,提供减震效果;在Mecanum轮车辆所受重力背向吸附表面时,长片簧以及长片簧与压板58之间的片弹簧受力变形,提供减震效果,来实现Mecanum轮车辆在任意角度的吸附平面上爬行的减震。
该悬架隔振装置5能够满足Mecanum轮的吸附稳定性和运动稳定性,保证Mecanum轮与导磁材料表面的接触与压力,保证永磁磁铁吸附表面的距离和平行度,使吸附效果跟稳定,同时隔震单元可以实现上下两个方向的隔震,可以满足安装该悬架系统的机器人在各个角度的吸附表面的隔震效果。
两个H型连杆55与车架固定座56的凸台、轴承座53的凸台组成平行四边形连杆机构,保证Mecanum轮和永磁磁铁一12等处于平动,可以保证永磁磁铁一12与Mecanum轮的接触面平行,进而保证永磁磁铁一12对导磁吸附表面吸附力稳定。
柔性单元51有五片片弹簧对称分布,叠簧既有很好的柔性,又有较强的承载能力,在Mecanum轮越过障碍时既可以产生较大的变形,又不会因变形过大而失效,对称分布的叠簧可以使装有该悬架系统的机器人在任意角度的平面上爬行都能够具有减震效果。
永磁磁铁一12安装在独立悬架位置上,可以使装有Mecanum轮的悬架即使爬行过程中遇到障碍越障时仍能进贴吸附表面,保证装有Mecanum轮的机器人的运动特性,而且永磁磁铁一12靠近Mecanum轮,悬架的结构尺寸可以保证磁铁与吸附表面的距离,保证磁铁对吸附表面的吸附力稳定,而且当遇到障碍时磁铁可以和Mecanum轮同时起伏,防止因磁铁与吸附表面距离较小而与障碍相撞。
图9为整个控制系统工作示意图,射线源端机器人1、数字平板探测器端机器人2、上位机3通过WiFi相互通讯并传递信息,射线源端机器人1、数字平板探测器端机器人2分别设有无线通讯模块、前循迹传感器、后循迹传感器、CAN通讯模块、控制电机的运动控制盒、伺服电机等模块,实现以上所述功能。
控制系统包括射线源端机器人1、数字平板探测器端机器人2、上位机3即操作中心,三个单元通过无线通讯模块一、无线通讯模块二相连,射线源端机器人1与数字平板探测器端机器人2的控制系统组成单元大致一样,射线源端机器人1的前循迹传感器11与后循迹传感器15为数字相机,通过对拍摄到的图片进行图片处理,用于自动循迹,射线源端机器人1与电机、水平仪之间通过CAN总线通讯,射线源端机器人1根据遥控或者自动循迹命令计算出各电机转速,通过CAN总线将控制命令发送到各电机,各电机的编码器信息和水平仪的信息通过CAN总线传回射线源端机器人1的运动控制盒一18,射线源端机器人1的运动控制盒一18对传回的信息分析计算,然后将信息通过无线通讯模块传送给数字平板探测器端机器人2,数字平板探测器端机器人2根据射线源端机器人1传送的信息,对自身运动命令记性调整,最后计算出的运动命令通过CAN总线传送到电机。
实施例的Mecanum轮焊缝检测机器人采用Mecanum轮全方位移动平台以及AGV系统,填补了国内外大型球罐4、立式储罐等在役承压特种设备的数字射线自动化检测工艺装备的空白。实施例的检测机器人除了能实现进退、横移、原地转弯外,还能实现围绕任意一点进行旋转运动,尤其在电站锅炉、球罐、立式储罐等大型在役承压特种设备中,可以大大提高机器人对设备曲面上焊缝检测的灵活性。
该种基于Mecanum轮的数字平板射线检测机器人成像系统,还包括检测报告生成模块,检测报告生成模块:通过对射线检测图像的处理,进行基于特征的缺陷定性识别,并进行缺陷定量及评级,依据JB/T4730.2-2005等相关标准,结合计算机数据库技术,自动生成检测报告,如图11。
实施例适用于球罐、储罐等大型承压设备设备各种焊缝的检测,包括纵缝、环缝、嵌入式接管焊缝、封头拼缝等;机器人动作和自由度满足焊缝检测工艺要求,机器人运动精度满足检测精度要求;焊缝自动跟踪技术满足现场使用要求;系统采用的数字射线照相技术与工艺满足检测标准要求。实施例终成一套实用的能够自动跟踪焊缝的机器人数字平板射线检测系统,可用于直径大于4m的大型承压特种设备的焊缝自动检测。

Claims (7)

1.一种永磁吸附式Mecanum轮车辆的悬架隔振装置,其特征在于:包括柔性单元、水平机构,柔性单元的一端设于磁铁固定座的顶部平台,柔性单元的另一端活动连接车架固定座,磁铁固定座的底部连接有永磁磁铁一,车架固定座通过水平机构连接轴承座的凸台,轴承座与磁铁固定座分别通过螺栓连接伺服电机一,磁铁固定座与伺服电机一间设有电机固定板,伺服电机一通过轮轴连接Mecanum轮一。
2.如权利要求1所述的永磁吸附式Mecanum轮车辆的悬架隔振装置,其特征在于:水平机构采用一个以上的H型连杆,一个以上的H型连杆平行安装且位于同一竖直面上,H型连杆的两端分别通过销轴连接车架固定座的凸台、轴承座的凸台。
3.如权利要求1所述的永磁吸附式Mecanum轮车辆的悬架隔振装置,其特征在于:柔性单元通过螺栓固定在磁铁固定座的顶部平台和压板间,柔性单元由若干片弹簧叠加构成,片弹簧包括设于中间的长片簧,片弹簧的长度由长片簧向两端递减,长片簧间隙配合在固定座的空槽内。
4.如权利要求3所述的永磁吸附式Mecanum轮车辆的悬架隔振装置,其特征在于:柔性单元由一片长片簧、两片中片簧、两片短片簧五片片弹簧叠加组成,长片簧的两侧对称分布有一片中片簧和一片短片簧。
5.如权利要求1-4任一项所述的永磁吸附式Mecanum轮车辆的悬架隔振装置,其特征在于:永磁磁铁一的中心位于轮轴所在竖直面上,永磁磁铁一与Mecanum轮一的行走表面平行设置。
6.如权利要求1-4任一项所述的永磁吸附式Mecanum轮车辆的悬架隔振装置,其特征在于:在Mecanum轮车辆在导磁材料表面爬行时,永磁磁铁一和Mecanum轮车辆自身重量的合力提供正压力,在某一个Mecanum轮一遇到障碍时,该Mecanum轮一抬起,永磁磁铁一与该Mecanum轮一同时抬起,并保持永磁磁铁一下表面与吸附表面平行,其他Mecanum轮一仍紧贴吸附表面,永磁磁铁一与Mecanum轮一同时越过障碍后,重新吸附在导磁材料表面。
7.如权利要求1-4任一项所述的永磁吸附式Mecanum轮车辆的悬架隔振装置,其特征在于:在Mecanum轮车辆在导磁材料表面爬行时,Mecanum轮车辆所受重力指向吸附表面,长片簧以及长片簧与磁铁固定座的顶部平台之间的片弹簧受力变形;在Mecanum轮车辆所受重力背向吸附表面时,长片簧以及长片簧与压板之间的片弹簧受力变形,来实现Mecanum轮车辆在任意角度的吸附平面上爬行的减震。
CN201510765379.XA 2015-11-11 2015-11-11 永磁吸附式Mecanum轮车辆的悬架隔振装置 Active CN105291745B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510765379.XA CN105291745B (zh) 2015-11-11 2015-11-11 永磁吸附式Mecanum轮车辆的悬架隔振装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510765379.XA CN105291745B (zh) 2015-11-11 2015-11-11 永磁吸附式Mecanum轮车辆的悬架隔振装置

Publications (2)

Publication Number Publication Date
CN105291745A true CN105291745A (zh) 2016-02-03
CN105291745B CN105291745B (zh) 2017-11-24

Family

ID=55189847

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510765379.XA Active CN105291745B (zh) 2015-11-11 2015-11-11 永磁吸附式Mecanum轮车辆的悬架隔振装置

Country Status (1)

Country Link
CN (1) CN105291745B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106218339A (zh) * 2016-08-03 2016-12-14 山东建筑大学 用于全方位移动平台的减震与稳定机构
CN107226146A (zh) * 2017-04-28 2017-10-03 东南大学 一种用于机器人的三轴可调的悬架机构
CN108556964A (zh) * 2018-06-15 2018-09-21 常州模威科技有限公司 Agv的底盘结构
CN113075285A (zh) * 2021-04-02 2021-07-06 河北省特种设备监督检验研究院 一种爬行机器人磁粉自动化检测系统
CN113710499A (zh) * 2018-12-28 2021-11-26 巴西石油公司 使用在用于在竖直和水平平坦表面上移动悬挂的移动平台的系统中的麦克纳姆轮

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1361109A2 (en) * 2002-05-09 2003-11-12 Andrew D. Park Munitions handling device
JP2008155652A (ja) * 2006-12-20 2008-07-10 Murata Mach Ltd 自走式搬送台車
CN102616097A (zh) * 2012-04-13 2012-08-01 苏州市迅特液压升降机械有限公司 一种全向自行式剪叉高空作业平台独立轮架
CN205185774U (zh) * 2015-11-11 2016-04-27 江苏省特种设备安全监督检验研究院 永磁吸附式Mecanum轮车辆的悬架隔振装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1361109A2 (en) * 2002-05-09 2003-11-12 Andrew D. Park Munitions handling device
JP2008155652A (ja) * 2006-12-20 2008-07-10 Murata Mach Ltd 自走式搬送台車
CN102616097A (zh) * 2012-04-13 2012-08-01 苏州市迅特液压升降机械有限公司 一种全向自行式剪叉高空作业平台独立轮架
CN205185774U (zh) * 2015-11-11 2016-04-27 江苏省特种设备安全监督检验研究院 永磁吸附式Mecanum轮车辆的悬架隔振装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106218339A (zh) * 2016-08-03 2016-12-14 山东建筑大学 用于全方位移动平台的减震与稳定机构
CN107226146A (zh) * 2017-04-28 2017-10-03 东南大学 一种用于机器人的三轴可调的悬架机构
CN107226146B (zh) * 2017-04-28 2019-03-12 东南大学 一种用于机器人的三轴可调的悬架机构
CN108556964A (zh) * 2018-06-15 2018-09-21 常州模威科技有限公司 Agv的底盘结构
CN113710499A (zh) * 2018-12-28 2021-11-26 巴西石油公司 使用在用于在竖直和水平平坦表面上移动悬挂的移动平台的系统中的麦克纳姆轮
CN113075285A (zh) * 2021-04-02 2021-07-06 河北省特种设备监督检验研究院 一种爬行机器人磁粉自动化检测系统
CN113075285B (zh) * 2021-04-02 2024-03-29 河北省特种设备监督检验研究院 一种爬行机器人磁粉自动化检测系统

Also Published As

Publication number Publication date
CN105291745B (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
CN105291745A (zh) 永磁吸附式Mecanum轮车辆的悬架隔振装置
CN105302141A (zh) 基于Mecanum轮的全方向移动射线源端机器人同步跟踪方法
CN105301020A (zh) 基于Mecanum轮的数字平板射线检测的射线源端机器人
US11548577B2 (en) Crawler vehicle with automatic probe normalization
JP6522145B2 (ja) 表面に対するプローブの受動的な正常化のための展開機構
US8272828B2 (en) Object moving apparatus
CN105158337B (zh) 基于无线传输的储罐底板焊缝自动检测仪
US5062301A (en) Scanning device for ultrasonic quality control of articles
CN108290283A (zh) 联接装置和联接方法
CN205185774U (zh) 永磁吸附式Mecanum轮车辆的悬架隔振装置
CN105301021B (zh) 基于Mecanum轮的数字平板射线检测成像系统
CN112945261B (zh) 一种具备工程数据定测功能的便携式智能测量小车
CN105301022A (zh) 基于Mecanum轮的全方向移动数字平板射线检测机器人
CN106970622A (zh) 一种自主式视觉检测机器人系统及其使用方法
CN205192980U (zh) 基于Mecanum轮的数字射线检测数字平板探测器端机器人
CN205192982U (zh) 基于Mecanum轮的数字平板射线检测的射线源端机器人
CN202471621U (zh) X射线数字平板成像检测系统的多轴运动机械臂
CN112945264B (zh) 一种具备行程记录功能的便携式智能测量小车
CN112945262B (zh) 一种具备工程数据检测功能的便携式智能测量小车
CN102590244A (zh) X射线数字平板成像检测系统的多轴运动机械臂
CN105424732A (zh) 基于Mecanum轮的数字射线检测数字平板探测器端机器人
CN205192981U (zh) 基于Mecanum轮的全方向移动数字平板射线检测机器人
CN205192983U (zh) 基于Mecanum轮的数字平板射线检测成像系统
CN107433621A (zh) 一种自主式轻量化爬壁机器人检测系统及其使用方法
CN107458491A (zh) 一种轻量化的爬壁机器人及其检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant