CN105280484A - 一种晶硅高效高方阻电池片的扩散工艺 - Google Patents

一种晶硅高效高方阻电池片的扩散工艺 Download PDF

Info

Publication number
CN105280484A
CN105280484A CN201510302473.1A CN201510302473A CN105280484A CN 105280484 A CN105280484 A CN 105280484A CN 201510302473 A CN201510302473 A CN 201510302473A CN 105280484 A CN105280484 A CN 105280484A
Authority
CN
China
Prior art keywords
flow
temperature
nitrogen
8000sccm
duration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510302473.1A
Other languages
English (en)
Other versions
CN105280484B (zh
Inventor
王芹芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinasolar Technology Yancheng Co ltd
Trina Solar Co Ltd
Original Assignee
Changzhou Trina Solar Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Trina Solar Energy Co Ltd filed Critical Changzhou Trina Solar Energy Co Ltd
Priority to CN201510302473.1A priority Critical patent/CN105280484B/zh
Publication of CN105280484A publication Critical patent/CN105280484A/zh
Application granted granted Critical
Publication of CN105280484B publication Critical patent/CN105280484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种晶硅高效高方阻电池片的扩散工艺,包括如下步骤:(1)进炉;(2)低温氧化;(3)低温气体反应沉积;(4)升温杂质再分布;(5)高温气体反应沉积;(6)降温杂质再分布;(7)低温气体反应沉积;(8)低温杂质再分布;(9)出炉。本发明可提高电池片的光电转化率,缩短生产时间,提高生产效率。

Description

一种晶硅高效高方阻电池片的扩散工艺
技术领域
本发明涉及一种扩散工艺,尤其涉及一种晶硅高效高方阻电池片的扩散工艺,属于太阳能电池加工工艺技术领域。
背景技术
太阳能电池生产过程中,扩散阶段形成的PN结被称为太阳能电池的心脏,PN结方块电阻的大小对电池性能有着重要的影响,现有太阳能电池的方块电阻大多为50Ω-60Ω,这是为了保证在丝网印刷时,电极栅线和电池片之间形成良好的欧姆接触。但是重掺杂的情况使载流子发生严重的复合,导致短路电流和开路电压较小。因此,如果能够保证电池有良好的欧姆接触,又可以提高电池的短路电流和开路电压,将大大改善太阳能电池的效率。
以往的研究表明,在未改变其他工艺参数的条件下,当发射极方块电阻升高时,短路电流持续上升,开路电压在方阻接近70Ω时接近饱和,而填充因子(FillFactor,FF)则因串联电阻的增加呈下降趋势。器件的效率在70Ω左右时也达到最高。
因此,调试高方阻已成为目前的发展趋势,由于其具有较低的表面杂质浓度,有效降低了表面的杂质复合中心,提高了表面少子的存活率,同时增加短波的响应,如此有效地增加了短路电流(ISC)和开路电压(VOC),从而达到提高电池效率的目的。而传统的一次扩散制结工艺,如图1所示,其过程为:进炉→恒温氧化→恒温气体反应沉淀→恒温杂质再分布→吸杂→出炉;该一次扩散制结工艺,方阻均匀性不易控制,时间冗长,前表面死层浓度较高,整体VOC不高。再者,该过程很容易导致表面杂质浓度过高,过高的表面杂质浓度会造成“死层”。光在“死层”中发出的光生载流子都无谓地复合掉,导致效率下降。
发明内容
本发明为了克服现有技术中扩散工艺存在的方阻均匀性不易控制、时间冗长、前表面死层浓度较高,整体VOC不高的技术问题,提供一种晶硅高效高方阻电池片的扩散工艺,提高电池片方阻及光电转换效率。
为此,本发明采用以下技术方案:
一种晶硅高效高方阻电池片的扩散工艺,包括如下步骤:
(1)进炉;
(2)低温氧化;
(3)低温气体反应沉积;
(4)升温杂质再分布;
(5)高温气体反应沉积;
(6)降温杂质再分布;
(7)低温气体反应沉积;
(8)低温杂质再分布;
(9)出炉。
进一步地,所述步骤(1)的过程为:将硅片放入扩散炉中,将温度维持在750-800℃,通入流量为6000-8000sccm(标准毫升/分钟)的氮气,持续时间为10-20min。
进一步地,所述步骤(2)的过程为:将温度维持在750-800℃,通入流量为6000-8000sccm的氮气以及流量为1000-2000sccm的干氧,持续时间为5-10min。
进一步地,所述步骤(3)的过程为:将温度维持在750-800℃,通入流量为6000-8000sccm的氮气、流量为500-1000sccm的干氧以及流量为500-1000sccm的较低浓度的小氮,持续时间为5-15min。
进一步地,所述步骤(4)的过程为:将温度上升至800-850℃,通入流量为6000-8000sccm的氮气,持续时间为10-20min。
进一步地,所述步骤(5)的过程为:将温度维持在800-850℃,通入流量为6000-8000sccm的氮气、流量为500-1000sccm的干氧以及流量为1000-1500sccm的较高浓度的小氮,持续时间为10-25min。
进一步地,所述步骤(6)的过程为:将温度降至750-800℃,通入流量为6000-8000sccm的氮气,持续时间为10-20min。
进一步地,所述步骤(7)的过程为:将温度维持在750-800℃,通入流量为6000-8000sccm的氮气、流量为500-1000sccm的干氧以及流量为500-1000sccm的较低浓度的小氮,持续时间为5-10min。
进一步地,所述步骤(8)的过程为:将温度维持在750-800℃,通入流量为6000-8000sccm的氮气,持续时间为5-10min。
进一步地,所述步骤(9)的过程为:将温度维持在750-800℃,通入流量为6000-8000sccm的氮气,持续时间为10-20min,之后将硅片取出。
本发明的扩散工艺,通过三次变温扩散制结,多增加了两步再分布工艺,这样在杂质总量不变的条件下,预期结深会略有增加,前表面杂质浓度会减少,扩散均匀性会更好,“死层”的影响会减少,同时变温扩散兼具有吸杂的优势,故有效地ISC和VOC有较大幅度提高,FF也有所增加,效率改善较大。变温扩散工艺采用三次变温扩散技术,三步扩散成结,工艺调节余地大,工艺条件相对宽松。经三次预淀积和再分布,扩散的均匀性和重复性均得到显著改善。将三步的磷源浓度由低-高-低驱入衬底,温度随着低-高-低变化,使得硅片表面浓度逐渐减少,降低硅片表面复合及缺陷浓度,形成浓度梯度,进而提高开路电压和短路电流;同时变温扩散的模式,可有效地起到吸杂的效果,进而获得较低的表面浓度和较深的结深,改善FF,最终提升太阳电池转换效率。同时此吸杂工艺的去除有效地减少了工艺运行时间;本发明制成的电池片光电转化率提高了0.05%-0.1%;其中VOC提升了1-3mV,ISC提高了10-30mA,组件功率提升了0.5-1W;减少了生产时间,提高了生产效率。
因此,由发明的扩散工艺制成的电池片,光电转化率提高了0.05%-0.1%,同时,缩短了生产时间,提高了生产效率。
附图说明
图1为传统的一次扩散制结工艺流程图;
图2为本发明的流程图;
图3为本发明的温度变化折线图;
图4为本发明的ECV表面浓度与结深曲线图。
具体实施方式
为了使本技术领域的人员更好的理解本发明方案,下面将结合附图,对本发明的技术方案进行清楚、完整的描述。
如图2、3所示,本发明的晶硅高效高方阻电池片的扩散工艺,包括如下步骤:
(1)进炉;该进炉过程为:将硅片放入扩散炉中,将温度维持在750-800℃,通入流量为6000-8000sccm的氮气,持续时间为10-20min;
(2)低温氧化,即对进炉操作后的硅片进行低温氧化;该过程为:将温度维持在750-800℃,通入氮气,氮气流量为6000-8000sccm,通入干氧,干氧流量为1000-2000sccm,低温氧化过程的时间持续5-10min;
(3)低温气体反应沉积,即对低温氧化后的硅片进行低温气体反应沉积;该低温气体反应沉积的过程为:将温度维持在750-800℃,通入氮气,该氮气流量为6000-8000sccm,通入干氧,干氧的流量为500-1000sccm,通入较低浓度的小氮,该较低浓度的小氮流量为500-1000sccm,低温气体反应沉积过程的时间持续5-15min;
(4)升温杂质再分布,即对低温气体反应沉积后的硅片进行升温再分布;该升温杂质再分布的过程为:将温度升高至在800-850℃,通入氮气,氮气的流量为6000-8000sccm,升温杂质再分布过程的时间持续10-20min;
(5)高温气体反应沉积,即对升温再分布操作后的硅片进行高温气体反应沉积;该高温气体反应沉积的过程为:将温度维持在800-850℃,通入氮气,该氮气的流量为6000-8000sccm,通入干氧,该干氧的流量为500-1000sccm,通入较高浓度的小氮,该较高浓度的小氮流量为1000-1500sccm,高温气体反应沉积过程的时间持续10-25min;
(6)降温杂质再分布,即对高温气体反应沉积操作后的硅片进行降温杂质再分布;该降温杂质再分布的过程为:将温度降低至750-800℃,通入氮气,该氮气的流量为6000-8000sccm,降温杂质再分布过程的时间持续10-20min;
(7)低温气体反应沉积,即对降温杂质再分布后的硅片进行低温气体反应沉积;该低温气体反应沉积过程为:将温度维持在750-800℃,通入氮气,该氮气流量为6000-8000sccm,通入干氧,干氧的流量为500-1000sccm,通入较低浓度的小氮,该较低浓度的小氮的流量为500-1000sccm,低温气体反应沉积过程的时间持续5-10min;
(8)低温杂质再分布,即对低温气体反应沉积后的硅片进行低温杂质再分布;该低温杂质再分布过程为:将温度维持在750-800℃,通入氮气,该氮气的流量为6000-8000sccm,该低温杂质再分布的时间持续5-10min;
(9)出炉,即对低温杂质再分布后的硅片进行出炉操作。该出炉操作的过程为:将温度维持在750-800℃,通入氮气,该氮气的流量为6000-8000sccm,该出炉操作的时间持续10-20min,之后再取出硅片,完成扩散工艺过程。
如图4所示,本发明的ECV表面浓度与结深关系的曲线图,其中实线为传统的一次扩散制结工艺;而虚线则为本发明的扩散工艺;本发明生产的ECV表面浓度从(7-8)*E20/cm3降低至(3-4)*E20/cm3,结深略微增加了0.03-0.08um;本发明的扩散工艺电池片的光电转化率提高了0.05-0.1%;其中VOC提升1-3mV,ISC提升10-30mA,组件功率提升了0.5-1W。本发明采用三次变温扩散工艺缩短工艺时间,低温-高温-低温的方式,且去除了吸杂这一步骤,节约成本,并获得低表面浓度较深结的ECV浓度曲线,有效地提高了VOC,从而提高了生产效率。
显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

Claims (10)

1.一种晶硅高效高方阻电池片的扩散工艺,包括如下步骤:
(1)进炉;
(2)低温氧化;
(3)低温气体反应沉积;
(4)升温杂质再分布;
(5)高温气体反应沉积;
(6)降温杂质再分布;
(7)低温气体反应沉积;
(8)低温杂质再分布;
(9)出炉。
2.根据权利要求1所述的晶硅高效高方阻电池片的扩散工艺,其特征在于:所述步骤(1)的过程为:将硅片放入扩散炉中,将温度维持在750-800℃,通入流量为6000-8000sccm的氮气,持续时间为10-20min。
3.根据权利要求1所述的晶硅高效高方阻电池片的扩散工艺,其特征在于:所述步骤(2)的过程为:将温度维持在750-800℃,通入流量为6000-8000sccm的氮气以及流量为1000-2000sccm的干氧,持续时间为5-10min。
4.根据权利要求1所述的晶硅高效高方阻电池片的扩散工艺,其特征在于:所述步骤(3)的过程为:将温度维持在750-800℃,通入流量为6000-8000sccm的氮气、流量为500-1000sccm的干氧以及流量为500-1000sccm的较低浓度的小氮,持续时间为5-15min。
5.根据权利要求1所述的晶硅高效高方阻电池片的扩散工艺,其特征在于:所述步骤(4)的过程为:将温度上升至800-850℃,通入流量为6000-8000sccm的氮气,持续时间为10-20min。
6.根据权利要求1所述的晶硅高效高方阻电池片的扩散工艺,其特征在于:所述步骤(5)的过程为:将温度维持在800-850℃,通入流量为6000-8000sccm的氮气、流量为500-1000sccm的干氧以及流量为1000-1500sccm的较高浓度的小氮,持续时间为10-25min。
7.根据权利要求1所述的晶硅高效高方阻电池片的扩散工艺,其特征在于:所述步骤(6)的过程为:将温度降至750-800℃,通入流量为6000-8000sccm的氮气,持续时间为10-20min。
8.根据权利要求1所述的晶硅高效高方阻电池片的扩散工艺,其特征在于:所述步骤(7)的过程为:将温度维持在750-800℃,通入流量为6000-8000sccm的氮气、流量为500-1000sccm的干氧以及流量为500-1000sccm的较低浓度的小氮,持续时间为5-10min。
9.根据权利要求1所述的晶硅高效高方阻电池片的扩散工艺,其特征在于:所述步骤(8)的过程为:将温度维持在750-800℃,通入流量为6000-8000sccm的氮气,持续时间为5-10min。
10.根据权利要求1所述的晶硅高效高方阻电池片的扩散工艺,其特征在于:所述步骤(9)的过程为:将温度维持在750-800℃,通入流量为6000-8000sccm的氮气,持续时间为10-20min,之后将硅片取出。
CN201510302473.1A 2015-06-05 2015-06-05 一种晶硅高效高方阻电池片的扩散工艺 Active CN105280484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510302473.1A CN105280484B (zh) 2015-06-05 2015-06-05 一种晶硅高效高方阻电池片的扩散工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510302473.1A CN105280484B (zh) 2015-06-05 2015-06-05 一种晶硅高效高方阻电池片的扩散工艺

Publications (2)

Publication Number Publication Date
CN105280484A true CN105280484A (zh) 2016-01-27
CN105280484B CN105280484B (zh) 2018-11-30

Family

ID=55149303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510302473.1A Active CN105280484B (zh) 2015-06-05 2015-06-05 一种晶硅高效高方阻电池片的扩散工艺

Country Status (1)

Country Link
CN (1) CN105280484B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720135A (zh) * 2016-02-24 2016-06-29 江苏永能光伏科技有限公司 一种太阳能电池的降温退火工艺
CN106206266A (zh) * 2016-07-22 2016-12-07 上海芯导电子科技有限公司 一种推阱工艺
CN106340567A (zh) * 2016-08-31 2017-01-18 横店集团东磁股份有限公司 一种应用于太阳能电池提升开压的两步通源工艺
CN106783561A (zh) * 2016-12-30 2017-05-31 中建材浚鑫科技股份有限公司 一种降低硅片体内复合的新型扩散工艺
CN107331731A (zh) * 2017-07-04 2017-11-07 合肥市大卓电力有限责任公司 一种太阳能电池晶体硅片磷扩散方法
CN108389933A (zh) * 2018-03-05 2018-08-10 通威太阳能(成都)有限公司 一种高浓度磷硅玻璃且高方阻的扩散方法
CN109786511A (zh) * 2019-03-22 2019-05-21 韩华新能源(启东)有限公司 一种适用于选择性发射极的扩散方法
CN110164758A (zh) * 2019-05-22 2019-08-23 通威太阳能(合肥)有限公司 一种可降低常规多晶电池漏电值的扩散工艺
WO2023179021A1 (zh) 2022-03-24 2023-09-28 横店集团东磁股份有限公司 一种浅结扩散发射极的晶硅太阳能电池的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383198A (zh) * 2011-10-12 2012-03-21 润峰电力有限公司 一种晶硅电池的三步变温扩散工艺
CN103681976A (zh) * 2013-12-27 2014-03-26 百力达太阳能股份有限公司 一种高效低成本太阳电池扩散工艺
CN103943719A (zh) * 2014-03-25 2014-07-23 晶澳(扬州)太阳能科技有限公司 一种采用预氧结合低温-高温-低温的变温扩散方式对磷掺杂浓度进行控制的方法
CN104269456A (zh) * 2014-09-05 2015-01-07 浙江晶科能源有限公司 一种新型太阳电池p扩散吸杂的工艺
US20150132931A1 (en) * 2013-07-01 2015-05-14 Solexel, Inc. High-throughput thermal processing methods for producing high-efficiency crystalline silicon solar cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383198A (zh) * 2011-10-12 2012-03-21 润峰电力有限公司 一种晶硅电池的三步变温扩散工艺
US20150132931A1 (en) * 2013-07-01 2015-05-14 Solexel, Inc. High-throughput thermal processing methods for producing high-efficiency crystalline silicon solar cells
CN103681976A (zh) * 2013-12-27 2014-03-26 百力达太阳能股份有限公司 一种高效低成本太阳电池扩散工艺
CN103943719A (zh) * 2014-03-25 2014-07-23 晶澳(扬州)太阳能科技有限公司 一种采用预氧结合低温-高温-低温的变温扩散方式对磷掺杂浓度进行控制的方法
CN104269456A (zh) * 2014-09-05 2015-01-07 浙江晶科能源有限公司 一种新型太阳电池p扩散吸杂的工艺

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105720135A (zh) * 2016-02-24 2016-06-29 江苏永能光伏科技有限公司 一种太阳能电池的降温退火工艺
CN106206266A (zh) * 2016-07-22 2016-12-07 上海芯导电子科技有限公司 一种推阱工艺
CN106206266B (zh) * 2016-07-22 2020-02-04 上海芯导电子科技有限公司 一种推阱工艺
CN106340567A (zh) * 2016-08-31 2017-01-18 横店集团东磁股份有限公司 一种应用于太阳能电池提升开压的两步通源工艺
CN106783561A (zh) * 2016-12-30 2017-05-31 中建材浚鑫科技股份有限公司 一种降低硅片体内复合的新型扩散工艺
CN107331731A (zh) * 2017-07-04 2017-11-07 合肥市大卓电力有限责任公司 一种太阳能电池晶体硅片磷扩散方法
CN108389933A (zh) * 2018-03-05 2018-08-10 通威太阳能(成都)有限公司 一种高浓度磷硅玻璃且高方阻的扩散方法
CN109786511A (zh) * 2019-03-22 2019-05-21 韩华新能源(启东)有限公司 一种适用于选择性发射极的扩散方法
CN109786511B (zh) * 2019-03-22 2021-04-02 韩华新能源(启东)有限公司 一种适用于选择性发射极的扩散方法
CN110164758A (zh) * 2019-05-22 2019-08-23 通威太阳能(合肥)有限公司 一种可降低常规多晶电池漏电值的扩散工艺
WO2023179021A1 (zh) 2022-03-24 2023-09-28 横店集团东磁股份有限公司 一种浅结扩散发射极的晶硅太阳能电池的制备方法及其应用

Also Published As

Publication number Publication date
CN105280484B (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN105280484A (zh) 一种晶硅高效高方阻电池片的扩散工艺
US7611977B2 (en) Process of phosphorus diffusion for manufacturing solar cell
CN101937940B (zh) 印刷磷源单步扩散法制作选择性发射结太阳电池工艺
CN102593262B (zh) 一种多晶硅选择性发射极太阳能电池的扩散方法
CN103618023B (zh) 一种高方阻扩散工艺
NL2022765A (en) Step-by-Step Doping Method of Phosphorous for High-efficiency and Low-cost Crystalline Silicon Cell
CN106057980A (zh) 一种晶体硅太阳能电池的磷扩散方法
CN101414647A (zh) 一种高效太阳能电池局域深浅结扩散方法
CN104404626B (zh) 物理冶金多晶硅太阳能电池的磷扩散方法
CN103500774B (zh) 一种利用p型硅球作为硼源制备局部背场的方法
CN103632934A (zh) N型硅片的硼扩散方法、晶体硅太阳能电池及其制作方法
CN102931287A (zh) 一种n型电池片及其制备方法
CN105185870A (zh) 一种硅片的磷吸杂扩散工艺
CN102569502A (zh) 一种湿法刻蚀工艺
CN101494253B (zh) 一种选择性发射极太阳电池制造过程中的重扩散和轻扩散工艺
CN103633192A (zh) 一种提升晶体硅太阳电池光电转换效率的扩散工艺
CN105161570A (zh) 选择性发射极太阳能电池及其扩散方法
CN105118896A (zh) 升温推结扩散工艺
CN103094417A (zh) 低高低掺杂浓度的发射极结构的太阳能电池制作方法
CN104269456A (zh) 一种新型太阳电池p扩散吸杂的工艺
CN102024877A (zh) 一种晶体硅太阳能电池的氧化处理工艺
CN103618031A (zh) 一种改善刻蚀后硅片外观的扩散工艺
CN102969402A (zh) 一种浅结太阳能电池的制备工艺
CN104701425A (zh) 晶体硅太阳能电池的扩散后处理工艺
CN103178157B (zh) 一种选择性发射极多晶硅太阳电池的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Solar photovoltaic industry park Tianhe Road 213031 north of Jiangsu Province, Changzhou City, No. 2

Applicant after: trina solar Ltd.

Address before: Solar photovoltaic industry park Tianhe Road 213031 north of Jiangsu Province, Changzhou City, No. 2

Applicant before: CHANGZHOU TRINA SOLAR ENERGY Co.,Ltd.

Address after: Solar photovoltaic industry park Tianhe Road 213031 north of Jiangsu Province, Changzhou City, No. 2

Applicant after: TRINASOLAR Co.,Ltd.

Address before: Solar photovoltaic industry park Tianhe Road 213031 north of Jiangsu Province, Changzhou City, No. 2

Applicant before: trina solar Ltd.

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220819

Address after: 213031 Tianhe PV Industrial Park No. 2, Xinbei District, Changzhou, Jiangsu

Patentee after: TRINASOLAR Co.,Ltd.

Patentee after: Trinasolar Technology (Yancheng) Co.,Ltd.

Address before: 213031 Tianhe PV Industrial Park No. 2, Xinbei District, Changzhou, Jiangsu

Patentee before: TRINASOLAR Co.,Ltd.