CN105263405B - 多参数生理映射 - Google Patents

多参数生理映射 Download PDF

Info

Publication number
CN105263405B
CN105263405B CN201480010879.6A CN201480010879A CN105263405B CN 105263405 B CN105263405 B CN 105263405B CN 201480010879 A CN201480010879 A CN 201480010879A CN 105263405 B CN105263405 B CN 105263405B
Authority
CN
China
Prior art keywords
data
physiologic parameters
heart
color model
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201480010879.6A
Other languages
English (en)
Other versions
CN105263405A (zh
Inventor
曾清国
C·拉玛纳森
V·瓦苏德万
R·杜博伊斯
贾平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cardioinsight Technologies Inc
Original Assignee
Cardioinsight Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cardioinsight Technologies Inc filed Critical Cardioinsight Technologies Inc
Publication of CN105263405A publication Critical patent/CN105263405A/zh
Application granted granted Critical
Publication of CN105263405B publication Critical patent/CN105263405B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/333Recording apparatus specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/339Displays specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
    • A61B5/7289Retrospective gating, i.e. associating measured signals or images with a physiological event after the actual measurement or image acquisition, e.g. by simultaneously recording an additional physiological signal during the measurement or image acquisition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/001Texturing; Colouring; Generation of texture or colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/30Anatomical models
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00039Electric or electromagnetic phenomena other than conductivity, e.g. capacity, inductivity, Hall effect
    • A61B2017/00044Sensing electrocardiography, i.e. ECG
    • A61B2017/00048Spectral analysis
    • A61B2017/00053Mapping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/0072Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00726Duty cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00732Frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00767Voltage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2012Colour editing, changing, or manipulating; Use of colour codes

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Theoretical Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Psychiatry (AREA)
  • Cardiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Hardware Design (AREA)
  • Business, Economics & Management (AREA)
  • Software Systems (AREA)
  • Computer Graphics (AREA)
  • Architecture (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Psychology (AREA)
  • Quality & Reliability (AREA)

Abstract

一种映射生成器可以被编程为通过使用多维颜色模型的不同颜色分量对与患者的组织相对应的几何表面的至少两个不同生理学参数进行编码以使得所述不同生理学参数中的每一个被按照所述不同颜色分量中的至少一个编码来生成多参数图形映射。

Description

多参数生理映射
相关申请
本申请要求在2013年1月17日提交并且题为“MULTI-PARAMETER PHYSIOLOGICALMAPPING”的美国临时专利申请第61/753,764号的权益,其全部内容通过引用而被结合于此。
技术领域
本公开涉及映射多个生理学参数。
背景技术
电生理学是对生物细胞和组织的电性质的研究。电生理学被用来在包括脑电图、心电图、肌电图、眼动电图等的多种应用中测量患者的生物组织的电活动。检测从感测到的电信号得出的信息并将其可视化可以与临床研究以及诊断患者病情有关。
发明内容
本公开涉及映射多个生理学参数。
作为一个示例,一个或多个非暂时计算机可读介质包括可由处理器执行的指令。这些指令可以包括被编程为通过使用多维颜色模型的不同颜色分量对与患者的组织相对应的几何表面的至少两个不同生理学参数进行编码,以使得不同生理学参数中的每一个被按照不同颜色分量中的至少一个编码来生成多参数图形映射的映射生成器。
在另一个示例中,一种方法可以包括将生理学参数数据存储在存储器中。该生理学参数数据可以表示患者的组织的至少两个不同生理学参数。至少两个不同生理学参数中的每一个可以使用多维颜色模型的不同颜色分量来编码,以使得不同生理学参数中的每一个被按照不同颜色分量中的至少一个编码。可以基于编码为对应于患者的组织的几何表面生成多参数图形映射,以使得不同生理学参数在该多参数图形映射中被可视化。
附图说明
图1示出了一种用于映射多个生理学参数的系统的一个示例。
图2示出了可以被用于映射生理学信息的两类颜色模型的示例。
图3是可被应用于正被按照颜色模型的分量编码的数据的示例调节功能的示图。
图4示出了可以被实现在图1的系统中的计算器的一个示例。
图5示出了根据一个颜色模型的其中相位被映射到色调的生理映射的一个示例。
图6示出了根据另一颜色模型的其中相位被映射到色调并且幅度被映射到明度的生理映射的一个示例。
图7示出了根据HSV颜色模型的其中相位被映射到色调并且幅度被映射到饱和度的生理映射的一个示例。
图8示出了可以生成多参数映射的系统的一个示例。
图9示出了示例计算环境。
具体实施方式
本公开涉及并发地生成电生理学信息的多个参数的映射(例如,在单个电解剖映射中)。例如,多个相关参数可以被映射到共同的几何表面,并且根据多分量颜色模型而被编码。以心电图映射为例,两个相关心脏参数中的一个可以被映射到颜色模型的一个或多个分量并且相关参数中的另一个可以被映射到颜色模型的另一分量。由此得到的映射可以在输出显示中被可视化。因此,通过知道多个心脏参数中的哪一个被按照颜色模型的分量中的哪一个或哪些编码(例如,经由提供标识编码的比例尺),用户可以从由此得到的输出映射中收集比以给定颜色模型对信号参数进行编码的传统映射更多的信息。
这里所使用的术语“颜色模型”可以指代描述颜色可以被表示为数字的元组(通常作为三个或者四个颜色分量)的方式的抽象数学模型(例如,实现为机器可读指令)。可以被在此公开的系统和方法使用的颜色模型的示例包括HSV(色调、饱和度、明度)、HSL(色调、饱和度、亮度/辉度)、HIS(色调、饱和度、强度)、RGB(红色、绿色、蓝色)、CMYK(青色、洋红色、黄色、黑色)、YIQ等。其他颜色编码方案可以被利用。
尽管这里的许多示例是在心脏电信号的环境下描述的,但是将会明白在这里公开的方法同样适用于其他电生理学信号,诸如可以根据其生成电解剖图形映射的脑电图、肌电图、眼动电图等。
图1示出了可以被实现为执行多参数生理映射的系统10的一个示例。系统10包括被编程为基于电解剖数据14计算(例如,量化)包括表示两个或多个参数的数据的生理学数据13的计算器12。电解剖数据14可以包括描述多个解剖位置处在一个或多个时间间隔内的电活动的患者的电数据和几何数据的组合。电解剖数据14可以被存储在存储器(例如,一个或多个非暂时计算机可读介质)中。在一些示例中,电解剖数据14可以被提供作为表示对应解剖位置在一个或多个时间间隔内的电活动的电描记图或者其他电波形。
在一些示例中,电数据所对应于的解剖位置可以被表示为在几何表面上分布的节点,几何表面可以是二维表面或者三维表面。例如,几何表面可以是诸如患者(例如,人类或者其他动物)的组织之类的解剖结构的表面,或者其可以是用于在空间上描绘电信息的任意表面。在一些示例中,患者组织可以是心脏组织,使得几何表面对应于心外膜表面、心内膜表面或者另一心脏包络。几何表面可以是特定于患者的(例如,基于患者的影像数据),其可以是表面的通用模型或者其可以是基于特定于患者的数据(例如,影像数据、患者测量结果和/或类似者)而定制的模型的混合版本。电解剖数据14因而可以描绘这种跨任何这种几何表面(例如,患者组织)分布的节点的电势以及位置的特征。
作为另一示例,电解剖数据14的电分量可以对应于电生理信号,诸如可以对应于由一个或多个电极获得的或者以其他方式从由这种电极获得的信号得到的电生理信号。例如,电极可以被应用以非侵入性地测量电活动,诸如可以被放置在诸如患者的头(例如,为了脑电图)、患者的胸(例如,为了心电图)或者其他非侵入性位置之类的患者的体表上。电解剖数据14从而可以对应于体表测量的电信号。在其他示例中,如在这里讨论的,电解剖数据14可以包括基于直接体表测量结果而被重构到另一表面上的电信号。作为另一示例,电解剖数据14的电部分可以诸如通过放置在患者的身体内(例如,在EP研究或者类似过程期间在铅或者篮状导管上)的一个或多个电极而被非侵入性地测量。在其他示例中,电解剖数据14可以包括包含与对应于患者组织的几何表面相关联的非侵入性测量电信号和侵入性测量电信号两者的混合方法或者从该混合方法得出。
通过另一示例,心脏的一区域可以被表示为几何表面,该几何表面可以是二维表面或者三维表面(例如,心外膜表面、心内膜表面或者其他心脏包络)。几何表面从而可以表示多达心脏的整个表面的一部分。几何表面还可以是特定于患者的(例如,基于患者的影像数据)或者它可以是通用模型或者它可以是基于特定于患者的数据(例如,影像数据、患者测量结果和/或类似者)而生成的模型。几何表面可以包括在这里也被称作节点的多个离散位置。
在图1中的示例中,计算器12可以包括被演示为参数计算器1至参数计算器N的两个或多个参数计算器16和18,其中N是表示计算器的数目的正整数(N>1)。每一个参数计算器16和18被编程为计算感兴趣的几何表面的每一个点的生理学参数数据22和24。计算出的生理学参数数据22和24在几何表面(例如,心外膜表面、心内膜表面或者其他心脏包络)上在空间上可以是相关的。附加地或者可替代地,计算出的参数22和24在时间和空间上可以是相关的。例如,计算出的参数值可以对应于跨几何表面以及诸如与电数据14相关联的时间索引可以跟踪的相同的时间或者时间间隔的相同空间位置,计算器16和18根据该电数据14计算参数数据。就是说,不同的参数数据22和24尽管表示不同的生理学信息,但是在时间和空间上可以是一致的。此外,计算器16和18中的每一个可以计算一个或多个时间段的生理学数据13,这一个或多个时间段可以基于用户输入来指定。以这种方式,生理学数据13经由与数据相关联的时间索引对于每一个参数在时间上可以是一致的。
作为一个示例,计算器16中的一个可以被编程为基于电解剖数据14针对给定时间间隔来计算跨几何表面的多个节点中的每一个的相位。计算器18中的一个或多个其他可以被编程为基于相同电解剖数据14来计算几何表面的其他心脏信息。由此得到的相位数据和其他计算出的心脏信息可以分别作为参数数据22和24而被存储在生理学数据13中。参数计算器18可以计算的其他心脏信息的类型的示例关于这里的图4而被公开。
计算出的生理学数据13(例如,在图1的示例中被存储作为参数1数据22和参数N数据24)可以作为与跨该数据所表示的几何表面分布的节点相关联的表格或者其他数据结构而被存储在存储器中。在一些示例中,参数数据22和24可以对应于针对单个间隔计算的静态数据。在其他示例中,相位数据和幅度数据可以是针对多个单独间隔来计算的。这些间隔可以是连续或不连续的间隔。
映射生成器26可以被编程为生成多参数图形映射28。例如,映射生成器26可以被编程为通过基于多维度颜色模型30对不同参数进行编码来将表示不同生理学参数的不同参数数据22和24结合为共用图形映射28。颜色模型30可以包括不同组的参数数据22或24可以被按其编码的多个颜色分量。映射生成器26可以基于按照不同颜色分量对参数数据22和24的编码而生成几何表面(例如,对应于患者组织)的对应多参数图形映射。映射生成器26可以包括输出生成器40,输出生成器40被编程为基于将不同参数数据22和24映射到颜色模型30而向显示设备提供图形映射28的输出可视化。结果,不同的生理学参数可以在同一多参数图形映射28中被并发地可视化。
在图1中的示例中,映射生成器26可以包括规格化和映射功能32,规格化和映射功能32根据用来编码每一个参数的颜色模型30的颜色分量将参数数据22和24中的每一个缩放为相应的规格化尺度。规格化和映射组件32例如可以将参数1数据22映射到颜色模型30的一个颜色分量并且将另一参数数据24映射到颜色模型的另一分量。
对于参数1数据表示计算出的相位数据并且参数N数据24表示幅度的一个示例,规格化和映射组件32可以通过跨预定线性尺度映射其幅度值范围来使幅度数据规格化(例如,其最大幅度值到1.0并且其最小值到0.0),该预定线性尺度可以被映射到对于幅度选中的颜色分量中的值的范围。对于HSV颜色模型的示例,三个颜色分量可以被定义为(h,s,v)的1x 3向量以在空间和时间中的给定点处经由颜色尺度来编码计算出的生理学数据13。继续映射相位和幅度数据的示例,色调(h)可以被用于编码相位数据22。如果饱和度(s)被选择用于编码幅度数据24,则饱和度的第二颜色分量将编码规格化的幅度而HSV颜色模型30的第三分量(明度(v)分量可以被设置为恒定值(例如,v=1或者其他值)或者可变值。类似的规格化和缩放可以被用于将在共用时间间隔内与给定几何表面相关联的生理学参数映射到一个或多个其他颜色模型。
如提到的,映射生成器26可以包括用来暴露用户可编程功能的用户接口(例如,图形用户接口)。例如,映射生成器26可以包括被编程为调节映射数据20到颜色模型的规格化和映射的调节/映射控件36。调节/映射控件36可以响应于用户输入而调节对参数数据22或24执行(例如,应用线性或非线性缩放)的规格化和缩放。此外,调节/映射控件36可以指定并控制每一个参数被映射到颜色模型30的哪一个颜色分量。此外或者可替代地,如果颜色模型30的颜色分量仍然未被映射,则用户接口的调节组件可以被用来指定这种颜色分量的值。调节的量可以响应于用户输入而被选择性地控制。
图2演示了可以被用于编码几何表面的信号图形映射中的不同生理学数据参数的两个不同颜色模型40和42的示例。在图2中的示例中,颜色模型40是HSL(色调、饱和度、亮度/辉度)颜色模型并且模型42是HSV(色调、饱和度、明度)颜色模型。在图1和图2之间进行参考,对于使用模型40的示例,缩放和映射32可以缩放并且映射将被按照色调、饱和度或亮度中的一个编码的第一参数数据22并且将另一参数24映射到色调、饱和度和亮度分量中仍然未被映射的另一个。类似地,对于使用模型42的示例,缩放和映射32可以缩放并且映射将被按照色调、饱和度、明度中的一个编码的第一参数数据22并且将另一参数24映射到色调、饱和度、明度分量中仍然未被映射的另一个。
作为另一示例,在颜色模型30被实现为HSV颜色模型(例如,见图2)的情况下,第一参数数据22可以被映射到色调并且第二组参数数据24可以被映射到饱和度。作为另一示例,第二参数数据24可以被映射到色调并且第一参数数据可以被映射到明度。剩余的未编码颜色分量可以被设置为诸如一(unity)的固定值或者可变值。在其他示例中,未编码的颜色分量可以被设置为期望值,诸如可以响应于经由调节控件36的用户输入而被指定。
用户接口34还可以包括颜色模型选择器38,颜色模型选择器38被编程为响应于用户输入而从多个颜色模型30中选择被映射生成器利用哪个颜色模型。例如,用户不仅可以经由用户接口34选择性地定义映射和计算出的参数数据22和24如何被颜色模型30编码,而且可以使用颜色模型选择器38来选择哪一个颜色模型被利用。例如,颜色模型30可以包括多个不同多参数颜色模型,其中的每一个可以包括可以被选择性地用于编码生理学数据13的不同参数的两个或更多颜色分量。
在一些示例中,调节/映射控件36可以被编程为将计算出的参数(例如,相位数据22或者幅度数据24)中的单个映射到颜色模型中的选中颜色分量,而其他颜色分量被设置为固定值或者预定可变值,诸如可以被输出生成器40用来生成对单个参数进行编码的映射。单个参数映射可以与多参数映射一起被并发地可视化以进一步允许用户在已被计算出的参数之间比较相应的映射和关系(例如,在并排比较中)。
除了将数据规格化为预定尺度(例如,范围从0到1)之外,代替将未映射颜色分量固定为固定值,未映射分量可以诸如响应于用户输入而被映射到用户定义值。例如,未映射分量可以被映射到诸如可以在空间和/或时间上变化的可变值。作为另一示例,用户可以通过添加预定角度以旋转色调圈(例如,按照180度)来重新映射诸如色调之类的具有重复的角度值的颜色分量。以这种方式,不同的相位数据可以被映射到不同的色调或者其他颜色分量。
规格化和映射组件32还可以被配置为对所执行的规格化和缩放应用线性或者非线性的映射。例如,可以相对于正被编码的参数之一(例如,相位数据或者幅度数据)来实现伽马指数校正。此外或者可替代地,规格化和映射组件32可以应用分段线性缩放以近似期望的非线性函数。
规格化和映射功能32可以被配置为针对正被给定颜色模型编码的参数实现其他调节和校正。图3演示了可以被实现的不同形式的伽马校正。对于小于1的伽马,对比度可以被增强,如在图3中的最左图50中示出。图3的中间图52演示了:对于等于1的伽马,输出可以在高和低阈值处被截断。图3中的最右图54演示了:对于大于1的伽马,其中对比度可以被降低。本领域技术人员将会明白并认识到其他形式的线性和非线性操作可以被规格化和映射组件32相对于正被颜色模型编码以映射在几何表面上的多参数数据中的一个或多个应用。
图4示出了可以被用来基于电解剖数据(例如,图1中的数据14)计算两个或多个参数的另一计算器60的一个示例。计算器60就计算生理学数据62(例如,对应于图1中的参数1数据22至参数N数据24)而论可以对应于图1的计算器18。相应地,对于计算器60和生理学数据62的附加语境可以参考图1及其描述。计算器60及其组件可以被实现为机器可读指令,这些机器可读指令可以被存储在一个或多个非暂时介质中并且由处理资源(例如,一个或多个处理核心)执行。类似地,数据62可以被存储在一个或多个非暂时计算机可读介质(例如,一个或多个存储器设备)中。
在图4中的示例中,计算器60可以包括相位计算器64,相位计算器64被编程为基于表示几何表面随着时间过去的电活动的数据来计算跨对应于患者组织的几何表面分布的节点的电活动的相位。各种方法可以被用作相位计算器。作为一个示例,相位计算器64可以使用希尔伯特变换,诸如在2013年9月20日提交并且题为“PHYSIOLOGICAL MAPPING FORARRHYTHMIA”的PCT申请第PCT/US13/60851号中公开的类型,该申请通过引用而被结合于此。其他方法在其他实施例中也可以被用来确定相位。相位计算器64从而可以计算几何表面上的节点中的每一个在一段时间内的相位,其可以被存储作为相位数据66。
作为另一示例,相位计算器64可以被编程为通过将电信号的每一个周期转换为作为时间的函数的周期性信号来计算相位。例如,让–π是周期的任意开始;那么π是下一周期的开始。相位计算器64可以以增加方式向每一个周期的开始和结束之间的每一个时间点指派[–π,π]之间的相位值。例如,假定得到的相位是幅度1的复数的相位;那样,每一个相应周期可以被转换为复数空间中以0,0为中心的一个圆圈。
计算器60还可以包括幅度计算器68,幅度计算器68被编程为确定对几何表面的电压电势的幅度的指示,其可以被存储作为幅度数据70。幅度计算器68可以基于每一个相应这种节点的测量和/或得出的电信号(例如,电数据14)来确定跨同一几何表面的每一个节点的电势的幅度。
计算器60还可以包括被编程为计算移动窗口中的电压变化的电压变化计算器72。计算出的跨同一几何表面分布的每一个节点的电压变化可以被存储作为电压变化数据74。例如,对于可以由与几何表面的输入电信号相关联的对应时间指数定义的每一个时间帧,电压变化计算器72可以通过下式使用以选定时间为中心的窗口来计算电压变化:
max(pt)-min(pt)
其中pt是以一定长度n(例如,n=250ms)的时间t为中心的电势的阵列。
如果移动窗口是完整间隔,则电压变化是标量。
计算器60还可以包括导数计算器76,导数计算器76被编程为计算由电解剖数据14所表示的电活动信号提供或者由之得出的一个或多个信号的导数。导数计算器76可以被应用以计算包括在生理学数据或输入电数据(例如,对应于电解剖数据14)中存储的那些的任何波形的导数。跨同一几何表面分布的每一个节点的导数可以被存储作为导数数据78。信号的导数可以更好地检测快速变化。例如,dv/dt的最小值可以被用来检测给定窗口中的电势的激活。导数数据(例如,dv/dt)可以经由按照对应多参数图形映射的给定颜色尺度的不同颜色分量对相位数据和导数数据进行编码,被与多个时间间隔内的相位数据合并。另外,这种多参数图形映射可以在包括多个连续时间指数的一个或多个时间间隔内被计算以提供可以帮助确认使用电势的激活的动画动态映射(例如,影片似的映射)。
作为另一示例,计算器60可以包括包络计算器80。包络计算器80可以被编程为根据输入电信号(例如,电数据14)计算电势或者经滤波电势的包络。计算出的电势的包络可以被存储作为跨感兴趣的几何表面的每一个节点的包络数据82。例如,包络计算器80可以被编程为执行求平方和低通滤波和/或希尔伯特变换,以检测电压幅度的包络。作为一个示例,回来参考图1,映射生成器26可以通过按照选中颜色模型的不同颜色分量对每一个进行编码来将计算出的包络数据82与相位信息(相位数据66)相结合,以利用跨几何表面的相位使信号幅度的动态可视化。
作为另一示例,计算器18可以包括不确定性计算器84,不确定性计算器84被编程为计算与生理学数据62中存储的计算出参数中的一个或多个其他相关联的不确定性度量。计算出的不确定性可以被存储作为不确定性数据86。不确定性度量可以被应用以确定对由计算器60计算出的另一组数据的置信度的指示。例如,通过在每一个相应位置周围的小空间邻域内评估信号的相似度,可以针对跨几何表面的每一个位置计算不确定性。例如,不确定性计算器可以被编程为在给定节点的每一个邻域内计算信号的互相关的平均值并且将计算出的互相关与该给定节点的信号相比较(例如,计算之间的差异)。作为另一示例,在HSV颜色模型中,计算出的不确定性数据86可以被按照HSV空间中的色调或者明度编码并且其他参数数据可以被按照诸如饱和度、明度或者色调之类的不同颜色分量编码。
鉴于前述,将会明白各种参数可以被计算并且用于生成多参数图形映射,不同的参数据此被按照给定颜色尺度的不同颜色分量编码。为了控制哪些参数被利用,选择器88可以被用来编程计算器60。例如,选择器可以将计算器60编程为利用计算器60中的两个或多个并且响应于用户输入而相应地处理输入数据。由此得到的计算出的生理学数据62可以被这里所公开的映射生成器利用。例如,选择器88可以经由图形用户接口(例如,图1中的用户接口34)而被暴露于用户。因为计算器60所处理的电信号可以跨几何区域(例如,在多达整个心脏表面上)而被同时测量,因此计算出的生理学数据62跨感兴趣的几何区域在空间和时间上同样可以是一致的。用户可以基于计算出的参数选择性地生成映射以使不同参数之间的关系可视化。
图5、图6和图7是通过根据选中颜色模型来编码到心脏的几何表面的参数而可以被生成的心脏映射100、102和104的示例。图5、图6和图7中的示例中的每一个都利用HSV颜色模型来在表面上不同地编码相位和幅度信息。
图5演示了心脏映射100的一个示例,其中相位数据仅被映射到色调并被按照色调编码并且饱和度和明度颜色分量被设置为等于固定值(例如,s=v=1)。图6演示了示例映射102,其中相位信息被映射到色调颜色分量,饱和度颜色分量被设置为固定值并且规格化的幅度按照HSV颜色模型的明度颜色分量而被编码。在图7中,通过作为色调来编码相位信息并且按照饱和度颜色分量来编码规格化的幅度来生成映射104。在图7中,明度颜色分量被设置为固定值。
图5、图6和图7中的图的比较演示了可以在观看图6和图7后确定从图5中的单个参数相位映射不明显的信息。例如,图6和图7演示了右心耳(RAA)(例如,对应于每一个图的左上角)处或者附近的信号是低幅度。这被图6示出为更少亮度值的更暗区域并且在图7中由褪色的颜色(例如,对应于更少饱和度)示出。此外,左心耳(LAA)周围的区域具有如在图6和图7中示出的高幅度信号。关于幅度的附加信息从而可以提供对与在图5中的仅相位映射中给出的信息相关联的置信度的指示。该置信度还可以基于在幅度数据的每一个相应映射中编码的值来计算。与心脏电活动相关联的其他指示和参数可以被以类似方式编码以提供置信度和对基础病情的理解。
图8示出了可以被用于执行对患者的诊断和/或治疗的系统150的一个示例。在一些示例中,系统150可以被配置为作为诊断或治疗过程的一部分实时地生成心脏152的多参数生理映射,诸如以帮助医师确定用于向患者给予治疗的参数(例如,给予位置、量和治疗类型)。例如,诸如起搏导管之类的贴有一个或多个治疗给予设备156的导管可以被插入到身体154中以在心内或者心外接触患者的心脏152。本领域技术人员将会明白并认识到所可以利用的、可以根据治疗的类型和过程而异的治疗给予设备156的各种类型和配置。例如,治疗设备156可以被配置为给予电治疗、化学治疗、声波治疗、热治疗或其任何组合。
例如,治疗给予设备156可以包括位于消融导管的尖端处的被配置为响应于由治疗系统158提供的电信号(例如,射频能量)而生成用于消融组织的热量的一个或多个电极。在其他示例中,治疗给予设备156可以被配置为给予冷却以执行消融(例如,冷冻消融)、给予化学品(例如,药物)、超声消融、高频消融或者这些或其他治疗机制的组合。在其他示例中,治疗给予设备156可以包括位于起搏导管的尖端处的用来响应于由治疗系统158提供的电信号(例如,起搏脉冲)而给予诸如用于使心脏起搏的电刺激的一个或多个电极。其他类型的治疗也可以经由治疗系统158和放置在身体内的侵入性治疗给予设备156来给予。
治疗系统158可以位于患者的身体154外部并且被配置为控制正由设备156给予的治疗。例如,治疗系统158包括控制电路160,控制电路160可以经由在设备(例如,电极)156与治疗系统158之间电连接的导电链路来传送(例如,提供)电信号。控制系统160可以控制被提供给设备156的用于经由一个或多个电极154向心脏152的一个或多个位置给予治疗(例如,消融或者刺激)的信号的参数(例如,电流、电压、重复速率、触发延迟、感测触发幅度)。控制电路160可以基于自动、手动(例如,用户输入)或者自动和手动的组合(例如,半自动控制)来设置治疗参数并施加刺激。一个或多个传感器(未示出)还可以将传感器信息传送回治疗系统158。设备156相对于心脏152的位置可以经由成像模式(例如,透视、X射线)、映射系统162、直视等而被在术中确定和跟踪。设备156的位置和治疗参数因而可以被结合以提供对应的治疗参数数据。
在经由治疗系统158提供治疗之前、之间和/或之后,另一系统或者子系统可以被用来获取患者的电生理学信息。在图8中的示例中,传感器阵列164包括可以被用来记录患者活动的一个或多个电极。传感器阵列可以包括被配置为以非侵入性方式、侵入性方式或其组合来测量患者的电活动的电极。
作为一个示例,传感器阵列164可以对应于在患者的躯干的一部分上分布的用于测量与患者的心脏相关联的电活动(例如,作为心电图映射过程的一部分)的体表传感器的高密度布置(例如,多于200个电极)。所可以使用的非侵入性传感器阵列的一个示例在2009年11月10日提交的国际申请No.PCT/US2009/063803中被示出和描述,该申请通过引用而被结合于此。感测电极的其他布置可以被用作传感器阵列164。阵列可以是电极的缩减集,其不覆盖患者的整个躯干并且被设计用于为了特定目的而测量电活动(例如,专门设计用于分析AF和/或VF的电极阵列)和/或监视心脏的预定空间区域(例如,区)。
一个或多个传感器还可以位于被插入到患者的身体中的设备156上。这种电极可以被与传感器阵列164结合用于映射诸如心室壁之类的心内膜面以及心外膜面的电活动。此外,这种电极也可以被用来帮助确定设备156在心脏152内的位置,其可以被登记到由系统150生成的图像或映射中。可替代地,这种定位可以在没有从心脏152内或者心脏152上的电极发射信号的情况下实现。
在包括侵入性方式、非侵入性方式或者侵入性和非侵入性传感器的组合的用于获取患者电信息的这种示例方式中的每一个中,一个或多个传感器阵列164向对应的测量系统166提供感测到的电信息。测量系统166可以包括用于提供对应的测量数据170的适当的控件和信号处理电路168,测量数据170描述由传感器阵列164中的传感器检测到的电活动。测量数据170可以包括模拟和/或数字信息。
控件168还可以被配置为控制用于测量电活动并且提供测量数据170的数据获取处理。测量数据170可以被与治疗系统给予治疗同时地获取,诸如以检测响应于应用给定治疗(例如,根据治疗参数)而发生的心脏152的电活动。例如,适当的时间戳可以被用于为相应的数据170和治疗参数之间的时间关系编索引,以便于对其的评估和分析。
映射系统162被编程为通过应用适当的处理和计算来将与心脏152的电活动对应的测量数据170与几何数据172相结合,以提供对应的输出数据174。输出数据174可以表示跨几何表面(例如,心脏152的心脏包络)的多个参数或者描绘其特性。
因为测量系统166可以并发地测量预定区域或者整个心脏的电活动(例如,在传感器阵列164覆盖患者的身体154的整个躯干的情况下),由此得到的输出数据因而也可以以时间和空间一致的方式表示预定区域或者整个心脏的并发数据。可以基于用户输入来选择为之计算输出数据/映射的时间间隔。此外或者可替代地,所选择的间隔可以被与治疗系统158的治疗的应用相同步。
对于电测量数据被非侵入性地获得(例如,经由体表传感器阵列164)的示例,电描记图重构180可以被编程为基于处理信号和几何数据172来计算逆解并提供对应的重构电描记图。重构的电描记图从而可以对应于跨心脏的几何表面的心电图活动,并且可以包括静态(在给定时间瞬间处为三维)并且/或者是动态的(例如,随着时间过去而变化的四维映射)。系统10中所可以利用的逆算法的示例在通过引用而被结合于此的美国专利第7,983,743和6,772,004号中被公开。EGM重构180从而可以将经由传感器阵列164测量到的体表电活动重构到心脏包络上的众多位置上(例如,多于1000个位置,诸如大约2000个位置或者更多)。在其他示例中,映射系统162可以基于诸如经由篮状导管或其他形式的测量探针侵入性地测量的电活动来计算心脏的一个区域上的电活动。
如在这里讨论的,心脏包络可以对应于与患者的心脏(其表面可以是心外膜的或是心内膜的)相对应的三维表面几何结构。可替代地或者此外,心脏包络可以对应于存在于患者的心脏的心外膜面与已经放置有传感器阵列164的患者的身体的表面之间的几何表面。此外,电描记图重构180所利用的几何数据172可以对应于实际患者解剖几何结构、预编程的模型或其组合(例如,基于患者解剖结构而被修改的模型)。
作为一个示例,几何数据172可以是患者的躯干的图形表示的形式,诸如基于为患者获取的图像数据。可以对为患者获取的数字图像集执行包括解剖特征的提取和分割在内的图像处理。此外,传感器阵列164中的每一个电极的位置可以被包括在患者几何数据172中,诸如通过在电极被放在患者上时获取图像并且通过适当的提取和分割来识别坐标系统中的电极位置。其他基于非成像的技术也可以被用来获得电极在诸如数字转换器之类的传感器阵列中的位置。
可替代地,几何数据172可以对应于数学模型,诸如可以是通用模型或是已经基于患者的图像数据而被构造的模型。可以在几何数据172中识别包括电极在传感器阵列164中的位置在内的适当解剖或其他界标,以便于电测量数据170的注册和对其执行逆方法。这种界标的识别可以被手动地(例如,由人经由图像编辑软件)或者自动地(例如,经由图像处理技术)完成。
作为另一示例,诸如在此描述,几何数据172可以使用可以基于其来构造对应表示的几乎任何显像模式而被获得。这种显像可以被与记录用来生成患者测量数据170的电活动并发地执行,或者显像可以被单独执行(例如,在测量数据已被获取之前)。
在确定跨心脏的几何表面的电势数据(例如,根据非侵入性地和/或侵入性地获得的测量结果计算出的电描记图数据)之后(或者与之同时),电描记图数据还可以经历信号处理以计算一个或多个心脏映射。绘图系统162可以包括参数计算器182,参数计算器182被编程为计算描绘心脏的几何表面中的多个点中的每一个的心脏电活动的特性的两个或多个参数。例如,参数计算器182可以被编程为计算关于图4公开的生理学数据中的任一个(例如,数据62)。作为一个示例,参数计算器可以计算在一个或多个时间间隔内跨患者组织(例如,心脏组织或者其他组织,诸如大脑或者其他肌肉)的给定几何表面的相位和电描记图幅度。多个点的幅度可以被确定为用于计算相位数据的相同间隔内的点之间的相对幅度。
输出数据174可以被转换为供由可视化引擎186显示的图形显示。可以响应于经由对应的可视化GUI 190的用户输入来选择与可视化相关联的参数,诸如包括选择时间间隔、将被在可视化中给出的信息的类型等。绘图系统162因而可以生成对应的输出数据174,输出数据174可以继而被可视化引擎186呈现为显示器192中的诸如包括心电图映射194的对应图形输出,在心电图映射194中多个参数各自被按照颜色模型中的不同颜色分量编码。
在一些示例中,治疗系统的控件160可以利用输出数据174来控制一个或多个治疗参数。作为一个示例,控件160可以基于根据用来生成一个或多个图形映射的输出数据174确定的心脏信息,来控制向心脏中的地点(例如,心外膜壁或心内膜壁)给予消融治疗。其他类型的治疗也可以基于输出数据而被控制。所实现的控制可以是全自动的控制、半自动的控制(部分自动的并且响应于用户输入)或是基于输出数据174的手动控制。
鉴于前述结构和功能描述,本领域技术人员将会认识到在此公开的系统和方法的多个部分可以被实现为方法、数据处理系统或者诸如非暂时计算机可读介质之类的计算机程序产品。相应地,在此公开的方法的这些部分可以采取完全硬件实施例、完全软件实施例(例如,在非暂时机器可读介质中)或者结合软件和硬件的实施例的形式,诸如关于图9中的计算机系统示出和描述的。另外,在此公开的系统和方法的多个部分可以是在介质上具有计算机可读程序代码的计算机可用存储介质上的计算机程序产品。任何合适的计算机可读介质都可以被利用,包括但不限于静态和动态的存储设备、硬盘、光存储设备和磁存储设备。
在此已经参考方法、系统和计算机程序产品的框图示描述了某些实施例。将会明白,图示中的框和图示中的框的组合可以由计算机可执行指令实现。这些计算机可执行指令可以被提供给通用计算机、专用计算机或者其他可编程数据处理装置(或者器件和电路的组合)的一个或多个处理器以产生一机器,使得经由处理器运行的指令实现在一个或多个框中指定的功能。
这些计算机可执行指令也可以被存储在计算机可读存储器中,该计算机可读存储器可以指导计算机或者其他可编程数据处理装置以特定方式起作用,以使得在该计算机可读存储器中存储的指令产生包括实现在一个或多个流程框中指定的功能的指令的制品。计算机程序指令也可以被加载到计算机或者其他可编程数据处理装置上以使得一系列操作步骤在计算机或者其他可编程装置上被执行以产生计算机实现的处理,以使得在计算机或者其他可编程装置上运行的指令提供用于实现在一个或多个流程框中指定的功能的步骤。
关于这一点,图9示出了计算机系统300的一个示例,计算机系统300可以被用来执行一个或多个实施例,诸如包括传感器数据的获取和处理、图像数据的处理以及对与心脏电活动的分析相关联的经变换传感器数据和图像数据的分析。计算机系统300可以被实现在一个或多个通用联网计算机系统、嵌入式计算机系统、路由器、交换机、服务器设备、客户端设备、各种中间设备/节点或独立计算机系统上。此外,计算机系统300可以被实现在诸如例如个人数字助理(PDA)、膝上型计算机、传呼机、智能电话等的各种移动客户端上,假如它包括足够的处理能力的话。
计算机系统300包括处理单元301、系统存储器302和系统总线303,系统总线303将包括系统存储器在内的各种系统组件耦合到处理单元301。双微处理器和其他多处理器架构也可以被用作处理单元301。系统总线303可以是使用各种总线架构中的任一种的包括存储器总线或存储器控制器、外围总线和本地总线在内的若干类型的总线结构中的任一个。系统存储器302包括只读存储器(ROM)304和随机存取存储器(RAM)305。基本输入/输出系统(BIOS)306可以驻留在包含帮助在计算机系统300内的元件之间传送信息的基本例程的ROM304中。
计算机系统300可以包括硬盘驱动器307、例如用来从可移除盘309中读取或者向可移除盘309写入的磁盘驱动器308,以及例如用于读取CD-ROM盘311或者用来从其他光介质中读取或者向其他光介质写入的光盘驱动器310。硬盘驱动器307、磁盘驱动器308和光盘驱动器310分别通过硬盘驱动器接口312、磁盘驱动器接口313和光学驱动器接口314而被连接到系统总线303。驱动器及其相关计算机可读介质为计算机系统300提供了数据、数据结构和计算机可执行指令的非易失性存储。尽管上面对计算机可读介质的描述指的是硬盘、可移除磁盘和CD,但是诸如磁带盒、闪存卡、数字视频盘等多种形式的可由计算机读取的其他类型的介质也可以在操作环境中使用;另外,任何这种介质可以包含用于实现在此公开的系统和方法的一个或多个部分的计算机可执行指令。
包括操作系统315、一个或多个应用程序316、其他程序模块317和程序数据318在内的若干程序模块可以被存储在驱动器和RAM305中。应用程序和程序数据可以包括被编程为对诸如在此示出和描述的来自一个或多个传感器的电数据进行获取、处理和显示的函数和方法。应用程序和程序数据可以包括被编程为处理信号和计算参数数据的函数和方法(例如,计算器12和60)。应用程序和程序数据还可以包括被编程为生成一个或多个多参数映射以及如在这里公开的其他心电图映射的函数和方法(例如,映射生成器26)。
用户可以通过诸如指示设备(例如,鼠标、触摸屏)、键盘、麦克风、控制杆、游戏手柄、扫描仪等的一个或多个输入设备320向计算机系统300内输入命令和信息。例如,用户可以使用输入设备320来编辑或者修改域模型(domain model)。这些和其他输入设备320经常通过与系统总线相耦合的对应端口接口322而被连接到处理单元301,但是可以通过诸如并行端口、串行端口或者通用串行总线(USB)之类的其他接口而相连。一个或多个输出设备324(例如,显示、监视器、打印机、投影仪或者其他类型的显示设备)经由诸如视频适配器之类的接口326也被连接到系统总线303。
计算机系统300可以在使用到诸如远程计算机328之类的一个或多个远程计算机的逻辑连接的联网环境中操作。远程计算机328可以是工作站、计算机系统、路由器、对等设备或者其他常见网络节点,并且通常包括关于计算机系统300描述的许多或者全部元件。在330处示意性示出的逻辑连接可以包括局域网(LAN)和广域网(WAN)。
当被在LAN联网环境中使用时,计算机系统300可以通过网络接口或适配器332而被连接到本地网络。当被在WAN联网环境中使用时,计算机系统300可以包括调制解调器,或者可以被连接到LAN上的通信服务器。可以位于内部或者外部的调制解调器可以经由适当的端口接口而被连接到系统总线303。在联网环境中,关于计算机系统300示出的应用程序316或者程序数据318或其多个部分可以被存储在远程存储器存储设备340中。
上面已经描述之物是示例。当然不可能描述结构、组件或方法的每一种可想到的组合,但是本领域普通技术人员将认识到许多其他组合和排列是可能的。因此,本发明旨在包含落在包括所附权利要求在内的本申请的范围内的所有这种变更、修改和变体。
在本公开或权利要求陈述“一”、“一”、“第一”或者“另一个”要素或其等价物的情况下,其应当被解释为包括一个或多于一个这种要素,既不要求也不排除两个或多个这种要素。这里所使用的术语“包括”意味着包括但不限于,并且术语“包括”意味着包括但不限于。术语“基于”意味着至少部分地基于。

Claims (21)

1.一种用于映射多个生理学参数的系统,所述系统包括:
映射生成器,其被配置为:
基于测量到的电生理学信号,计算与患者关联的组织相对应的几何表面的至少两个不同生理学参数;
通过使用多维颜色模型的至少两个不同颜色分量对所述至少两个不同生理学参数进行编码,以使得所述不同生理学参数中的每一个被按照所述不同颜色分量中的至少一个编码,不同颜色分量中的每一个对应于多维颜色模型的多个维度中的给定一个;以及
通过将所述至少两个不同生理学参数映射到所述至少两个不同颜色分量,生成与患者关联的组织相对应的几何表面的多参数图形映射,使得所述至少两个不同生理学参数在同一多参数图形映射中被同时地可视化。
2.根据权利要求1所述的系统,其中,所述映射生成器还包括规格化和映射组件,其被配置为根据所述不同生理学参数中的至少一个生理学参数正被映射到所述不同颜色分量中的哪一个来将表示所述至少一个生理学参数的数据规格化为预定尺度。
3.根据权利要求2所述的系统,其中,所述映射生成器还包括调节用户接口组件,其被配置为响应于用户输入而调节所述规格化和映射组件。
4.根据权利要求3所述的系统,其中,所述映射生成器还包括选择用户接口组件,其被配置为从多个不同颜色模型中选择所述多维颜色模型。
5.根据权利要求1所述的系统,其中,所述患者的组织包括心脏组织,所述系统还包括被配置为基于描绘所述患者的心脏组织随着时间过去的电活动的特征的电解剖数据来计算表示所述不同生理学参数中的至少一个的数据的参数计算器。
6.根据权利要求5所述的系统,其中,所述参数计算器还包括被配置为基于至少一个时间间隔期间的电解剖数据来计算与所述心脏组织相对应的几何表面中的多个点中的每一个的相位数据的相位计算器,所述映射生成器被配置为基于针对所述几何表面计算出的所述相位数据和其他心脏信息来生成映射,以使得所述相位数据和所述其他心脏信息各自被按照所述多维颜色模型中的不同颜色分量编码。
7.根据权利要求6所述的系统,其中,所述其他心脏信息包括表示由所述参数计算器针对所述几何表面中的所述多个点中的每一个计算出的电活动的幅度数据,所述映射生成器根据所述多维颜色模型中的一个颜色分量对所述相位数据进行编码并且根据所述多维颜色模型中的另一个颜色分量对所述幅度数据进行编码。
8.根据权利要求6所述的系统,其中,所述映射生成器还被配置为与所述多参数图形映射同时生成另一映射,其中所述相位数据和所述其他心脏信息中的仅一个被映射到所述多维颜色模型的不同颜色分量中的相应一个。
9.根据权利要求6所述的系统,其中,所述参数计算器还被配置为计算包括幅度数据、包络数据、电压变化数据、导数数据、不确定性数据以及从这种数据中的一个或其组合得出的其他数据中的至少一个的所述其他心脏信息。
10.根据权利要求5所述的系统,其中,所述几何表面包括所述患者的心外膜区域、心内膜区域或者心脏包络中的一个。
11.根据权利要求5所述的系统,其中,所述电解剖数据包括所述患者的所述心脏组织的以非侵入性方式获取的电数据或者所述患者的以侵入性方式获取的电数据中的至少一个。
12.根据权利要求1所述的系统,其中,所述多维颜色模型包括至少三个维度,所述映射生成器还被配置为通过将所述不同生理学参数映射到所述多维颜色模型的相应不同颜色分量,同时将所述不同颜色分量中的至少另一个设置为恒定或者可变的值,来生成所述多参数图形映射。
13.一种用于映射多个生理学参数的方法,包括:
基于对患者记录的电解剖数据,计算与患者的组织相对应的几何表面的至少两个不同生理学参数;
将与所述至少两个不同生理学参数相关的数据存储在存储器中;
使用多维颜色模型的不同颜色分量来编码所述至少两个不同生理学参数中的每一个,以使得所述不同生理学参数中的每一个被按照所述不同颜色分量中的至少一个编码;以及
基于所述编码来生成与所述患者的组织相对应的几何表面的多参数图形映射,以使得所述不同生理学参数在同一多参数图形映射中被同时地可视化。
14.根据权利要求13所述的方法,还包括根据所述至少两个不同生理学参数中的每一个生理学参数正被按照所述不同颜色分量中的哪一个编码来将所述生理学参数数据规格化为预定尺度。
15.根据权利要求14所述的方法,还包括响应于用户输入而调节所述规格化。
16.根据权利要求15所述的方法,还包括响应于用户输入而从多个不同多维颜色模型中选择所述多维颜色模型。
17.根据权利要求13所述的方法,还包括基于描绘所述患者的心脏组织随着时间过去的电活动的特征的电解剖数据来计算用来表示所述不同生理学参数中的至少一个的所述生理学参数数据。
18.根据权利要求17所述的方法,其中,计算所述生理学参数数据还包括基于至少一个时间间隔期间的电解剖数据来计算与所述心脏组织相对应的几何表面中的多个点中的每一个的相位数据,所述多参数图形映射是基于所述相位数据和其他心脏信息来生成的,以使得所述相位数据和所述其他心脏信息各自被按照所述多维颜色模型中的不同颜色分量编码。
19.根据权利要求18所述的方法,其中,所述其他心脏信息包括表示针对所述几何表面中的所述多个点中的每一个计算出的电势的幅度数据,所述相位数据根据所述多维颜色模型中的一个颜色分量而被编码并且所述幅度数据根据所述多维颜色模型中的另一个颜色分量而被编码。
20.根据权利要求18所述的方法,其中,所述多参数图形映射是第一图形映射,所述方法还包括与所述第一图形映射同时生成另一图形映射,所述另一图形映射仅包括被按照所述多维颜色模型的不同颜色分量中的相应一个来编码的所述相位数据和所述其他心脏信息中的一个。
21.根据权利要求17所述的方法,其中,计算出的生理学参数数据包括相位数据、幅度数据、包络数据、电压变化数据、导数数据、不确定性数据以及从这种数据中的一个或其组合得出的其他数据中的至少两个。
CN201480010879.6A 2013-01-17 2014-01-17 多参数生理映射 Expired - Fee Related CN105263405B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361753764P 2013-01-17 2013-01-17
US61/753,764 2013-01-17
PCT/US2014/012077 WO2014113691A1 (en) 2013-01-17 2014-01-17 Multi-parameter physiological mapping

Publications (2)

Publication Number Publication Date
CN105263405A CN105263405A (zh) 2016-01-20
CN105263405B true CN105263405B (zh) 2018-08-31

Family

ID=51165826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480010879.6A Expired - Fee Related CN105263405B (zh) 2013-01-17 2014-01-17 多参数生理映射

Country Status (4)

Country Link
US (2) US10482680B2 (zh)
EP (1) EP2945533A4 (zh)
CN (1) CN105263405B (zh)
WO (1) WO2014113691A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014182680A1 (en) 2013-05-06 2014-11-13 Boston Scientific Scimed Inc. Persistent display of nearest beat characteristics during real-time or play-back electrophysiology data visualization
JP6182665B2 (ja) 2013-05-14 2017-08-16 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. ベクトル場を用いた電気生理学的マッピング中の活動パターンの表示及び特定のためのカテーテルシステム
US20150228254A1 (en) * 2014-02-07 2015-08-13 St. Jude Medical, Cardiology Division, Inc. Systems and Methods for Generating, Storing, and Displaying Anatomical Maps
EP3166483B1 (en) * 2014-10-15 2018-08-01 St. Jude Medical, Cardiology Division, Inc. Method and system for generating integrated substrate maps for cardiac arrhythmias
ES2572142B1 (es) * 2014-10-30 2017-06-21 Fundación Para La Investigación Biomédica Del Hospital Gregorio Marañón Dispositivo de localización de arritmias cardiacas
US10888235B2 (en) 2015-01-07 2021-01-12 St. Jude Medical, Cardiology Division, Inc. System, method, and apparatus for visualizing cardiac timing information using animations
US10271757B2 (en) 2015-09-26 2019-04-30 Boston Scientific Scimed Inc. Multiple rhythm template monitoring
EP3353752B1 (en) * 2015-09-26 2021-08-04 Boston Scientific Scimed Inc. Adjustable depth anatomical shell editing
US10405766B2 (en) 2015-09-26 2019-09-10 Boston Scientific Scimed, Inc. Method of exploring or mapping internal cardiac structures
US10621790B2 (en) 2015-09-26 2020-04-14 Boston Scientific Scimed Inc. Systems and methods for anatomical shell editing
EP3621519A1 (en) * 2017-05-10 2020-03-18 Boston Scientific Scimed Inc. Region-of-interest representations for electroanatomical mapping
US11445994B2 (en) * 2018-01-24 2022-09-20 Siemens Healthcare Gmbh Non-invasive electrophysiology mapping based on affordable electrocardiogram hardware and imaging
CN110275455B (zh) * 2018-03-14 2021-05-25 佛山市顺德区美的电热电器制造有限公司 一种基于脑电信号的控制方法、中央控制设备、云服务器及系统
US11576624B2 (en) 2018-04-26 2023-02-14 Vektor Medical, Inc. Generating approximations of cardiograms from different source configurations
US11259871B2 (en) 2018-04-26 2022-03-01 Vektor Medical, Inc. Identify ablation pattern for use in an ablation
US11065060B2 (en) 2018-04-26 2021-07-20 Vektor Medical, Inc. Identify ablation pattern for use in an ablation
US20200375492A1 (en) 2019-05-28 2020-12-03 Biosense Webster (Israel) Ltd. Brain signal tracking
US20200375461A1 (en) 2019-05-28 2020-12-03 Biosense Webster (Israel) Ltd. Flexible brain probe over guidewire
US10709347B1 (en) 2019-06-10 2020-07-14 Vektor Medical, Inc. Heart graphic display system
US10595736B1 (en) * 2019-06-10 2020-03-24 Vektor Medical, Inc. Heart graphic display system
US11974853B2 (en) 2020-10-30 2024-05-07 Vektor Medical, Inc. Heart graphic display system
US20220143460A1 (en) * 2020-11-10 2022-05-12 Willowview Consulting, Llc Method and system for dynamically transforming user health and exercise-related data into visual, audio, textual, and physical data representations
US11338131B1 (en) 2021-05-05 2022-05-24 Vektor Medical, Inc. Guiding implantation of an energy delivery component in a body
WO2023018626A2 (en) 2021-08-09 2023-02-16 Vektor Medical, Inc. Tissue state graphic display system
US20230075595A1 (en) * 2021-09-07 2023-03-09 Biosense Webster (Israel) Ltd. Weighting projected electrophysiological wave velocity with sigmoid curve
US11534224B1 (en) 2021-12-02 2022-12-27 Vektor Medical, Inc. Interactive ablation workflow system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7263397B2 (en) * 1998-06-30 2007-08-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for catheter navigation and location and mapping in the heart
US6652462B2 (en) * 2001-06-12 2003-11-25 Ge Medical Systems Global Technology Company, Llc. Ultrasound display of movement parameter gradients
US7590512B2 (en) * 2004-09-08 2009-09-15 Carnegie Mellon University System and method for deformation analysis using inverse pre-deformation of finite element mesh
EP1906821B1 (en) * 2005-07-22 2020-01-15 Case Western Reserve University System for noninvasive electrocardiographic imaging (ecgi)
US8038625B2 (en) 2005-09-15 2011-10-18 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for three-dimensional mapping of electrophysiology information
CN101443792A (zh) * 2006-05-17 2009-05-27 圣朱德医疗有限公司房颤分公司 用于将电生理学信息映射到复杂几何形状上的系统和方法
CA2654759A1 (en) * 2006-06-13 2007-12-21 Rhythmia Medical, Inc. Non-contact cardiac mapping, including moving catheter and multi-beat integration
US9204927B2 (en) * 2009-05-13 2015-12-08 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for presenting information representative of lesion formation in tissue during an ablation procedure
EP2345024B1 (en) * 2008-11-10 2017-11-08 Cardioinsight Technologies, Inc. Visualization of electrophysiology data
US20110060221A1 (en) * 2009-09-04 2011-03-10 Siemens Medical Solutions Usa, Inc. Temperature prediction using medical diagnostic ultrasound
US20110144510A1 (en) * 2009-12-16 2011-06-16 Pacesetter, Inc. Methods to identify damaged or scarred tissue based on position information and physiological information

Also Published As

Publication number Publication date
CN105263405A (zh) 2016-01-20
US11880955B2 (en) 2024-01-23
EP2945533A1 (en) 2015-11-25
US20200093444A1 (en) 2020-03-26
WO2014113691A1 (en) 2014-07-24
WO2014113691A4 (en) 2014-08-21
EP2945533A4 (en) 2016-10-05
US10482680B2 (en) 2019-11-19
US20140200874A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
CN105263405B (zh) 多参数生理映射
US11826148B2 (en) Sensing zone for spatially relevant electrical information
US11189092B2 (en) Computational localization of fibrillation sources
US9737267B2 (en) Composite singularity mapping
CN106061374B (zh) 电生理数据的综合分析
JP4828538B2 (ja) 医療監視方法
Giffard-Roisin et al. Transfer learning from simulations on a reference anatomy for ECGI in personalized cardiac resynchronization therapy
CN105208925A (zh) 心律失常驱动灶的分析和检测
JP2012179352A (ja) 電流双極子を構築するシステムおよび電流双極子を構築する方法
EP2945532B1 (en) Wave front detection for electrophysiological signals
EP2945531B1 (en) Focal point identification and mapping
CN106725448A (zh) 用于将电生理学信息映射到复杂几何形状上的系统和方法
KR20120108235A (ko) 가상의 생체 모델을 이용하여 실제 생체 신호 측정에 이용되는 최적의 파라미터를 결정하는 방법 및 장치
US20190304186A1 (en) Multi-dimensional method of fundamental solutions for reconstruction of electrophysiological activity
JP2021159762A (ja) 細分化電位図を示すエリアを有する心室の伝播マップ
Wang et al. Electrocardiographic simulation on personalised heart-torso structures using coupled meshfree-BEM platform
US20030167013A1 (en) Method and device of visualization of ECG-signals of standard leads with anatomic portrait of heart
CN110520038A (zh) 心律失常驱动器的连通性分析
Bergquist et al. Body Surface Potential Mapping: Contemporary Applications and Future Perspectives. Hearts 2021, 2, 514–542
Tysler et al. Model-based method and instrumentation for noninvasive identification of local ischemic lesions in the heart
Zhao From Cardiac Optical Imaging Data to Body Surface ECG: A Three Dimensional Ventricle Model

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180831

Termination date: 20200117

CF01 Termination of patent right due to non-payment of annual fee