CN105260533B - The hydro-pneumatic spring computational methods that uniform thickness annular valve block does not deform - Google Patents

The hydro-pneumatic spring computational methods that uniform thickness annular valve block does not deform Download PDF

Info

Publication number
CN105260533B
CN105260533B CN201510645903.XA CN201510645903A CN105260533B CN 105260533 B CN105260533 B CN 105260533B CN 201510645903 A CN201510645903 A CN 201510645903A CN 105260533 B CN105260533 B CN 105260533B
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
msup
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510645903.XA
Other languages
Chinese (zh)
Other versions
CN105260533A (en
Inventor
周长城
赵雷雷
于曰伟
王凤娟
邵明磊
潘礼军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201510645903.XA priority Critical patent/CN105260533B/en
Publication of CN105260533A publication Critical patent/CN105260533A/en
Application granted granted Critical
Publication of CN105260533B publication Critical patent/CN105260533B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The present invention relates to the hydro-pneumatic spring computational methods that uniform thickness annular valve block does not deform, belong to hydro pneumatic suspension technical field.The hydro-pneumatic spring provided by the invention computational methods that uniform thickness annular valve block does not deform, according to the not uniform thickness annular valve block mechanical model and valve block parameter under well-distributed pressure, utilize the not characteristic equation of the characteristic equation of uniform thickness annular valve block deformation formula coefficient and deformation formula constant, the coefficient and constant of deformation formula are determined, gives not uniform thickness annular valve block meaning radius in officerThe deformation analytic sensitivity of opening position;Using valve block in radiusrThe deformation calculation formula of opening position, can be to hydro-pneumatic spring not uniform thickness annular valve block meaning radius in officerThe deformation of opening position is accurately calculated.By the way that compared with ANSYS simulation results, the computational methods of valve block deformation are accurate, reliable, and for hydro-pneumatic spring, uniform thickness valve block careful design does not provide accurate, reliable Method for Calculating Deformation.

Description

The hydro-pneumatic spring computational methods that uniform thickness annular valve block does not deform
Technical field
The present invention relates to hydro-pneumatic spring, particularly the hydro-pneumatic spring computational methods that uniform thickness annular valve block does not deform.
Background technology
Hydro-pneumatic spring can effectively decay on special vehicle spring and the vibration of unsprung mass, so as to improve vehicle driving safety Property, ride comfort and control stability, thus be widely applied in special purpose vehicle.The damping characteristic of hydro-pneumatic spring mainly by What its valves parameter was determined, the design of valve block serves key to damping characteristic.At present, the conventional valve block of hydro-pneumatic spring is Equal thickness annular valve block, however, it can not meet the requirement of some special purpose vehicle hydro-pneumatic spring nonlinear dampling characteristic designs; Thick and circular valve block is because having the advantages that compared with strong nonlinear deformation characteristic, stress is small, shock resistance and long lifespan, turn into meet it is non-thread The good choosing of property damping characteristic design requirement.However, home and abroad is not given also to the design of special purpose vehicle hydro-pneumatic spring valves parameter at present Go out reliable design theory, and the deformation for not uniform thickness annular valve block does not provide accurate analytical formula yet.Although China Existing scholar has carried out numerous studies to this, but only establishes deformation analytical Calculation side of the equal thickness valve block under well-distributed pressure Method;To not deformation of the equal thickness annular valve block under even distributed force, reliable computational methods are not established still, are mostly to utilize to have Limit meta software and carry out numerical simulation by modeling.Although more reliable design of Simulation value can be provided using this method, however, Because the method can not provide analytical formula, it is difficult to meet the requirement of actual hydro-pneumatic spring design and characteristic Simulation modeling.To the greatest extent Pipe《Mechanical design handbook》The deformation coefficient of uniform thickness annular valve block is provided, but the calculating side of not uniform thickness annular valve block is not provided Method, it is impossible to meet the requirement that uniform thickness annular valve block deformation gauge is not calculated.Therefore, it is necessary to the deformation gauge of solution never equal thickness annular valve block Calculation problem.
The content of the invention
For defect present in above-mentioned prior art, the technical problems to be solved by the invention be to provide it is a kind of accurate, The reliable hydro-pneumatic spring computational methods that uniform thickness annular valve block does not deform, its calculation flow chart are as shown in Figure 1;Hydro-pneumatic spring Thick and circular valve block mechanical model is as shown in Figure 2.
In order to solve the above technical problems, the hydro-pneumatic spring provided by the present invention calculating side that uniform thickness annular valve block does not deform Method, it is characterised in that use following calculation procedure:
(1) the coefficient X of not uniform thickness annular valve block deformation formula is determined1、X2、Y1And Y2
According to the elastic modulus E of hydro-pneumatic spring not uniform thickness annular valve block, Poisson's ratio μ, the thickness h of its equal thickness part0, become Thickness radius rt, effective inner circle radius ra, exradius rb, suffered well-distributed pressure p, establish not uniform thickness annular valve block deformation formula Coefficient X1、X2、Y1And Y2Characteristic equation, i.e.,:
Using Matlab programs, solve above-mentioned on X1、X2、Y1And Y2Four equations composition equation group, try to achieve The coefficient X of thick and circular valve block deformation formula1, X2, Y1And Y2
(2) the constant Z of not uniform thickness annular valve block deformation formula is determined1And Z2
According to the elastic modulus E of hydro-pneumatic spring not uniform thickness annular valve block, Poisson's ratio μ, the thickness h of its equal thickness part0, become Thickness radius rt, effective inner circle radius ra, exradius rb, suffered well-distributed pressure p, and the thick and circular such as not that step (1) is tried to achieve The coefficient X of valve block deformation formula1、X2、Y1And Y2, establish the constant Z of not uniform thickness annular valve block deformation formula1And Z2Feature side Journey, i.e.,:
Using Matlab programs, solve above-mentioned on Z1And Z2Two equations composition equation group, try to achieve not wait thick and circular The constant Z of valve block deformation formula1And Z2
(3) the deflection z not at uniform thickness annular valve block meaning radius r in office is calculatedr
According to the elastic modulus E of hydro-pneumatic spring not uniform thickness annular valve block, Poisson's ratio μ, the thickness h of its equal thickness part0, become Thickness radius rt, effective inner circle radius ra, exradius rb, suffered well-distributed pressure p, the not uniform thickness annular valve block that step (1) is tried to achieve The coefficient X of deformation formula1、X2、Y1And Y2, and the constant Z of not uniform thickness annular valve block deformation formula that step (2) is tried to achieve1And Z2, meter Calculate the deflection z at not uniform thickness annular valve block meaning radius r in officer, i.e.,
The present invention has the advantage that than prior art:
Deformation to hydro pneumatic suspension not uniform thickness annular valve block, there is no accurate, reliable computational methods inside and outside predecessor State, mostly It is to utilize finite element emulation software, numerical simulation is carried out by establishing physical model to the valve block under setting pressure, obtains approximation Numerical solution.Although can provide more reliable simulation value using this method, the method, which can not provide, meets hydro-pneumatic spring The deformation analytical formula of design and characteristic Simulation.Although《Mechanical design handbook》It provide only the deformation system of uniform thickness annular valve block Number, but without providing the computational methods of not uniform thickness annular valve block, therefore can not meet that what not uniform thickness annular valve block deformation gauge calculated wants Ask.
Hydro-pneumatic spring provided by the invention not uniform thickness annular valve block deformation computational methods, using under well-distributed pressure not Uniform thickness annular valve block mechanical model, according to the inside radius of valve block, outer radius, Varying-thickness radius, modulus of elasticity and Poisson's ratio, utilize The not characteristic equation of coefficient and the characteristic equation of deformation constant of uniform thickness annular valve block deformation formula, it is determined that not uniform thickness annular valve block The coefficient and deformation constant of deformation formula, give the deformation calculation formula of not uniform thickness annular valve block meaning radius r opening positions in office; Using valve block in the deformation calculation formula of radius r opening positions, the change for the radius r opening positions that in office to not uniform thickness annular valve block can anticipate Shape is accurately calculated, by the way that compared with ANSYS simulation results, the computational methods of valve block deformation are accurate, reliable, For accurate design hydro-pneumatic spring, uniform thickness valve block does not provide accurate, reliable Method for Calculating Deformation.
Brief description of the drawings
It is described further below in conjunction with the accompanying drawings for a better understanding of the present invention.
Fig. 1 be hydro-pneumatic spring not uniform thickness annular valve block deformation computational methods calculation flow chart;
Fig. 2 is hydro-pneumatic spring not uniform thickness annular valve block mechanical model figure;
Fig. 3 is the deformation simulation cloud atlas of not uniform thickness annular valve block.
Embodiment
The present invention is described in further detail below by an embodiment.
Certain special vehicle hydro-pneumatic spring employs not uniform thickness annular valve block, elastic modulus E=200GPa, Poisson's ratio μ=1/ 3, the thickness h of its equal thickness part0=0.3mm, Varying-thickness radius rt=7.3mm, effective inner circle radius ra=5.0mm, cylindrical half Footpath rb=8.5mm, suffered well-distributed pressure are p=3.0MPa.In order to accurately design the nonlinear dampling characteristic of hydro-pneumatic spring, need Accurately to calculate not deflection of the uniform thickness annular valve block at radius r=8.5mm.
The hydro-pneumatic spring that present example the is provided computational methods that uniform thickness annular valve block does not deform, its calculation flow chart is such as Shown in Fig. 1, hydro-pneumatic spring not uniform thickness annular valve block mechanical model as shown in Fig. 2 comprising the following steps that:
(1) the coefficient X of not uniform thickness annular valve block deformation formula is determined1、X2、Y1And Y2
According to elastic modulus E=200GPa of special vehicle hydro-pneumatic spring not uniform thickness annular valve block, Poisson's ratio μ=1/3, its The thickness h of equal thickness part0=0.3mm, Varying-thickness radius rt=7.3mm, effective inner circle radius ra=5.0mm, exradius rb =8.5mm, suffered well-distributed pressure p=3.0MPa, the characteristic equation of not each coefficient of uniform thickness annular valve block deformation formula is established, I.e.:
Using Matlab programs, solve above-mentioned on X1、X2、Y1And Y2Four equations composition equation group, try to achieve The coefficient X of thick and circular valve block deformation formula1=562.086, X2=0.00169500, Y1=0.00040645 and Y2=- 30925929.105;
(2) the constant Z of not uniform thickness annular valve block deformation formula is determined1And Z2
According to elastic modulus E=200GPa of special vehicle hydro-pneumatic spring not uniform thickness annular valve block, Poisson's ratio μ=1/3, its The thickness h of equal thickness part0=0.3mm, Varying-thickness radius rt=7.3mm, effective inner circle radius ra=5.0mm, exradius rb =8.5mm, suffered well-distributed pressure p=3.0MPa, and the coefficient X of not uniform thickness annular valve block deformation formula that step (1) is tried to achieve1 =562.086, X2=0.00169500, Y1=0.00040645 and Y2=-30925929.105, establish not uniform thickness annular valve block The constant Z of deformation formula1And Z2Characteristic equation, i.e.,:
Using Matlab programs, solve above-mentioned on Z1And Z2Two equations composition equation group, try to achieve not wait thick and circular The deformation constant Z of valve block deformation formula1=10.4404 and Z2=-0.0271;
(3) the deflection z not at uniform thickness annular valve block meaning radius r in office is calculatedr
According to elastic modulus E=200GPa of special vehicle hydro-pneumatic spring not uniform thickness annular valve block, Poisson's ratio μ=1/3, its The thickness h of equal thickness part0=0.3mm, Varying-thickness radius rt=7.3mm, effective inner circle radius ra=5.0mm, exradius rb =8.5mm, suffered well-distributed pressure p=3.0MPa, the coefficient X for the not uniform thickness annular valve block deformation formula that step (1) is tried to achieve1= 562.086, X2=0.00169500, Y1=0.00040645 and Y2=-30925929.105, and step (2) are tried to achieve The deformation constant Z of thick and circular valve block deformation formula1=10.4404 and Z2=-0.0271, calculate not uniform thickness annular valve block in radius r Deflection z at=8.5mmr, due to r ∈ (rt,rb], therefore
Hydro-pneumatic spring in embodiment not uniform thickness annular valve block, elastic modulus E=200GPa, Poisson's ratio μ=1/3, The thickness h of its equal thickness part0=0.3mm, Varying-thickness radius rt=7.3mm, effective inner circle radius ra=5.0mm, exradius rb=8.5mm, suffered well-distributed pressure are p=3.0MPa, establish model using ANSYS finite element analysis softwares, its boundary condition It is consistent with Fig. 2 mechanical model, to model partition grid in units of 0.1mm, apply on radius [5.0,8.5] mm sections equal Cloth pressure 3.0MPa, statics deformation simulation analysis, the deformation simulation cloud atlas of obtained not uniform thickness annular valve block are carried out to valve block As shown in Figure 3.
From simulation result Fig. 3, under well-distributed pressure p=3.0MPa, the not deformation maximum distortion of uniform thickness annular valve block Simulation value is 0.1221mm, i.e., the deformation simulation value at r=8.5mm is 0.1221mm, with being calculated using the computational methods Deformation values 0.1218mm match, relative deviation is only 0.25%.As a result show, the hydro-pneumatic spring established does not wait thick and circular The computational methods of valve block deformation are correct.

Claims (1)

1. the hydro-pneumatic spring computational methods that uniform thickness annular valve block does not deform, its specific calculation procedure are as follows:
(1) the coefficient X of not uniform thickness annular valve block deformation formula is determined1、X2、Y1And Y2
According to the elastic modulus E of hydro-pneumatic spring not uniform thickness annular valve block, Poisson's ratio μ, the thickness h of its equal thickness part0, Varying-thickness Radius rt, effective inner circle radius ra, exradius rb, suffered well-distributed pressure p, establish not uniform thickness annular valve block deformation formula coefficient X1、X2、Y1And Y2Characteristic equation, i.e.,:
<mrow> <msub> <mi>X</mi> <mn>1</mn> </msub> <msubsup> <mi>r</mi> <mi>a</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mfrac> <mrow> <mn>3</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <msup> <msub> <mi>pr</mi> <mi>a</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow> <mn>4</mn> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> </mrow> </mfrac> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mi>a</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>4</mn> <msubsup> <mi>r</mi> <mi>b</mi> <mn>2</mn> </msubsup> <msub> <mi>lnr</mi> <mi>a</mi> </msub> <mo>+</mo> <mn>2</mn> <msubsup> <mi>r</mi> <mi>b</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow>
<mrow> <mfrac> <mrow> <mn>85</mn> <msubsup> <mi>r</mi> <mi>b</mi> <mn>2</mn> </msubsup> <mi>p</mi> </mrow> <mn>96</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> <msubsup> <mi>r</mi> <mi>t</mi> <mn>3</mn> </msubsup> <mrow> <mo>(</mo> <mn>11</mn> <mo>+</mo> <mn>3</mn> <msqrt> <mn>17</mn> </msqrt> <mo>)</mo> </mrow> </mrow> <mrow> <mn>72</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <msubsup> <mi>r</mi> <mi>b</mi> <mrow> <msqrt> <mn>17</mn> </msqrt> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mn>5</mn> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <msub> <mi>Y</mi> <mn>2</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> <msubsup> <mi>r</mi> <mi>t</mi> <mn>3</mn> </msubsup> <mrow> <mo>(</mo> <mn>11</mn> <mo>-</mo> <mn>3</mn> <msqrt> <mn>17</mn> </msqrt> <mo>)</mo> </mrow> </mrow> <mrow> <mn>72</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <msubsup> <mi>r</mi> <mi>b</mi> <mrow> <mo>-</mo> <msqrt> <mn>17</mn> </msqrt> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mn>5</mn> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <msub> <mi>Y</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow>
<mrow> <msub> <mi>X</mi> <mn>1</mn> </msub> <msubsup> <mi>r</mi> <mi>t</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>-</mo> <mfrac> <mrow> <mn>3</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mi>p</mi> </mrow> <mrow> <mn>4</mn> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> <msub> <mi>r</mi> <mi>t</mi> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mi>t</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>4</mn> <msubsup> <mi>r</mi> <mi>b</mi> <mn>2</mn> </msubsup> <msub> <mi>lnr</mi> <mi>t</mi> </msub> <mo>+</mo> <mn>2</mn> <msubsup> <mi>r</mi> <mi>b</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>Y</mi> <mn>1</mn> </msub> <msubsup> <mi>r</mi> <mi>t</mi> <mrow> <mn>5</mn> <mo>/</mo> <mn>2</mn> <mo>-</mo> <msqrt> <mn>17</mn> </msqrt> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <mo>-</mo> <msub> <mi>Y</mi> <mn>2</mn> </msub> <msubsup> <mi>r</mi> <mi>t</mi> <mrow> <mn>5</mn> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msqrt> <mn>17</mn> </msqrt> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <msubsup> <mi>pr</mi> <mi>t</mi> <mn>2</mn> </msubsup> </mrow> <mrow> <mn>8</mn> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> </mrow> </mfrac> <mrow> <mo>(</mo> <msubsup> <mi>r</mi> <mi>t</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>8</mn> <msubsup> <mi>r</mi> <mi>b</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <mn>19</mn> <msup> <msub> <mi>r</mi> <mi>t</mi> </msub> <mn>2</mn> </msup> <mi>p</mi> </mrow> <mn>96</mn> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>13</mn> <msubsup> <mi>r</mi> <mi>b</mi> <mn>2</mn> </msubsup> <mi>p</mi> </mrow> <mn>12</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> </mrow> <mrow> <mn>9</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> </mrow> <mrow> <mn>18</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <msup> <msub> <mi>r</mi> <mi>a</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>-</mo> <mfrac> <mrow> <mn>5</mn> <msup> <msub> <mi>pr</mi> <mi>t</mi> </msub> <mn>2</mn> </msup> </mrow> <mn>24</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>pr</mi> <mi>b</mi> <mn>2</mn> </msubsup> <msub> <mi>lnr</mi> <mi>t</mi> </msub> </mrow> <mn>3</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>pr</mi> <mi>b</mi> <mn>2</mn> </msubsup> </mrow> <mn>12</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> <mrow> <mo>(</mo> <mn>11</mn> <mo>+</mo> <mn>3</mn> <msqrt> <mn>17</mn> </msqrt> <mo>)</mo> </mrow> </mrow> <mrow> <mn>72</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <msubsup> <mi>r</mi> <mi>t</mi> <mrow> <msqrt> <mn>17</mn> </msqrt> <mo>/</mo> <mn>2</mn> <mo>+</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <msub> <mi>Y</mi> <mn>2</mn> </msub> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> <mrow> <mo>(</mo> <mn>11</mn> <mo>-</mo> <mn>3</mn> <msqrt> <mn>17</mn> </msqrt> <mo>)</mo> </mrow> </mrow> <mrow> <mn>72</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <msubsup> <mi>r</mi> <mi>t</mi> <mrow> <mo>-</mo> <msqrt> <mn>17</mn> </msqrt> <mo>/</mo> <mn>2</mn> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>Y</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
Using Matlab programs, solve above-mentioned on X1、X2、Y1And Y2Four equations composition equation group, try to achieve not uniform thickness ring The coefficient X of shape valve block deformation formula1, X2, Y1And Y2
(2) the constant Z of not uniform thickness annular valve block deformation formula is determined1And Z2
According to the elastic modulus E of hydro-pneumatic spring not uniform thickness annular valve block, Poisson's ratio μ, the thickness h of its equal thickness part0, Varying-thickness Radius rt, effective inner circle radius ra, exradius rb, suffered well-distributed pressure p, and the not uniform thickness annular valve block that step (1) is tried to achieve The coefficient X of deformation formula1、X2、Y1And Y2, establish the constant Z of not uniform thickness annular valve block deformation formula1And Z2Characteristic equation, i.e.,:
<mrow> <mfrac> <mrow> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> <msup> <msub> <mi>r</mi> <mi>a</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow> <mn>24</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>X</mi> <mn>2</mn> </msub> <mfrac> <mrow> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> <msub> <mi>lnr</mi> <mi>a</mi> </msub> </mrow> <mrow> <mn>12</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> </mrow> <mrow> <mn>12</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>pr</mi> <mi>b</mi> <mn>2</mn> </msubsup> <msup> <msub> <mi>r</mi> <mi>a</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>lnr</mi> <mi>a</mi> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mn>8</mn> </mfrac> <mo>-</mo> <mfrac> <mrow> <msup> <msub> <mi>pr</mi> <mi>a</mi> </msub> <mn>4</mn> </msup> </mrow> <mn>64</mn> </mfrac> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> <msup> <msub> <mi>r</mi> <mi>t</mi> </msub> <mn>2</mn> </msup> </mrow> <mrow> <mn>24</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> <msup> <msub> <mi>r</mi> <mi>t</mi> </msub> <mn>2</mn> </msup> <msub> <mi>lnr</mi> <mi>a</mi> </msub> </mrow> <mrow> <mn>24</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <msub> <mi>X</mi> <mrow> <mn>2</mn> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mfrac> <mrow> <msup> <msub> <mi>pr</mi> <mi>t</mi> </msub> <mn>4</mn> </msup> </mrow> <mn>64</mn> </mfrac> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> <msup> <msub> <mi>r</mi> <mi>t</mi> </msub> <mn>2</mn> </msup> <msubsup> <mi>r</mi> <mi>t</mi> <mrow> <mn>5</mn> <mo>/</mo> <mn>2</mn> <mo>-</mo> <msqrt> <mn>17</mn> </msqrt> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <msub> <mi>Y</mi> <mn>1</mn> </msub> </mrow> <mrow> <mn>24</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>5</mn> <mo>/</mo> <mn>2</mn> <mo>-</mo> <msqrt> <mn>17</mn> </msqrt> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> <msub> <mi>Z</mi> <mn>1</mn> </msub> </mrow> <mrow> <mn>12</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>pr</mi> <mi>b</mi> <mn>2</mn> </msubsup> <msup> <msub> <mi>r</mi> <mi>t</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>lnr</mi> <mi>t</mi> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mn>8</mn> </mfrac> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> <msubsup> <mi>r</mi> <mi>t</mi> <mrow> <mn>5</mn> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msqrt> <mn>17</mn> </msqrt> <mo>/</mo> <mn>2</mn> </mrow> </msubsup> <msub> <mi>Y</mi> <mn>2</mn> </msub> </mrow> <mrow> <mn>12</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>5</mn> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msqrt> <mn>17</mn> </msqrt> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msup> <msub> <mi>pr</mi> <mi>t</mi> </msub> <mn>2</mn> </msup> </mrow> <mn>32</mn> </mfrac> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <msub> <mi>r</mi> <mi>t</mi> </msub> <mn>2</mn> </msup> </mrow> <mn>7</mn> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>8</mn> <msubsup> <mi>r</mi> <mi>b</mi> <mn>2</mn> </msubsup> </mrow> <mn>5</mn> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> <msub> <mi>Z</mi> <mn>2</mn> </msub> </mrow> <mrow> <mn>12</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
Using Matlab programs, solve above-mentioned on Z1And Z2Two equations composition equation group, try to achieve not uniform thickness annular valve block The constant Z of deformation formula1And Z2
(3) the deflection z not at uniform thickness annular valve block meaning radius r in office is calculatedr
According to the elastic modulus E of hydro-pneumatic spring not uniform thickness annular valve block, Poisson's ratio μ, the thickness h of its equal thickness part0, Varying-thickness Radius rt, effective inner circle radius ra, exradius rb, suffered well-distributed pressure p, the not uniform thickness annular valve block deformation that step (1) is tried to achieve The coefficient X of formula1、X2、Y1And Y2, and the constant Z of not uniform thickness annular valve block deformation formula that step (2) is tried to achieve1And Z2, calculate not Deflection z at uniform thickness annular valve block meaning radius r in officer, i.e.,
<mrow> <msub> <mi>z</mi> <mi>r</mi> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>X</mi> <mn>1</mn> </msub> <mfrac> <msup> <mi>r</mi> <mn>2</mn> </msup> <mn>2</mn> </mfrac> <mo>+</mo> <msub> <mi>X</mi> <mn>2</mn> </msub> <mi>ln</mi> <mi>r</mi> <mo>-</mo> <mfrac> <mrow> <mn>3</mn> <msup> <mi>pr</mi> <mn>4</mn> </msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mn>16</mn> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <msubsup> <mi>pr</mi> <mi>b</mi> <mn>2</mn> </msubsup> <msup> <mi>r</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>ln</mi> <mi>r</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mn>2</mn> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <mi>r</mi> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <msub> <mi>r</mi> <mi>a</mi> </msub> <mo>,</mo> <msub> <mi>r</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Z</mi> <mn>2</mn> </msub> <mo>+</mo> <mi>Y</mi> <mfrac> <msup> <mi>r</mi> <mrow> <mn>5</mn> <mo>/</mo> <mn>2</mn> <mo>-</mo> <msqrt> <mn>17</mn> </msqrt> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mrow> <mn>5</mn> <mo>/</mo> <mn>2</mn> <mo>-</mo> <msqrt> <mn>17</mn> </msqrt> <mo>/</mo> <mn>2</mn> </mrow> </mfrac> <mo>+</mo> <msub> <mi>Y</mi> <mn>2</mn> </msub> <mfrac> <msup> <mi>r</mi> <mrow> <mn>5</mn> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msqrt> <mn>17</mn> </msqrt> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mrow> <mn>5</mn> <mo>/</mo> <mn>2</mn> <mo>+</mo> <msqrt> <mn>17</mn> </msqrt> <mo>/</mo> <mn>2</mn> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>3</mn> <msup> <mi>pr</mi> <mn>5</mn> </msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mn>8</mn> <msubsup> <mi>Eh</mi> <mn>0</mn> <mn>3</mn> </msubsup> <msubsup> <mi>r</mi> <mi>t</mi> <mn>3</mn> </msubsup> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <msup> <mi>r</mi> <mn>2</mn> </msup> <mn>7</mn> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>8</mn> <msubsup> <mi>r</mi> <mi>b</mi> <mn>2</mn> </msubsup> </mrow> <mn>5</mn> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>r</mi> <mo>&amp;Element;</mo> <mo>(</mo> <msub> <mi>r</mi> <mi>t</mi> </msub> <mo>,</mo> <msub> <mi>r</mi> <mi>b</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow>
CN201510645903.XA 2015-10-08 2015-10-08 The hydro-pneumatic spring computational methods that uniform thickness annular valve block does not deform Active CN105260533B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510645903.XA CN105260533B (en) 2015-10-08 2015-10-08 The hydro-pneumatic spring computational methods that uniform thickness annular valve block does not deform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510645903.XA CN105260533B (en) 2015-10-08 2015-10-08 The hydro-pneumatic spring computational methods that uniform thickness annular valve block does not deform

Publications (2)

Publication Number Publication Date
CN105260533A CN105260533A (en) 2016-01-20
CN105260533B true CN105260533B (en) 2018-01-05

Family

ID=55100222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510645903.XA Active CN105260533B (en) 2015-10-08 2015-10-08 The hydro-pneumatic spring computational methods that uniform thickness annular valve block does not deform

Country Status (1)

Country Link
CN (1) CN105260533B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841959A (en) * 2012-07-17 2012-12-26 山东理工大学 Method for calculating deformation of throttle valve disc of hydraulic damper combination valve under action force of spiral spring
CN103246789A (en) * 2013-05-31 2013-08-14 山东理工大学 Computing method of deformation of annular sandwich valve plates of vibration absorber under non-uniform pressure
CN103440354A (en) * 2013-03-08 2013-12-11 山东理工大学 Calculation method for deformation of annular elastic valve plate of shock absorber
CN103632011A (en) * 2013-12-18 2014-03-12 山东理工大学 Method for calculating deformation of valve plate of shock absorber under arbitrary axisymmetric and non-uniform pressure
CN103632012A (en) * 2013-12-18 2014-03-12 山东理工大学 Method for calculating combined stress of valve plate of shock absorber under arbitrary axisymmetric and non-uniform pressure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3493178B2 (en) * 2000-12-25 2004-02-03 日本海エル・エヌ・ジー株式会社 Seismic reinforcement structure design method, storage medium
JP5503618B2 (en) * 2011-10-03 2014-05-28 住友ゴム工業株式会社 Rubber material simulation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841959A (en) * 2012-07-17 2012-12-26 山东理工大学 Method for calculating deformation of throttle valve disc of hydraulic damper combination valve under action force of spiral spring
CN103440354A (en) * 2013-03-08 2013-12-11 山东理工大学 Calculation method for deformation of annular elastic valve plate of shock absorber
CN103246789A (en) * 2013-05-31 2013-08-14 山东理工大学 Computing method of deformation of annular sandwich valve plates of vibration absorber under non-uniform pressure
CN103632011A (en) * 2013-12-18 2014-03-12 山东理工大学 Method for calculating deformation of valve plate of shock absorber under arbitrary axisymmetric and non-uniform pressure
CN103632012A (en) * 2013-12-18 2014-03-12 山东理工大学 Method for calculating combined stress of valve plate of shock absorber under arbitrary axisymmetric and non-uniform pressure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
油气弹簧叠加阀片应力分析;周长城 等;《汽车工程》;20081231;第30卷(第4期);349-353 *
非均布压力下的减振器节流阀片应力解析计算;李红艳 等;《山东理工大学学报(自然科学版)》;20120131;第26卷(第1期);5-10 *

Also Published As

Publication number Publication date
CN105260533A (en) 2016-01-20

Similar Documents

Publication Publication Date Title
CN102748418B (en) Method for designing stiffness of helical spring of combined valve for shock absorbers
CN102841959B (en) Method for calculating deformation of throttle valve disc of hydraulic damper combination valve under action force of spiral spring
CN103106312A (en) Calculation method for vibration absorber isodesmic annular superposed valve plate deformation
CN103294919B (en) Vibration damper circular sandwich valve plate determines the method for radial stress under non-uniform distributed pressure
CN105138806B (en) The strength check methods of hydro-pneumatic spring not uniform thickness annular valve block
CN105260533B (en) The hydro-pneumatic spring computational methods that uniform thickness annular valve block does not deform
CN103116683A (en) Superposition computing method for deformation of absorber annular valve sheet under unevenly distributed pressure
CN103678832B (en) The non-computational methods waiting structure superposition valve block combined stress of vehicle shock absorber
CN103106349A (en) Method for calculating radial stress of annular valve plate of vibration absorber
CN105279319B (en) The computational methods of hydro-pneumatic spring not uniform thickness annular valve block Maximum circumferential stress
CN103632011B (en) The computational methods of shock absorber valve block deformation arbitrarily under axial symmetry non-uniform distributed pressure
CN103246789A (en) Computing method of deformation of annular sandwich valve plates of vibration absorber under non-uniform pressure
CN103150434A (en) Method for calculating combined stress of annular valve sheet of shock absorber
CN103116709A (en) Computing method for circumferential stress of absorber annular valve sheet
CN105160136B (en) The computational methods of hydro-pneumatic spring not uniform thickness annular valve block maximum radial stress
CN103678833B (en) The non-computational methods waiting structure superposition valve block radial stress of vehicle shock absorber
CN103246791B (en) The computing method of vibration damper circular sandwich valve plate circumferential stress under non-uniform distributed pressure
CN103161870B (en) Design method of automobile semi-active suspension magneto-rheological shock absorber damping channel width
CN103324824A (en) Computing method for equivalent thickness of hydraulic buffer isomorphic annular sandwich valve plates
CN103617334B (en) Strength check methods under vibroshock valve block meaning in office non-uniform distributed pressure
CN105302944A (en) Generalized dissipated energy based calculation method for optimal damping ratio of vehicle passive suspension
CN103150479B (en) The computing method of absorber annular valve sheet radial stress under non-uniform distributed pressure
CN103150478B (en) The computing method of absorber annular valve sheet circumferential stress under non-uniform distributed pressure
CN103632012B (en) The arbitrarily computational methods of vibroshock valve block combined stress under axial symmetry non-uniform distributed pressure
CN103177157A (en) Computing method for radial stress of equivalent structure circular sandwich valve plate of absorber

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant