CN105253330B - 一种基于优化的信息融合geo卫星控制系统菜单式设计方法 - Google Patents

一种基于优化的信息融合geo卫星控制系统菜单式设计方法 Download PDF

Info

Publication number
CN105253330B
CN105253330B CN201510729488.6A CN201510729488A CN105253330B CN 105253330 B CN105253330 B CN 105253330B CN 201510729488 A CN201510729488 A CN 201510729488A CN 105253330 B CN105253330 B CN 105253330B
Authority
CN
China
Prior art keywords
sensor
attitude
control system
gyro
geo satellite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510729488.6A
Other languages
English (en)
Other versions
CN105253330A (zh
Inventor
周志成
孙宝祥
魏强
曹桂兴
韩笑冬
郭廷荣
崔振江
弓建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Space Technology CAST
Original Assignee
China Academy of Space Technology CAST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Space Technology CAST filed Critical China Academy of Space Technology CAST
Priority to CN201510729488.6A priority Critical patent/CN105253330B/zh
Publication of CN105253330A publication Critical patent/CN105253330A/zh
Priority to PCT/CN2016/073359 priority patent/WO2017071140A1/zh
Priority to EP16858589.1A priority patent/EP3369662B1/en
Priority to JP2018521544A priority patent/JP6542991B2/ja
Priority to US15/765,654 priority patent/US10696426B2/en
Application granted granted Critical
Publication of CN105253330B publication Critical patent/CN105253330B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/36Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors
    • B64G1/369Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors using gyroscopes as attitude sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • B64G1/245Attitude control algorithms for spacecraft attitude control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/36Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/36Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors
    • B64G1/361Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors using star sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/36Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors
    • B64G1/363Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors using sun sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/36Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors
    • B64G1/365Guiding or controlling apparatus, e.g. for attitude control using sensors, e.g. sun-sensors, horizon sensors using horizon or Earth sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/18Stabilised platforms, e.g. by gyroscope
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/24Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for cosmonautical navigation

Abstract

本发明提出基于优化的信息融合GEO卫星控制系统菜单式设计方法,步骤如下:长寿命GEO卫星控制系统配置金字塔型的四个长寿命惯性姿态敏感器陀螺;按硬件菜单式设计要求配置各类用户所需敏感器;将三类卡尔曼滤波器进行排序:三个惯性姿态敏感器陀螺+光学姿态星敏感器;三个惯性姿态敏感器陀螺+地球敏感器+太阳敏感器;三个惯性姿态敏感器陀螺+其他类型可测三轴姿态的敏感器;若星载计算机应用软件中的FDIR模块检测到故障时,FDIR模块自主产生相应故障的报警,并且当前所选卡尔曼滤波器进行自主降阶滤波,若在设定时间内故障仍未消除,则由FDIR模块实现自主重组。本发明可提高卫星平台的性价比、载干比和可靠性,并且能明显缩短研制周期。

Description

一种基于优化的信息融合GEO卫星控制系统菜单式设计方法
技术领域
本发明涉及一种基于优化的信息融合GEO卫星控制系统菜单式设计方法,属于航天器控制技术领域。
背景技术
地球静止轨道(GEO)卫星的发射定点成本远高于中低轨道卫星,因此通常要求延长工作寿命,GEO卫星现在通常是15年以上寿命了,星载计算机抗辐照要求高,为保证可靠性,计算机工作频率通常降额使用,也降低了计算机的计算能力,为提高姿态确定与姿态控制精度,又需要减小滤波和控制的采样周期,因此长寿命GEO卫星计算机工作负担比中低轨道卫星计算机重,抗幅照高性能芯片成了GEO卫星计算机高价关键元器件。
信息融合即多敏感器或传感器的测量数据多层次、多方面的处理过程。一些研究信息融合的论文提出的基于联邦卡尔曼滤波的多个子滤波加一个主滤波器的信息融合方案,对一些3~5年寿命的中低轨道航天器计算机比较适合,对长寿命GEO卫星就负担过重,而且对GEO卫星,如果全部冗余姿态敏感器均要同时工作,则备份要增加,性价比、载干比(载荷重量与卫星干重之比)就降低了,而且同样的配置,如采用并行工作,失效率是增大的,可靠性是降低的。
目前长寿命GEO卫星平台的控制系统的软件设计通常是影响研制进度的薄弱点,如何实现GEO卫星信息融合是关键问题,如何将敏感器和陀螺组合实现优化的信息融合是目前急需解决的问题。
目前尚未见有相同研究成果的论文和专利。
发明内容
本发明的技术解决问题是:针对现有技术的不足,提出了一种基于优化的信息融合GEO卫星控制系统菜单式设计方法,本发明充分发挥长寿命惯性姿态敏感器陀螺作用的适度冗余的信息融合,与星上自主FDIR(故障检测、隔离、重组)软件相结合,实现软件控制系统菜单式设计,保证了高性价比、载干比和可靠性,并且能明显缩短研制周期。
本发明的技术解决方案:
一种基于优化的信息融合GEO卫星控制系统菜单式设计方法,包括步骤如下:
(1)长寿命GEO卫星控制系统需按照金字塔型布局配置四个长寿命惯性姿态敏感器陀螺;四个陀螺中三个参与卡尔曼滤波,一个陀螺用于冷备份,陀螺正常工作时输出的测量值包含三轴姿态角和姿态角速度分量;
(2)按硬件菜单式设计要求配置各类用户所需敏感器:长寿命GEO卫星控制系统,选配相应姿态测量精度的光学姿态敏感器:星敏感器、地球敏感器、太阳敏感器或其他类型可测三轴姿态的敏感器;星载计算机的应用软件将长寿命惯性姿态敏感器陀螺与光学姿态敏感器星敏感器、地球敏感器、太阳敏感器或其他类型可测三轴姿态的敏感器构成可独立进行姿态确定的三类卡尔曼滤波器,每一类卡尔曼滤波器均具有姿态测量冗余信息,可自主标定和自主补偿陀螺角速度常值漂移;
(3)根据实际配置的敏感器填写星载计算机应用软件中的三取二的硬件配置表和主备份工作状态表及健康字,星载计算机的应用软件在开机初始化后,自主将步骤(2)中三类卡尔曼滤波器进行排序:三个惯性姿态敏感器陀螺+光学姿态星敏感器;三个惯性姿态敏感器陀螺+地球敏感器+太阳敏感器;三个惯性姿态敏感器陀螺+其他类型可测三轴姿态的敏感器;
(4)若星载计算机应用软件中的FDIR模块检测到光学姿态敏感器短期受日月光干扰或被遮挡或发生其他故障时,或任意一个长寿命惯性姿态敏感器陀螺发生故障时,FDIR模块自主产生相应故障的报警,并且当前所选卡尔曼滤波器进行自主降阶滤波,若在设定时间内故障仍未消除,则由FDIR模块发出宏指令序列,实现自主重组(包括自主启动健康的冷备份敏感器或下一层次滤波器),以确保控制系统姿态确定性能指标。
本发明与现有技术相比的有益效果:
(1)本发明基于优化的信息融合的长寿命(15年以上寿命)GEO卫星控制系统菜单式设计方法,是充分发挥长寿命惯性姿态敏感器陀螺作用的适度冗余的信息融合,与星上自主FDIR(故障检测、隔离、重组)模块相结合,实现控制系统菜单式设计,本发明可推广应用到长寿命的倾斜同步轨道卫星和长寿命的中低轨道航天器,本发明通用性强,工程应用价值大,填补了国内外该领域的空白,处于世界领先地位,增强国际竞争力。
(2)本发明配置金字塔型布局的长寿命惯性姿态敏感器陀螺,每个陀螺的测量值均包含三轴姿态角和姿态角速度分量,使三类卡尔曼滤波器进行自主降阶滤波的能力进一步加强,有利于提高GEO卫星平台的性价比、载干比和可靠性,并且能明显缩短研制周期,减轻GEO卫星的计算机负担,降低对GEO卫星计算机芯片的要求。
附图说明
图1为本发明方法的流程图;
图2为本发明金字塔型布局的示意图。
具体实施方式
下面结合附图对本发明的工作原理和工作过程作进一步解释。
如图1所示,一种基于优化的信息融合GEO卫星控制系统菜单式设计方法,包括步骤如下:
(1)长寿命GEO卫星控制系统需按照金字塔型布局配置四个长寿命惯性姿态敏感器陀螺;四个陀螺中三个参与卡尔曼滤波,一个陀螺用于冷备份,陀螺正常工作时输出的测量值包含三轴姿态角和姿态角速度分量;
如图2所示,四个陀螺(A1、A2、A3和A4)采用金字塔型的对称布局方式,对称轴为卫星本体坐标系三轴的任意一个轴,每个陀螺的测量轴与所述对称轴的夹角为θ(大小可任意选取),每个陀螺的测量轴在由卫星本体坐标系三轴中除对称轴外的另外两轴确定的平面内的投影与所述另外两轴的夹角均为45°;
(2)按硬件菜单式设计要求配置各类用户所需敏感器:长寿命GEO卫星控制系统,选配相应姿态测量精度的光学姿态敏感器:星敏感器、地球敏感器、太阳敏感器或其他类型可测三轴姿态的敏感器(比如射频敏感器、有四个天线的基于导航卫星系统的自主定轨定姿接收机等);星载计算机的应用软件将长寿命惯性姿态敏感器陀螺与光学姿态敏感器星敏感器、地球敏感器、太阳敏感器或其他类型可测三轴姿态的敏感器构成可独立进行姿态确定的三类卡尔曼滤波器,每一类卡尔曼滤波器均具有姿态测量冗余信息,可自主标定和自主补偿陀螺角速度常值漂移;
(3)根据实际配置的敏感器填写星载计算机应用软件中的三取二的硬件配置表和主备份工作状态表及健康字,星载计算机的应用软件在开机初始化后,自主将步骤(2)中三类卡尔曼滤波器进行排序:三个惯性姿态敏感器陀螺+光学姿态星敏感器;三个惯性姿态敏感器陀螺+地球敏感器+太阳敏感器;三个惯性姿态敏感器陀螺+其他类型可测三轴姿态的敏感器(根据用户需要选择排序的敏感器);
(4)若星载计算机应用软件中的FDIR模块检测到光学姿态敏感器短期受日月光干扰或被遮挡或发生其他故障时,或任意一个长寿命惯性姿态敏感器陀螺发生故障时,FDIR模块自主产生相应故障的报警,并且当前所选卡尔曼滤波器进行自主降阶滤波,若在设定时间内故障仍未消除,则由FDIR模块发出宏指令序列,实现自主重组(包括自主启动健康的冷备份敏感器或下一层次滤波器),以确保控制系统姿态确定性能指标。陀螺的随机漂移越小、脉冲当量越小,实现重组的允许时间间隔越长,启动下一层次滤波器后,由于初始姿态误差很小,滤波收敛快,对姿态确定和姿态控制性能影响很小。
通常姿态确定与姿态控制精度指标要求高的GEO卫星,硬件配置均会有星敏感器,因此通常陀螺+星敏感器的单一卡尔曼滤波器作为第一选择,根据不同用户不同性能指标要求,可按菜单式设计方法选择GEO卫星控制系统需要配置的姿态敏感器,如用户的姿态控制性能指标要求低,硬件配置可没有星敏感器,则陀螺+地球敏感器+太阳敏感器的单一卡尔曼滤波器上可自主升为第一选择,其姿态确定和控制的精度可不低于或优于单独靠星敏感器姿态确定时的精度,即根据实际配置的敏感器填写星载计算机应用软件中的三取二的硬件配置表和主备份工作状态表及健康字,星载计算机开机初始化后,就自主将可选用的单一卡尔曼滤波器进行了排序,当然哪一个卡尔曼滤波器当第一层次单一卡尔曼滤波器,地面遥控有排序修改优先权。
本发明说明书中未作详细描述的内容属航天领域技术人员的公知技术。

Claims (8)

1.一种基于优化的信息融合GEO卫星控制系统菜单式设计方法,其特征在于步骤如下:
(1)长寿命GEO卫星控制系统配置四个长寿命惯性姿态敏感器陀螺;四个陀螺中三个参与卡尔曼滤波,一个陀螺用于冷备份,陀螺正常工作时输出的测量值包含三轴姿态角和姿态角速度分量;
(2)按硬件菜单式设计要求配置各类用户所需敏感器:长寿命GEO卫星控制系统,选配相应姿态测量精度的可测三轴姿态的敏感器;星载计算机的应用软件将长寿命惯性姿态敏感器陀螺与可测三轴姿态的敏感器构成可独立进行姿态确定的三类卡尔曼滤波器;每一类卡尔曼滤波器均具有姿态测量冗余信息,可自主标定和自主补偿陀螺角速度常值漂移;
(3)根据实际配置的敏感器填写星载计算机应用软件中的三取二的硬件配置表和主备份工作状态表及健康字,星载计算机的应用软件在开机初始化后,自主将步骤(2)中的卡尔曼滤波器进行排序;
(4)若星载计算机应用软件中的FDIR模块检测到光学姿态敏感器短期受日月光干扰或被遮挡或任意一个长寿命惯性姿态敏感器陀螺发生故障时,FDIR模块自主产生相应故障的报警,并且当前所选卡尔曼滤波器进行自主降阶滤波,若在设定时间内故障仍未消除,则由FDIR模块发出宏指令序列,实现自主重组,以确保控制系统姿态确定性能指标。
2.根据权利要求1所述的一种基于优化的信息融合GEO卫星控制系统菜单式设计方法,其特征在于:步骤(2)中选配的相应姿态测量精度的可测三轴姿态的敏感器包括:惯性姿态敏感器、光学姿态敏感器、射频敏感器或有四个天线的基于导航卫星系统的自主定轨定姿接收机,光学姿态敏感器又包括星敏感器、地球敏感器和太阳敏感器。
3.根据权利要求2所述的一种基于优化的信息融合GEO卫星控制系统菜单式设计方法,其特征在于:步骤(3)中三类卡尔曼滤波器进行排序的方式如下:三个惯性姿态敏感器陀螺+星敏感器;三个惯性姿态敏感器陀螺+地球敏感器+太阳敏感器;三个惯性姿态敏感器陀螺+射频敏感器或有四个天线的基于导航卫星系统的自主定轨定姿接收机。
4.根据权利要求3所述的一种基于优化的信息融合GEO卫星控制系统菜单式设计方法,其特征在于:步骤(4)中所述的实现自主重组包括自主启动健康的冷备份敏感器或启动下一层次滤波器。
5.根据权利要求4所述的一种基于优化的信息融合GEO卫星控制系统菜单式设计方法,其特征在于:所述启动下一层次滤波器指按照三类卡尔曼滤波器的排序结果顺序选择卡尔曼滤波器。
6.根据权利要求1所述的一种基于优化的信息融合GEO卫星控制系统菜单式设计方法,其特征在于:所述的长寿命大于等于15年寿命。
7.根据权利要求1所述的一种基于优化的信息融合GEO卫星控制系统菜单式设计方法,其特征在于:步骤(1)中长寿命GEO卫星控制系统需按照金字塔型布局配置四个长寿命惯性姿态敏感器陀螺,对称轴为卫星本体坐标系三轴的任意一个轴,每个陀螺的测量轴与所述对称轴成一定夹角θ。
8.根据权利要求7所述的一种基于优化的信息融合GEO卫星控制系统菜单式设计方法,其特征在于:夹角θ大小为任意选取。
CN201510729488.6A 2015-10-30 2015-10-30 一种基于优化的信息融合geo卫星控制系统菜单式设计方法 Active CN105253330B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201510729488.6A CN105253330B (zh) 2015-10-30 2015-10-30 一种基于优化的信息融合geo卫星控制系统菜单式设计方法
PCT/CN2016/073359 WO2017071140A1 (zh) 2015-10-30 2016-02-03 一种基于优化的信息融合geo卫星控制系统菜单式设计方法
EP16858589.1A EP3369662B1 (en) 2015-10-30 2016-02-03 Menu-type design method for geo satellite control system based on optimized information integration
JP2018521544A JP6542991B2 (ja) 2015-10-30 2016-02-03 最適化情報統合に基づくgeo衛星制御システムのためのメニュー型設計方法
US15/765,654 US10696426B2 (en) 2015-10-30 2016-02-03 Menu-type design method for GEO satellite control system based on optimized information integration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510729488.6A CN105253330B (zh) 2015-10-30 2015-10-30 一种基于优化的信息融合geo卫星控制系统菜单式设计方法

Publications (2)

Publication Number Publication Date
CN105253330A CN105253330A (zh) 2016-01-20
CN105253330B true CN105253330B (zh) 2017-04-05

Family

ID=55093358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510729488.6A Active CN105253330B (zh) 2015-10-30 2015-10-30 一种基于优化的信息融合geo卫星控制系统菜单式设计方法

Country Status (5)

Country Link
US (1) US10696426B2 (zh)
EP (1) EP3369662B1 (zh)
JP (1) JP6542991B2 (zh)
CN (1) CN105253330B (zh)
WO (1) WO2017071140A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105253330B (zh) * 2015-10-30 2017-04-05 中国空间技术研究院 一种基于优化的信息融合geo卫星控制系统菜单式设计方法
CN106218922B (zh) * 2016-07-27 2018-06-15 中国科学院长春光学精密机械与物理研究所 挠性敏捷卫星的联合执行机构控制方法
CN110672128B (zh) * 2019-11-05 2021-07-02 中国人民解放军国防科技大学 一种星光/惯性组合导航及误差在线标定方法
CN111189441B (zh) * 2020-01-10 2023-05-12 山东大学 一种多源自适应容错联邦滤波组合导航系统及导航方法
CN111273637B (zh) * 2020-01-20 2021-06-29 北京航空航天大学 一种支持在线故障诊断的fdir分层软件架构
CN111473799B (zh) * 2020-03-24 2022-04-08 中国空间技术研究院 一种卫星天体敏感器故障诊断与恢复功能的测试方法及装置
CN111854728B (zh) * 2020-05-20 2022-12-13 哈尔滨工程大学 一种基于广义相对熵的容错滤波方法
CN111623800B (zh) * 2020-06-10 2022-05-24 北京空间飞行器总体设计部 一种低轨遥感卫星导航定位系统多级健康状态获取方法
CN112749741B (zh) * 2020-12-30 2021-10-01 哈尔滨市科佳通用机电股份有限公司 一种基于深度学习的手闸紧固故障识别方法
CN112733409B (zh) * 2021-04-02 2021-11-30 中国电子科技集团公司信息科学研究院 一种多源传感综合集成复合导航微系统协同设计平台
CN113485391B (zh) * 2021-06-08 2024-02-23 北京控制工程研究所 一种基于优先级序列的敏感器自主管理方法
CN113607155B (zh) * 2021-07-12 2023-10-10 上海卫星工程研究所 多星组合体下敏感器智能复用方法及系统
CN113672365B (zh) * 2021-08-04 2024-02-09 北京控制工程研究所 一种条件触发式星载计算机备份调度方法和系统
CN113859588B (zh) * 2021-09-30 2023-07-25 西北工业大学 一种航天器协同观测与容错抗干扰控制方法
CN113932802A (zh) * 2021-10-12 2022-01-14 中国科学院微小卫星创新研究院 多个星敏感器的优先级变更方法及系统
CN114413883B (zh) * 2021-12-23 2023-09-05 上海航天控制技术研究所 卫星姿态确定精度的提升方法、存储介质和电子设备
CN116056329B (zh) * 2023-01-19 2023-12-19 中国科学院微小卫星创新研究院 用于微小卫星的单板一体化综合电子单元和综合电子系统
CN116192809A (zh) * 2023-03-02 2023-05-30 苏州泰富晶宇科技有限公司 一种双机冷备高可靠星务与姿控交互架构系统

Family Cites Families (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3359407A (en) * 1959-10-28 1967-12-19 Gen Electric Satellite orbit changing system
US3340531A (en) * 1964-10-05 1967-09-05 Martin Marietta Corp Satellite communication system
US3490719A (en) * 1968-01-24 1970-01-20 Nasa Attitude control system
US3643897A (en) * 1968-10-18 1972-02-22 Communications Satellite Corp Nutation correction system for spin-stabilized satellite
DE2732201C2 (de) * 1977-07-16 1983-01-13 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Regler für die Lagestabilisierung eines Satelliten
US4730798A (en) * 1985-03-08 1988-03-15 Wertz James R Autonomous spacecraft controller and related method
US4807835A (en) * 1987-04-10 1989-02-28 Ithaco, Inc. Spacecraft attitude stabilization system
US5204818A (en) * 1990-05-22 1993-04-20 The United States Of America As Represented By The Secretary Of The Air Force Surveying satellite apparatus
WO1992003339A1 (en) * 1990-08-22 1992-03-05 Microcosm, Inc. Satellite orbit maintenance system
US5439190A (en) * 1991-04-22 1995-08-08 Trw Inc. Medium-earth-altitude satellite-based cellular telecommunications
US5642122A (en) * 1991-11-08 1997-06-24 Teledesic Corporation Spacecraft antennas and beam steering methods for satellite communciation system
US5687084A (en) * 1992-05-26 1997-11-11 Microcosm, Inc. Satellite orbit maintenance system
US6102335A (en) * 1992-06-02 2000-08-15 Mobile Communications Holdings, Inc. Elliptical orbit satellite, system, and deployment with controllable coverage characteristics
US5562266A (en) * 1992-10-29 1996-10-08 Aerospatiale Societe Nationale Industrielle Rate gyro calibration method and apparatus for a three-axis stabilized satellite
US5452077A (en) * 1993-12-09 1995-09-19 Hughes Aircraft Company Transient-free method of determining satellite attitude
FR2729116A1 (fr) * 1995-01-06 1996-07-12 Matra Marconi Space France Procede de commande d'attitude de satellite sur orbite inclinee sur l'equateur terrestre
US5582368A (en) * 1995-01-23 1996-12-10 Martin Marietta Corp. Reaction wheel speed observer system
US5931421A (en) * 1995-08-11 1999-08-03 Daimler-Benz Aerospace Ag Arrangement for attitude control and stabilization of a three axes stabilized spacecraft
US5758260A (en) * 1995-08-23 1998-05-26 Globalstar L.P. Satellite beam steering reference using terrestrial beam steering terminals
US5984236A (en) * 1995-12-22 1999-11-16 Keitel; Keith F. Momentum unloading using gimbaled thrusters
JP3153496B2 (ja) * 1997-05-21 2001-04-09 株式会社日立製作所 天頂方向での滞在時間が長い人工衛星を用いた通信サービス提供方法
US6128555A (en) * 1997-05-29 2000-10-03 Trw Inc. In situ method and system for autonomous fault detection, isolation and recovery
US5951609A (en) * 1997-05-29 1999-09-14 Trw Inc. Method and system for autonomous spacecraft control
US5944761A (en) * 1997-06-06 1999-08-31 Honeywell Inc. Variable periodic disturbance rejection filter
JP3483746B2 (ja) * 1997-11-14 2004-01-06 宇宙開発事業団 西回り赤道周回衛星及び該衛星を用いた気象衛星システム
US6145790A (en) * 1998-09-22 2000-11-14 Hughes Electronics Corporation Attitude determination system and method
US6240367B1 (en) * 1998-11-27 2001-05-29 Ching-Fang Lin Full fusion positioning method for vehicle
US6272432B1 (en) * 1999-05-10 2001-08-07 Hughes Electronics Corporation System and method for correcting star tracker low spatial frequency error in stellar-inertial attitude determination systems
US6285927B1 (en) * 1999-05-26 2001-09-04 Hughes Electronics Corporation Spacecraft attitude determination system and method
DE19924908B4 (de) * 1999-05-31 2008-05-29 Astrium Gmbh Verfahren zur dreiachsigen Lagebestimmung für einen niedrig fliegenden Satelliten
US6727848B2 (en) * 1999-07-27 2004-04-27 Ralph F. Eschenbach Global positioning system using almanac data for a fast time to first fix
US6211817B1 (en) * 1999-07-27 2001-04-03 Trimble Navigation Limited Differential global positioning system using almanac data for a fast time to first fix
US6559793B1 (en) * 1999-07-27 2003-05-06 Trimble Navigation Limited Differential global positioning system using coarse GPS data for a fast time to a precise first fix
JP2001080597A (ja) * 1999-09-13 2001-03-27 Mitsubishi Electric Corp 三軸安定衛星の姿勢制御装置
US6511020B2 (en) * 2000-01-07 2003-01-28 The Boeing Company Method for limiting interference between satellite communications systems
US6691033B1 (en) * 2000-07-26 2004-02-10 Hughes Electronics Corporation System and method for calibrating inter-star-tracker misalignments in a stellar inertial attitude determination system
US6757858B1 (en) * 2000-07-31 2004-06-29 Hughes Electronics Corp. System signaling for payload fault detection and isolation
US6408245B1 (en) * 2000-08-03 2002-06-18 American Gnc Corporation Filtering mechanization method of integrating global positioning system receiver with inertial measurement unit
US7899690B1 (en) * 2000-08-18 2011-03-01 The Crawford Group, Inc. Extended web enabled business to business computer system for rental vehicle services
US6356815B1 (en) * 2000-08-25 2002-03-12 Hughes Electronics Corporation Stellar attitude-control systems and methods with weighted measurement-noise covariance matrices
AU2002251827A1 (en) * 2001-01-26 2002-08-06 The Charles Stark Draper Laboratory, Inc. Miniature attitude sensing suite
JP3726884B2 (ja) * 2001-04-25 2005-12-14 学校法人日本大学 慣性計測装置を用いた姿勢推定装置及び方法並びにプログラム
US6681159B2 (en) * 2001-10-28 2004-01-20 The Boeing Company Spacecraft methods and structures with enhanced attitude control that facilitates gyroscope substitutions
US6681182B2 (en) * 2002-02-01 2004-01-20 The Aerospace Corporation Fault detection pseudo gyro
US6859727B2 (en) * 2003-01-08 2005-02-22 Honeywell International, Inc. Attitude change kalman filter measurement apparatus and method
FR2852687B1 (fr) * 2003-03-20 2005-05-20 Procede et dispositif d'attribution de coefficients de ponderation pour des calculs d'attitude
US6945500B2 (en) * 2003-08-15 2005-09-20 Skycorp, Inc. Apparatus for a geosynchronous life extension spacecraft
US7370566B2 (en) * 2003-09-04 2008-05-13 Harris Corporation Complimentary retrograde/prograde satellite constellation
DE60322393D1 (de) * 2003-10-21 2008-09-04 Astrium Gmbh Dynamisches Giersteuerungsverfahren für Raumfahrzeuge
US7624948B2 (en) * 2004-12-07 2009-12-01 Lockheed Martin Corporation Optimized land mobile satellite configuration and steering method
US7487016B2 (en) * 2004-12-15 2009-02-03 The Boeing Company Method for compensating star motion induced error in a stellar inertial attitude determination system
US7357356B1 (en) * 2005-02-28 2008-04-15 Lockheed Martin Corporation Attitude and antenna steering system for geosynchronous earth orbit (GEO) spacecraft
KR100728220B1 (ko) * 2005-09-29 2007-06-13 한국전자통신연구원 위성 관제 시스템의 고장 진단 처리 장치 및 그 방법
US9407662B2 (en) * 2005-12-29 2016-08-02 Nextlabs, Inc. Analyzing activity data of an information management system
FR2902526B1 (fr) * 2006-06-16 2008-09-12 Agence Spatiale Europeenne Radiometre interferometrique
US7739003B2 (en) * 2006-06-20 2010-06-15 Kara Whitney Johnson Method of determining and controlling the inertial attitude of a spinning, artificial satellite and systems therefor
US8706322B2 (en) * 2006-06-20 2014-04-22 Kara Whitney Johnson Method and computer program product for controlling inertial attitude of an artificial satellite by applying gyroscopic precession to maintain the spin axis perpendicular to sun lines
US7529827B2 (en) * 2006-06-29 2009-05-05 Stratavia Corporation Standard operating procedure automation in database administration
US9274820B2 (en) * 2006-12-21 2016-03-01 International Business Machines Corporation Specifying user defined or translator definitions to use to interpret mnemonics in a computer program
US8103707B2 (en) * 2007-03-30 2012-01-24 Verizon Patent And Licensing Inc. Method and system for presenting non-linear content based on linear content metadata
US8825399B2 (en) * 2008-07-24 2014-09-02 Raytheon Company System and method of passive and autonomous navigation of space vehicles using an extended Kalman filter
WO2010096104A1 (en) * 2008-10-03 2010-08-26 Bell Helicopter Textron Inc. Method and apparatus for aircraft sensor and actuator failure protection using reconfigurable flight control laws
KR101189697B1 (ko) * 2010-08-31 2012-10-10 서울대학교산학협력단 우주비행체의 자세제어시스템을 위한 고장 검출기 및 고장 검출 방법
CN103621105A (zh) * 2011-06-30 2014-03-05 汤姆逊许可公司 根据用户喜好自动录制的方法和装置
CN102494687B (zh) 2011-10-19 2013-09-04 清华大学 一种高精度姿态/轨道一体化测量装置
CN103134491B (zh) * 2011-11-30 2016-02-10 上海宇航系统工程研究所 Geo轨道转移飞行器sins/cns/gnss组合导航系统
US10171734B2 (en) * 2012-02-27 2019-01-01 Ovio Technologies, Inc. Rotatable imaging system
CN102661751A (zh) 2012-06-07 2012-09-12 哈尔滨工业大学 基于等价关系和小波变换数值微分的卫星陀螺组故障检测、分离和估计方法
CN103264776B (zh) * 2013-05-30 2015-04-22 中国空间技术研究院 一种基于信息融合的控制系统工作模式设置及切换方法
US9696408B2 (en) * 2014-02-04 2017-07-04 University Of Florida Research Foundation, Inc. Robust integrated precision high-speed satellite attitude determination and control system (ADCS)
CN104118578B (zh) * 2014-06-24 2016-02-03 上海微小卫星工程中心 一种微小卫星平台多个敏感器数据动态融合系统及方法
CN104085539B (zh) * 2014-06-26 2015-12-30 北京控制工程研究所 成像定标的姿态控制方法
US9815573B2 (en) * 2014-09-01 2017-11-14 James Joshua Woods Solar energy conversion and transmission system and method
US9874922B2 (en) * 2015-02-17 2018-01-23 Intel Corporation Performing dynamic power control of platform devices
US9791278B2 (en) * 2015-03-24 2017-10-17 Honeywell International Inc. Navigating with star tracking sensors
US9745083B2 (en) * 2015-04-01 2017-08-29 Worldvu Satellites Limited Method for thermal stabilization of a communications satellite
US20170065232A1 (en) * 2015-09-04 2017-03-09 Welch Allyn, Inc. Method and apparatus for adapting a function of a biological sensor
CN105253330B (zh) 2015-10-30 2017-04-05 中国空间技术研究院 一种基于优化的信息融合geo卫星控制系统菜单式设计方法
FR3044634B1 (fr) * 2015-12-08 2017-12-22 Airbus Helicopters Procede et dispositif de pilotage d'un aeronef
US9973266B1 (en) * 2017-06-12 2018-05-15 Ast & Science, Llc System and method for high throughput fractionated satellites (HTFS) for direct connectivity to and from end user devices and terminals using flight formations of small or very small satellites
US10557980B2 (en) * 2017-06-22 2020-02-11 Honeywell International Inc. Apparatus and method for a holographic optical field flattener

Also Published As

Publication number Publication date
JP2018535139A (ja) 2018-11-29
JP6542991B2 (ja) 2019-07-10
WO2017071140A1 (zh) 2017-05-04
EP3369662A1 (en) 2018-09-05
EP3369662A4 (en) 2019-06-26
US20180281991A1 (en) 2018-10-04
US10696426B2 (en) 2020-06-30
EP3369662B1 (en) 2020-07-01
CN105253330A (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
CN105253330B (zh) 一种基于优化的信息融合geo卫星控制系统菜单式设计方法
CN106774367B (zh) 一种飞行器的冗余控制方法
CN105021188B (zh) 一种双模式仿生偏振/地磁辅助组合导航系统
CN108957496A (zh) Uav抗gnss失效定位定向接收机及其应用方法
CN111045454B (zh) 一种基于仿生自主导航的无人机自驾仪
CN1322311C (zh) 车载快速定位定向系统
US9037318B2 (en) Systems and methods for providing aircraft heading information
CN104503467A (zh) 基于双核架构的无人机自主起降飞行控制系统
CN105865455B (zh) 一种利用gps与加速度计计算飞行器姿态角的方法
CN104118578A (zh) 一种微小卫星平台多个敏感器数据动态融合系统及方法
US20210035456A1 (en) Unmanned aircraft, and method and system for navigation
US7606665B2 (en) System and method for employing an aided-alignment mode to align an inertial reference system
CN106527461A (zh) 一种基于双核处理器的飞行控制系统
CN107544791A (zh) 一种基于优化的信息融合geo卫星控制系统菜单式设计方法
CN102116629A (zh) 一种基于正四面体的六微机械电子陀螺配置方法
CN116453378B (zh) 无人机航段交接切换方法及装置
CN102927987B (zh) 一种地球敏感器探头在轨故障情况下的处理方法
CN202442651U (zh) 低成本高精度制导控制装置
CN103281113A (zh) 一种基于拓扑容错结构的分布式卫星系统
Park et al. Development of a GPS/INS system for precision GPS guided bombs
CN207132904U (zh) 车载导航系统
CN104749600B (zh) 一种基于偏振光的判定式组合导航方法
CN113503874A (zh) 光纤组合导航系统
CN116124131A (zh) 一种基于单天线卫星航迹角修正的航向系统
Yan et al. Hardware and software design of highly reliable integrated navigation system for long-endurance UAV

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant