CN105244403A - 非晶硅pin光电池及其制备方法 - Google Patents

非晶硅pin光电池及其制备方法 Download PDF

Info

Publication number
CN105244403A
CN105244403A CN201510670067.0A CN201510670067A CN105244403A CN 105244403 A CN105244403 A CN 105244403A CN 201510670067 A CN201510670067 A CN 201510670067A CN 105244403 A CN105244403 A CN 105244403A
Authority
CN
China
Prior art keywords
amorphous silicon
layer
argent grain
substrate
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510670067.0A
Other languages
English (en)
Other versions
CN105244403B (zh
Inventor
陈平
卢亚宾
刘伟伟
张振中
李博研
赵东旭
林列
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201510670067.0A priority Critical patent/CN105244403B/zh
Publication of CN105244403A publication Critical patent/CN105244403A/zh
Application granted granted Critical
Publication of CN105244403B publication Critical patent/CN105244403B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Detergent Compositions (AREA)

Abstract

一种非晶硅PIN光电池,包括依次层叠的衬底、n型非晶硅层、i型非晶硅层、p型非晶硅层和亚微米银颗粒层。上述非晶硅PIN光电池,当亚微米银颗粒被入射光激发时,其内部的自由电子产生的局域表面等离子体共振效应,通过将亚微米银颗粒与依次层叠的衬底、n型非晶硅层、i型非晶硅层和p型非晶硅层结合相互作用,能够有效提高非晶硅PIN光电池的光谱响应能力。此外,还提供一种非晶硅PIN光电池的制备方法。

Description

非晶硅PIN光电池及其制备方法
技术领域
本发明涉及光学器件技术领域,尤其涉及一种非晶硅PIN光电池及其制备方法。
背景技术
光电池是利用光伏效应(光电效应的衍生)制成的检测光辐射的器件,是一种在光的照射下产生电动势的半导体元件。光电池是光电检测器件的核心。而光电探测器在军事和国民经济的各个领域有广泛用途,在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。因此,对于光电池的研究将会推动光电检测器件的发展。
光电池的工作原理是半导体的p-n结在光的作用下产生新的电子-空穴对,电子和空穴在p-n结电场的作用下移动到结的两边形成附加电势差。作为光电子器件(光电二极管、红外探测器、太阳电池等)使用时,感光(探测)灵敏度主要决定于势垒区的宽度。p-n结因为势垒厚度较薄,故感光灵敏度较小。而对于p-i-n结,由于它的势垒厚度很大(i型层),则能够吸收大量的光子、并转换为载流子(光生载流子),所以感光和探测辐射的灵敏度相对p-n结型的更高。
光电池的种类有很多,有硒光电池、硅光电池和硫化铊、硫化镉、砷化镓光电池等。其中硅光电池由于其转化效率高、寿命长、价格便宜而应用最为广泛。非晶硅光电池是硅光电池的一种,非晶硅光电池对于硅材料消耗很少,电耗很低,光谱响应范围广。非晶硅是一种直接能带半导体,它的结构内部有许多所谓的“悬键”,也就是没有和周围的硅原子成键的电子,这些电子在电场作用下就可以产生电流,并不需要声子的帮助,因而非晶硅可以做得很薄,还有制作成本低的优点,因此具有很好的前景。但目前非晶硅光电池存在转换效率较低,光谱响应能力较弱的问题。
传统的,提高非晶硅PIN光电池光谱响应的方法主要有以下几种:
1、在电池上表层增加增透膜。利用光的干涉现象以达到减少光发射,增加对光的吸收,提高光响应。
2、利用光子晶体的背反射。利用折射率周期变化的光子晶体可以使得一定太阳光谱范围内的光子都处于其光子禁带之内,这样的光子晶体背反射镜可以完全反射特定范围的光谱,从而增大太阳光在太阳能电池吸收层中的光程。
3、制备叠层光电池。叠层光电池是由在制备的p-i-n层单结光电池上再沉积一个或多个p-i-n子电池制得的,它把不同禁带宽度的材科组合在一起,提高了光谱的响应范围。
然而,电池上表层增加增透膜以及利用光子晶体的背反射的技术大多只能实现在某些特定波长的光响应,采用制备叠层非晶硅PIN光电池的方法则工艺较为复杂。
发明内容
鉴于此,有必要提供了一种工艺简单,且光谱响应较宽、较强的非晶硅PIN光电池及其制备方法。
一种非晶硅PIN光电池,包括依次层叠的衬底、n型非晶硅层、i型非晶硅层、p型非晶硅层和亚微米银颗粒层。
在其中一个实施例中,所述p型非晶硅层的材料为掺硼非晶硅,所述n型非晶硅层的材料为掺磷非晶硅。
在其中一个实施例中,所述p型非晶硅层的厚度为30nm-50nm,所述i型非晶硅层的厚度为300nm-400nm,所述n型非晶硅层的厚度为30nm-50nm,所述亚微米银颗粒层的厚度为300nm-550nm。
在其中一个实施例中,所述亚微米银颗粒层的亚微米银颗粒包括中心银颗粒和镶嵌在所述中心银颗粒表面的多颗周围银颗粒。
在其中一个实施例中,所述多颗周围银颗粒在所述中心银颗粒表面均匀对称分布。
在其中一个实施例中,所述中心银颗粒的粒径为200nm-400nm,所述周围银颗粒的粒径为100nm-150nm。
在其中一个实施例中,所述亚微米银颗粒层的亚微米银颗粒的粒径为300nm-550nm。
一种非晶硅PIN光电池的制备方法,包括如下步骤:
在衬底上依次蒸镀n型非晶硅层、i型非晶硅层和p型非晶硅层,得到基片,接着将所述基片清洗干净;
将洗净后的所述基片放入体积比为3:7的双氧水和浓硫酸的混合溶液中,恒温79℃-81℃加热80min-100min,接着,取出清洗干净,干燥后放入体积分数为1%的3-氨基丙基-三甲氧基硅烷溶液中浸泡10h-12h,接着,取出清洗干净,干燥后得到处理好的基片;
按照1:10的体积比,将浓度为0.99mol/L-1.01mol/L的硝酸银水溶液和浓度为0.99mol/L-1.01mol/L的聚乙烯吡咯烷酮水溶液混合均匀,然后加水稀释至银离子浓度为0.002mol/L,得到银离子有机溶液,接着按照体积比1:50,将浓度为0.99mol/L-1.01mol/L的抗坏血酸水溶液加入所述银离子有机溶液中,搅拌直至混合液颜色不再变化,接着将所述混合液进行离心分离,然后取下层溶液并加入等体积的水,得到银粒子溶胶溶液;
将所述处理好的基片放入所述银粒子溶胶溶液中,在所述处理好的基片的p型非晶硅层上沉积形成亚微米银颗粒层,取出后洗净,用氮气吹干,得到所述非晶硅PIN光电池。
在其中一个实施例中,将所述基片清洗干净的操作包括如下步骤:
将所述基片在洗洁精中超声清洗8min-12min,接着用超纯水超声清洗8min-12min,然后再放入乙醇溶液中超声清洗8min-12min,再用大量纯水超声清洗8min-12min,取出后吹干。
在其中一个实施例中,所述离心分离的转速为1000r/min-4000r/min,时间为10min-15min。
上述非晶硅PIN光电池,当亚微米银颗粒被入射光激发时,其内部的自由电子产生的局域表面等离子体共振效应,通过将亚微米银颗粒与依次层叠的衬底、n型非晶硅层、i型非晶硅层和p型非晶硅层结合相互作用,能够有效提高非晶硅PIN光电池的光谱响应能力。
附图说明
图1为一实施方式的非晶硅PIN光电池的结构示意图;
图2为一实施方式的非晶硅PIN光电池的制备方法的流程图;
图3为实施例1和对比例1的光谱响应图;
图4为非晶硅PIN光电池的光谱响应测试装置示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清晰,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请参阅图1,一实施方式的非晶硅PIN光电池100,包括依次层叠的衬底10、n型非晶硅层20、i型非晶硅层30、p型非晶硅层40和亚微米银颗粒层50。
在本实施方式中,衬底10为ITO玻璃层。
在本实施方式中,n型非晶硅层20的材料为掺磷非晶硅。n型非晶硅层20的厚度可以为30nm-50nm。优选地,上述n型非晶硅层20的材料的磷的掺杂浓度为1.0×1012cm-3-5×1012cm-3
i型非晶硅层30的厚度可以为300nm-400nm。
p型非晶硅层40的材料为掺硼非晶硅。p型非晶硅层40的厚度可以为30nm-50nm。优选地,上述p型非晶硅层20的材料的硼的掺杂浓度为1.0×1010cm-3-5×1010cm-3
亚微米银颗粒层50为单层亚微米银颗粒层。即亚微米银颗粒层50由单层的亚微米银颗粒构成。亚微米银颗粒层的亚微米银颗粒的粒径为300nm-550nm。亚微米银颗粒层的厚度为300nm-550nm。亚微米银颗粒层的亚微米银颗粒包括中心银颗粒和镶嵌在中心银颗粒表面的多颗周围纳米银颗粒。多颗周围银颗粒在中心银颗粒表面均匀对称分布。中心银颗粒的粒径为200nm-400nm,周围银颗粒的粒径为100nm-150nm。
上述非晶硅PIN光电池,当亚微米银颗粒被入射光激发时,其内部的自由电子产生的局域表面等离子体共振效应,通过将亚微米银颗粒与依次层叠的衬底、n型非晶硅层、i型非晶硅层和p型非晶硅层结合相互作用,能够有效提高非晶硅PIN光电池的光谱响应能力。
请参阅图2,一实施方式的上述非晶硅PIN光电池100的制备方法,包括如下步骤:
S10、在衬底上依次蒸镀n型非晶硅层、i型非晶硅层和p型非晶硅层,得到基片,接着将基片清洗干净。
在本实施方式中,衬底为ITO玻璃层。
在本实施方式中,n型非晶硅层的材料为掺磷非晶硅。n型非晶硅层的厚度可以为30nm-50nm。
i型非晶硅层的厚度可以为300nm-400nm。
p型非晶硅层的材料为掺硼非晶硅。p型非晶硅层的厚度可以为30nm-50nm。
将基片清洗干净的操作包括如下步骤:
将基片在洗洁精中超声清洗8min-12min,接着用超纯水超声清洗8min-12min,然后再放入乙醇溶液中超声清洗8min-12min,再用大量纯水超声清洗8min-12min,取出后吹干。
S20、将洗净后的基片放入体积比为3:7的双氧水和浓硫酸的混合溶液中,恒温79℃-81℃加热80min-100min,接着,取出清洗干净,干燥后放入体积分数为1%的3-氨基丙基-三甲氧基硅烷(3-Aminopropyltrimethoxysilane,APTMS)溶液中浸泡10h-12h,接着,取出清洗干净,干燥后得到处理好的基片。
S20中,将洗净后的基片放入体积比为3:7的双氧水和浓硫酸的混合溶液中,恒温79℃-81℃加热80min-100min后,采用镊子取出,然后用大量的超纯水清洗,然后吹干。
S20中,采用1%的3-氨基丙基-三甲氧基硅烷溶液浸泡后,取出,先用甲醇溶液清洗,再用大量超纯水清洗,用氮气吹干。
S30、按照1:10的体积比,将浓度为0.99mol/L-1.01mol/L的硝酸银水溶液和浓度为0.09mol/L-1.01mol/L的聚乙烯吡咯烷酮水溶液混合均匀,然后加水稀释至银离子浓度为0.002mol/L,得到银离子有机溶液,接着按照体积比1:50,将浓度为0.99mol/L-1.01mol/L的抗坏血酸水溶液加入银离子有机溶液中,搅拌直至混合液颜色不再变化,接着将混合液进行离心分离,然后取下层溶液并加入等体积的水,得到银粒子溶胶溶液。
S30中,将硝酸银水溶液和聚乙烯吡咯烷酮水溶液混合后,在室温下用搅拌子剧烈搅拌。将浓度为0.99mol/L-1.01mol/L的抗坏血酸水溶液加入银离子有机溶液中的操作中,应使其迅速混合均匀。
S30中,离心分离的转速为1000r/min-4000r/min,时间为10min-15min。
S40、将处理好的基片放入银粒子溶胶溶液中,在处理好的基片的p型非晶硅层上沉积形成亚微米银颗粒层,取出后洗净,用氮气吹干,得到非晶硅PIN光电池。
S40中,将处理好的基片放入银粒子溶胶溶液中沉积的时间为至少12h。
上述步骤S10、S20制备处理好的基片的步骤和S30制备银粒子溶胶溶液的步骤之间没有先后顺序。可以先制备处理好的基片再制备银粒子溶胶溶液,也可以先制备银粒子溶胶溶液再制备处理好的基片,也可以将制备处理好的基片和制备银粒子溶胶溶液同时进行。
上述非晶硅PIN光电池100的制备方法,采用基片为基础,采用化学自组装的方法,在其表面沉积一层亚微米银颗粒,制备方法简单,操作简便。制备得到的非晶硅PIN光电池,当亚微米银颗粒被入射光激发时,其内部的自由电子产生的局域表面等离子体共振效应,通过将亚微米银颗粒与基片结合相互作用,能够有效提高非晶硅PIN光电池的光谱响应能力。
下面为具体实施例部分。
实施例1
在ITO玻璃衬底上依次蒸镀厚度为30nm的n型掺磷非晶硅层、厚度为350nm的i型非晶硅层和厚度为30nm的p型掺硼非晶硅层,得到基片。
接着,将基片在洗洁精中超声清洗10min,接着用超纯水超声清洗10min,然后再放入乙醇溶液中超声清洗10min,再用大量纯水超声清洗10min,取出后吹干。
将洗净后的基片放入体积比为3:7的双氧水和浓硫酸的混合溶液中,恒温80℃加热,保温90min,采用镊子取出,然后用大量的超纯水清洗,然后吹干。接着,放入体积分数为1%的APTMS溶液中浸泡10h,取出后,先用甲醇溶液清洗,再用大量超纯水清洗,用氮气吹干后得到处理好的基片。
称量抗坏血酸880mg,溶于5mL水中,得到浓度为1mol/L的抗坏血酸溶液。称量聚乙烯吡咯烷酮222mg,溶于20mL水中,得到浓度为0.1mol/L的聚乙烯吡咯烷酮溶液。称量硝酸银170mg,溶于10mL水中,得到浓度为0.1mol/L的硝酸银溶液。
按照1:10的体积比,将浓度为0.1mol/L的硝酸银水溶液和浓度0.1mol/L的聚乙烯吡咯烷酮水溶液混合,在室温下用搅拌子剧烈搅拌。然后加水稀释至银离子浓度为0.002mol/L,得到银离子有机溶液。接着按照体积比1:50,将浓度为1mol/L的抗坏血酸水溶液加入银离子有机溶液中,使其迅速混合均匀,搅拌直至混合液颜色不再变化。接着将混合液进行离心分离,离心分离的转速为1000r/min,时间为15min,然后取下层溶液并加入等体积的水,得到银粒子溶胶溶液。
将处理好的基片放入银粒子溶胶溶液中,在处理好的基片的p型非晶硅层上沉积12h形成亚微米银颗粒层,取出后洗净,用氮气吹干,得到非晶硅PIN光电池。
将制备得到的非晶硅PIN光电池采用吉时利2450数字源表测量其光谱响应,结果如图3中曲线b所示。
光谱响应测试方法如图4所示,其中测试装置包括依次设置的光源110、第一透镜120、光谱仪130、第二透镜140和吉时利数字源表150。非晶硅PIN光电池100设置于第二透镜140和吉时利数字源表150之间,非晶硅PIN光电池100和吉时利数字源表150连接。
实施例2
在ITO玻璃衬底上依次蒸镀厚度为50nm的n型掺磷非晶硅层、厚度为300nm的i型非晶硅层和厚度为50nm的p型掺硼非晶硅层,得到基片。
接着,将基片在洗洁精中超声清洗8min,接着用超纯水超声清洗8min,然后再放入乙醇溶液中超声清洗8min,再用大量纯水超声清洗8min,取出后吹干。
将洗净后的基片放入体积比为3:7的双氧水和浓硫酸的混合溶液中,恒温79℃加热,保温100min,采用镊子取出,然后用大量的超纯水清洗,然后吹干。接着,放入体积分数为1%的APTMS溶液中浸泡11h,取出后,先用甲醇溶液清洗,再用大量超纯水清洗,用氮气吹干后得到处理好的基片。
按照1:10的体积比,将浓度为0.99mol/L的硝酸银水溶液和浓度0.99mol/L的聚乙烯吡咯烷酮水溶液混合,在室温下用搅拌子剧烈搅拌。然后加水稀释至银离子浓度为0.002mol/L,得到银离子有机溶液。接着按照体积比1:50,将浓度为0.99mol/L的抗坏血酸水溶液加入银离子有机溶液中,使其迅速混合均匀,搅拌直至混合液颜色不再变化。接着将混合液进行离心分离,离心分离的转速为4000r/min,时间为10min,然后取下层溶液并加入等体积的水,得到银粒子溶胶溶液。
将处理好的基片放入银粒子溶胶溶液中,在处理好的基片的p型非晶硅层上沉积13h形成亚微米银颗粒层,取出后洗净,用氮气吹干,得到非晶硅PIN光电池。
将制备得到的非晶硅PIN光电池采用吉时利2450数字源表测量其光谱响应,测试方法同实施例1。
实施例3
在ITO玻璃衬底上依次蒸镀厚度为40nm的n型掺磷非晶硅层、厚度为400nm的i型非晶硅层和厚度为40nm的p型掺硼非晶硅层,得到基片。
接着,将基片在洗洁精中超声清洗12min,接着用超纯水超声清洗12min,然后再放入乙醇溶液中超声清洗12min,再用大量纯水超声清洗12min,取出后吹干。
将洗净后的基片放入体积比为3:7的双氧水和浓硫酸的混合溶液中,恒温81℃加热,保温80min,采用镊子取出,然后用大量的超纯水清洗,然后吹干。接着,放入体积分数为1%的APTMS溶液中浸泡12h,取出后,先用甲醇溶液清洗,再用大量超纯水清洗,用氮气吹干后得到处理好的基片。
按照1:10的体积比,将浓度为1.01mol/L的硝酸银水溶液和浓度1.01mol/L的聚乙烯吡咯烷酮水溶液混合,在室温下用搅拌子剧烈搅拌。然后加水稀释至银离子浓度为0.002mol/L,得到银离子有机溶液。接着按照体积比1:50,将浓度为1.01mol/L的抗坏血酸水溶液加入银离子有机溶液中,使其迅速混合均匀,搅拌直至混合液颜色不再变化。接着将混合液进行离心分离,离心分离的转速为2000r/min,时间为12min,然后取下层溶液并加入等体积的水,得到银粒子溶胶溶液。
将处理好的基片放入银粒子溶胶溶液中,在处理好的基片的p型非晶硅层上沉积14h形成亚微米银颗粒层,取出后洗净,用氮气吹干,得到非晶硅PIN光电池。
将制备得到的非晶硅PIN光电池采用吉时利2450数字源表测量其光谱响应,测试方法同实施例1。
对比例1
在ITO玻璃衬底上依次蒸镀厚度为30nm的n型掺磷非晶硅层、厚度为350nm的i型非晶硅层和厚度为30nm的p型掺硼非晶硅层,得到基片。接着,将基片在洗洁精中超声清洗10min,接着用超纯水超声清洗10min,然后再放入乙醇溶液中超声清洗10min,再用大量纯水超声清洗10min,取出后吹干。
将洗净后的基片放入体积比为3:7的双氧水和浓硫酸的混合溶液中,恒温80℃加热,保温90min,采用镊子取出,然后用大量的超纯水清洗,然后吹干。接着,放入体积分数为1%的APTMS溶液中浸泡10h,取出后,先用甲醇溶液清洗,再用大量超纯水清洗,用氮气吹干后得到处理好的基片。
将处理好的基片采用吉时利2450数字源表测量其光谱响应,测试方法同实施例1,结果如图3中曲线a所示。
实验结果显示,通过将亚微米银颗粒与基片结合相互作用,能够有效提高非晶硅PIN光电池的光谱响应能力。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种非晶硅PIN光电池,其特征在于,包括依次层叠的衬底、n型非晶硅层、i型非晶硅层、p型非晶硅层和亚微米银颗粒层。
2.如权利要求1所述的非晶硅PIN光电池,其特征在于,所述p型非晶硅层的材料为掺硼非晶硅,所述n型非晶硅层的材料为掺磷非晶硅。
3.如权利要求1所述的非晶硅PIN光电池,其特征在于,所述p型非晶硅层的厚度为30nm-50nm,所述i型非晶硅层的厚度为300nm-400nm,所述n型非晶硅层的厚度为30nm-50nm,所述亚微米银颗粒层的厚度为300nm-550nm。
4.如权利要求1所述的非晶硅PIN光电池,其特征在于,所述亚微米银颗粒层的亚微米银颗粒包括中心银颗粒和镶嵌在所述中心银颗粒表面的多颗周围银颗粒。
5.如权利要求4所述的非晶硅PIN光电池,其特征在于,所述多颗周围银颗粒在所述中心银颗粒表面均匀对称分布。
6.如权利要求4所述的非晶硅PIN光电池,其特征在于,所述中心银颗粒的粒径为200nm-400nm,所述周围银颗粒的粒径为100nm-150nm。
7.如权利要求1所述的非晶硅PIN光电池,其特征在于,所述亚微米银颗粒层的亚微米银颗粒的粒径为300nm-550nm。
8.一种非晶硅PIN光电池的制备方法,其特征在于,包括如下步骤:
在衬底上依次蒸镀n型非晶硅层、i型非晶硅层和p型非晶硅层,得到基片,接着将所述基片清洗干净;
将洗净后的所述基片放入体积比为3:7的双氧水和浓硫酸的混合溶液中,恒温79℃-81℃加热80min-100min,接着,取出清洗干净,干燥后放入体积分数为1%的3-氨基丙基-三甲氧基硅烷溶液中浸泡10h-12h,接着,取出清洗干净,干燥后得到处理好的基片;
按照1:10的体积比,将浓度为0.99mol/L-1.01mol/L的硝酸银水溶液和浓度为0.99mol/L-1.01mol/L的聚乙烯吡咯烷酮水溶液混合均匀,然后加水稀释至银离子浓度为0.002mol/L,得到银离子有机溶液,接着按照体积比1:50,将浓度为0.99mol/L-1.01mol/L的抗坏血酸水溶液加入所述银离子有机溶液中,搅拌直至混合液颜色不再变化,接着将所述混合液进行离心分离,然后取下层溶液并加入等体积的水,得到银粒子溶胶溶液;
将所述处理好的基片放入所述银粒子溶胶溶液中,在所述处理好的基片的p型非晶硅层上沉积形成亚微米银颗粒层,取出后洗净,用氮气吹干,得到所述非晶硅PIN光电池。
9.如权利要求8所述的非晶硅PIN光电池的制备方法,其特征在于,将所述基片清洗干净的操作包括如下步骤:
将所述基片在洗洁精中超声清洗8min-12min,接着用超纯水超声清洗8min-12min,然后再放入乙醇溶液中超声清洗8min-12min,再用大量纯水超声清洗8min-12min,取出后吹干。
10.如权利要求8所述的非晶硅PIN光电池的制备方法,其特征在于,所述离心分离的转速为1000r/min-4000r/min,时间为10min-15min。
CN201510670067.0A 2015-10-16 2015-10-16 非晶硅pin光电池及其制备方法 Active CN105244403B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510670067.0A CN105244403B (zh) 2015-10-16 2015-10-16 非晶硅pin光电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510670067.0A CN105244403B (zh) 2015-10-16 2015-10-16 非晶硅pin光电池及其制备方法

Publications (2)

Publication Number Publication Date
CN105244403A true CN105244403A (zh) 2016-01-13
CN105244403B CN105244403B (zh) 2017-07-14

Family

ID=55041969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510670067.0A Active CN105244403B (zh) 2015-10-16 2015-10-16 非晶硅pin光电池及其制备方法

Country Status (1)

Country Link
CN (1) CN105244403B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740722A (zh) * 2009-12-25 2010-06-16 中国科学院光电技术研究所 一种宽波段的近完美吸收结构
KR20120055133A (ko) * 2010-11-23 2012-05-31 엘지전자 주식회사 박막 태양 전지
CN102637748A (zh) * 2011-02-11 2012-08-15 三菱综合材料株式会社 太阳能电池用敏化剂及利用该敏化剂的太阳能电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740722A (zh) * 2009-12-25 2010-06-16 中国科学院光电技术研究所 一种宽波段的近完美吸收结构
KR20120055133A (ko) * 2010-11-23 2012-05-31 엘지전자 주식회사 박막 태양 전지
CN102637748A (zh) * 2011-02-11 2012-08-15 三菱综合材料株式会社 太阳能电池用敏化剂及利用该敏化剂的太阳能电池

Also Published As

Publication number Publication date
CN105244403B (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
Chen et al. Photon management to reduce energy loss in perovskite solar cells
CN107482072B (zh) 具有亚带隙探测能力的石墨烯基波长选择光探测器
Masala et al. The silicon: colloidal quantum dot heterojunction
Liang et al. Interface engineering to boost photoresponse performance of self-powered, broad-bandwidth PEDOT: PSS/Si heterojunction photodetector
CN103137773B (zh) 以黑硅为光敏层的Si-APD光电探测器及其制备方法
CN102176470B (zh) 一种以黑硅材料为光敏层的背照式Si-PIN光电探测器及其制备方法
Wang et al. Highly sensitive narrowband Si photodetector with peak response at around 1060 nm
CN102187469B (zh) 电磁辐射转换器和电池
Ma et al. High-performance self-powered perovskite photodetector for visible light communication
Wang et al. Realization of 16.9% Efficiency on nanowires heterojunction solar cells with dopant‐free contact for bifacial polarities
CN102169195A (zh) 纳米减反薄膜或增透膜以及光学或光电器件的制备方法
Wang et al. Designing CdS/Se heterojunction as high-performance self-powered UV-visible broadband photodetector
JP2004297025A (ja) 高効率太陽電池
Yang et al. Ferro-pyro-phototronic effect enhanced self-powered, flexible and ultra-stable photodetectors based on highly crystalized 1D/3D ferroelectric perovskite film
Zeng et al. High-performance dual-mode ultra-thin broadband CdS/CIGS heterojunction photodetector on steel
Khaleda et al. Spectral response and quantum efficiency evaluation of solar cells: A review
Raut et al. A review on comparative studies of diverse generation in solar cell
CN210224047U (zh) PbS量子点Si-APD红外探测器
CN101964373B (zh) 一种宽谱光伏效应的双结太阳电池及其制备方法
CN113178497B (zh) 一种基于量子点的紫外探测器及制作方法
CN105244403B (zh) 非晶硅pin光电池及其制备方法
Dutta et al. High-efficiency solar cells based on micro-nano scale structures
CN110350045B (zh) PbS量子点Si-APD红外探测器及其制备方法
Dutta Prospects of nanotechnology for high-efficiency solar cells
CN100541832C (zh) 光伏型多量子阱红外探测器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant