CN105243243B - 基于自由变形技术的车身气动造型优化方法 - Google Patents

基于自由变形技术的车身气动造型优化方法 Download PDF

Info

Publication number
CN105243243B
CN105243243B CN201510782742.9A CN201510782742A CN105243243B CN 105243243 B CN105243243 B CN 105243243B CN 201510782742 A CN201510782742 A CN 201510782742A CN 105243243 B CN105243243 B CN 105243243B
Authority
CN
China
Prior art keywords
value
variable
body model
model
optimization method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510782742.9A
Other languages
English (en)
Other versions
CN105243243A (zh
Inventor
汪怡平
王涛
邓亚东
李卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201510782742.9A priority Critical patent/CN105243243B/zh
Publication of CN105243243A publication Critical patent/CN105243243A/zh
Application granted granted Critical
Publication of CN105243243B publication Critical patent/CN105243243B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Or Creating Images (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于自由变形技术的车身气动造型优化方法,包括以下步骤:首先建立简化的汽车车身模型,将该汽车车身模型上需要控制变形的点作为设计变量,并对这些设计变量设定边界控制条件,根据边界控制条件得到一定数量的汽车车身模型样本;利用自由变形方法得到这些方案的车身模型,并求出其相应的Cd值;然后构建近似模型,利用优化算法求解近似模型的最优解,根据最优解的控制点的位置,重新构建车身模型并得到其空气阻力系数Cd值,并与简化的原始模型的Cd值进行对比,如果没有降低返回S2修改边界条件或重新选取设计变量继续执行。利用本发明的优化方法使得车身外形优化更便于控制,在一定的边界条件下,优化结果更可靠。

Description

基于自由变形技术的车身气动造型优化方法
技术领域
本发明属于汽车空气动力学领域及汽车造型优化领域,尤其涉及一种基于自由变形技术的车身气动造型优化方法。
背景技术
现有的汽车车身造型优化方法,主要是依靠设计师的经验和前人对设计经验的总结,这种传统的设计方法有很多的缺点,不仅开发周期较长,而且在一定的边界条件下无法确定优化后的模型是否为最优结果。如果利用几何外形参数化方法对车身外形进行研究,由于传统的参数化方法中对曲线变形控制较为成熟,但在曲面变形方面的能力差强人意,所以也无法获得较好的汽车车身气动造型。
发明内容
本发明针对现有技术中的问题,提供一种基于自由变形技术的车身气动造型优化方法,使得车身外形优化更便于控制,在一定的边界条件下,优化结果更可靠,另外,该优化方法的操作流程适应性广泛,可以缩短车身开发周期,节约开发费用。
本发明解决其技术问题所采用的技术方案是:一种基于自由变形技术的车身气动造型优化方法,包括以下步骤,步骤一,建立初始的汽车车身模型;步骤二,将该初始的汽车车身模型上需要控制变形的点作为设计变量,并对这些需要控制变形的点设定边界控制条件;步骤三,根据步骤二所述的边界控制条件得到少于50个的变量取值样本。设计过程中选取变量取值样本点的个数一般根据计算模型的复杂程度、设计因素的个数和水平、计算机仿真计算能力等综合情况加以考虑,并可以选取不同的算法进行抽样。如果采用正交数组算法选取变量取值样本点,一般个数为2,4,8,16,32,64,128,256,但8,16,32,64较常用。采用拉丁方抽样方法可根据设计者意愿选取任意数量的样本点个数,一般数量小于50个。无论采用哪种算法进行抽样,变量取值样本点个数少于50个时,计算效果较好;步骤四,根据这些变量取值样本中的变量取值,通过控制晶格节点变形的方法得到这些变量取值样本的车身模型,再对这些变量取值样本的车身模型分别进行CFD仿真求解得到相应的Cd值,具体是使用ICEM划分网格并用Fluent求出相应的Cd值;步骤五,基于各变量取值样本模型变量取值和各变量取值样本模型的Cd值,在Isight(多学科多目标优化软件)中构建近似模型;步骤六,在Isight软件中选择适当的优化算法求解近似模型的最优解,根据最优解的设计变量的取值,在3ds Max中重新构建车身模型;步骤七,得到重新构建的车身模型的空气阻力系数Cd值,并与步骤一中建立的初始的汽车车身模型的Cd值进行对比,判断其是否比初始的汽车车身模型的Cd值降低,如果没有降低,则返回步骤二修改边界控制条件或重新选取设计变量继续执行。
按上述技术方案,所述步骤一具体为,在三维动画软件3ds Max中建立初始的汽车车身模型并进行简化。初始的汽车车身模型进行简化时,车身和底盘为封闭轮廓,没有任何间隙,车轮也应为封闭轮廓,形状为圆柱体,对初始的汽车车身模型进行简化是为了能够划分网格并进行CFD仿真计算。所述步骤四中,在三维动画软件3ds Max中通过控制晶格节点变形的方法得到变量取值样本的车身模型。
按上述技术方案,所述步骤三具体为,利用多目标优化软件Isight中的试验设计模块,根据步骤二所述的边界控制条件得到少于50个的变量取值样本。
按上述技术方案,所述步骤五中,还包括检验所建立的近似模型的拟合精度,如果近似模型的精度不够,则返回步骤三重新进行试验设计(Design of Experiments),选取新的变量取值样本。
按上述技术方案,所述步骤七中,通过对重新构建的车身模型进行网格划分并进行CFD仿真,得到重新构建的车身模型的空气阻力系数Cd值。
本发明产生的有益效果是:应用本发明基于自由变形技术的车身气动造型优化方法,使得车身外形优化更便于控制,在一定的边界条件下,优化结果更可靠,另外,该优化方法的操作流程适应性广泛,可以缩短车身开发周期,节约开发费用。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例基于自由变形技术的车身气动造型优化方法的流程示意图;
图2为在3ds Max中建立的初始的汽车车身模型;
图3为利用FFD修改器对初始车身模型划分的示意图;
图4为车身尾部及晶格结构局部示意图;
图5为调节晶格节点后车身尾部变形结果示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明的实施例中,一种基于自由变形技术的车身气动造型优化方法,包括以下步骤,步骤一,建立初始的汽车车身模型;步骤二,将该初始的汽车车身模型上需要控制变形的点作为设计变量,并对这些需要控制变形的点设定边界控制条件;步骤三,根据步骤二所述的边界控制条件得到少于50个的变量取值样本。设计过程中选取变量取值样本点的个数一般根据计算模型的复杂程度、设计因素的个数和水平、计算机仿真计算能力等综合情况加以考虑,并可以选取不同的算法进行抽样。如果采用正交数组算法选取变量取值样本点,一般个数为2,4,8,16,32,64,128,256,但8,16,32,64较常用。采用拉丁方抽样方法可根据设计者意愿选取任意数量的样本点个数,一般数量小于50个。无论采用哪种算法进行抽样,变量取值样本点个数少于50个时,计算效果较好。步骤四,根据这些变量取值样本中的变量取值,通过控制晶格节点变形的方法得到这些变量取值样本的车身模型,再对这些变量取值样本的车身模型分别进行CFD仿真求解得到相应的Cd值,具体是使用ICEM划分网格并用Fluent求出相应的Cd值;步骤五,基于各变量取值样本模型变量取值和各变量取值样本模型的Cd值,在Isight(多学科多目标优化软件)中构建近似模型;步骤六,在Isight软件中选择适当的优化算法求解近似模型的最优解,根据最优解的设计变量的取值,在3ds Max中重新构建车身模型;步骤七,得到重新构建的车身模型的空气阻力系数Cd值,并与步骤一中建立的初始的汽车车身模型的Cd值进行对比,判断其是否比初始的汽车车身模型的Cd值降低,如果没有降低,则返回步骤二修改边界控制条件或重新选取设计变量继续执行。
本发明实施例中,进一步地,所述步骤一具体为,在三维动画软件3ds Max中建立初始的汽车车身模型并进行简化;所述步骤四中,在三维动画软件3ds Max中通过控制晶格节点变形的方法得到变量取值样本的车身模型。
进一步地,所述步骤三具体为,利用多目标优化软件Isight中的试验设计模块,根据步骤二所述的边界控制条件得到少于50个的变量取值样本。
本发明实施例中,进一步地,所述步骤五中,还包括检验所建立的近似模型的拟合精度,如果近似模型的精度不够,则返回步骤三重新进行试验设计(Design ofExperiments),选取新的变量取值样本。
进一步地,所述步骤七中,通过对重新构建的车身模型进行网格划分并进行CFD仿真,得到重新构建的车身模型的空气阻力系数Cd值。
本发明的较佳实施例中,提供一种基于自由变形技术的车身气动造型优化方法,如图1-图5所示,包括以下步骤,步骤一,在三维动画软件3ds Max中建立初始的简化的汽车车身模型。初始的汽车车身模型要进行简化,车身和底盘必须为封闭轮廓,没有任何间隙,车轮也应为封闭轮廓,形状为圆柱体,对初始的汽车车身模型进行简化是为了能够划分网格并进行CFD仿真计算。其中图2为初始的模型。步骤二,将该初始的简化的汽车车身模型上需要控制变形的点作为设计变量,并对这些需要控制变形的点设定边界控制条件,例如选取车身尾部左右两端两个对称点的三维坐标作为设计变量,对这三个设计变量设定边界条件,设定边界条件是为了控制各变量的变化范围。步骤三,利用多目标优化软件Isight中的试验设计(DOE)模块,根据步骤二所述的边界控制条件得到少于50个的变量取值样本。例如对上面所述的三个设计变量进行正交试验设计,从而可以得到一定数量的变量取值方案。步骤四,根据这些变量取值样本中的变量取值,在三维动画软件3ds Max中通过控制晶格节点变形的方法得到变量取值样本的车身模型,再对这些变量取值样本的车身模型分别进行CFD仿真求解得到相应的Cd值。步骤五,基于以上各样本模型变量取值和各样本模型计算得到的Cd值,在Isight中构建近似模型。构建近似模型是为了减少大量的计算机模拟仿真工作,若构建的近似模型的精度较高,可以用近似模型值代替计算机仿真值。步骤六,检验所建立的近似模型的拟合精度。在设计变量取值空间中选取试验设计方案外的任意3个实验点进行CFD仿真,并与近似模型的计算结果进行对比,若验证点的CFD仿真值与近似模型值相差在工程允许误差范围内,这表明所建立的近似模型可以很好地描述设计变量与响应值之间的关系,可以用近似模型值代替仿真值。若近似模型精度不够,则需返回步骤三重新进行DOE设计选取新的样本点。步骤七,在验证了近似模型可信度的基础上,在Isight软件中选择适当的优化算法求解近似模型的最优解。根据最优解的设计变量的取值,在3ds Max中重新构建车身模型。步骤八,对重新构建的车身模型进行网格划分并进行CFD仿真,得到车身的空气阻力系数Cd值,判断其是否比原始的简化模型明显降低,如果没有降低返回步骤二修改边界条件或重新选取设计变量继续执行。
其中,图2是在三维动画软件3ds Max中建立的初始的汽车车身模型,但没有进行简化。车身简化的内容有:封闭车身外表面,如封闭进气格栅的进气口、封闭车缝线、封闭车底板等。同时还需要将一些部件简化,如:灯饰、车轮轮胎、车轮细节等。本专利的较佳实施例中以未简化的初始的汽车车身模型作相关说明。
图3是在3ds Max中利用FFD修改器命令对初始的汽车车身模型进行操作,将整个汽车车身模型利用长方体晶格进行控制。移动晶格的控制点,则汽车车身模型上相应晶格内的包围的车身外形将发生变形。根据步骤三中变量取值样本中的变量取值,在三维动画软件3ds Max中通过控制节点变形的方法得到这些变量取值样本的车身模型,就是采用控制移动晶格节点的方法得到的。步骤六中,根据最优解的设计变量的取值,在3ds Max中重新构建车身模型。获得最优解对应的车身模型也是采用对初始的汽车车身模型移动晶格节点使汽车车身模型变形的方法得到的。图4是车身尾部及晶格结构的局部示意图(左视图)。
图5是对图4中尾部晶格节点移动后车身尾部变形结果示意图。图4仅为左视图,所以图中移动晶格节点后只有X、Z两个坐标值变化,即变形后汽车尾部各点的Y坐标值均不变。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (4)

1.一种基于自由变形技术的车身气动造型优化方法,其特征在于,包括以下步骤,步骤一,建立初始的汽车车身模型,在三维动画软件3ds Max中建立初始的汽车车身模型并进行简化;步骤二,将该初始的汽车车身模型上需要控制变形的点作为设计变量,并对这些需要控制变形的点设定边界控制条件;步骤三,根据步骤二所述的边界控制条件得到少于50个的变量取值样本;步骤四,根据这些变量取值样本中的变量取值,在三维动画软件3ds Max中通过控制晶格节点变形的方法得到这些变量取值样本的车身模型,再对这些变量取值样本的车身模型分别进行CFD仿真求解得到相应的Cd值;步骤五,基于各变量取值样本模型变量取值和各变量取值样本模型的Cd值,在Isight中构建近似模型;步骤六,在Isight软件中选择适当的优化算法求解近似模型的最优解,根据最优解的设计变量的取值,重新构建车身模型;步骤七,得到重新构建的车身模型的空气阻力系数Cd值,并与步骤一中建立的初始的汽车车身模型的Cd值进行对比,判断其是否比初始的汽车车身模型的Cd值降低,如果没有降低,则返回步骤二修改边界控制条件或重新选取设计变量继续执行。
2.根据权利要求1所述的基于自由变形技术的车身气动造型优化方法,其特征在于,所述步骤三具体为,利用多目标优化软件Isight中的试验设计模块,根据步骤二所述的边界控制条件得到少于50个的变量取值样本。
3.根据权利要求2所述的基于自由变形技术的车身气动造型优化方法,其特征在于,所述步骤五中,还包括检验所建立的近似模型的拟合精度,如果近似模型的精度不够,则返回步骤三重新进行试验设计,选取新的变量取值样本。
4.根据权利要求3所述的基于自由变形技术的车身气动造型优化方法,其特征在于,所述步骤七中,通过对重新构建的车身模型进行网格划分并进行CFD仿真,得到重新构建的车身模型的空气阻力系数Cd值。
CN201510782742.9A 2015-11-16 2015-11-16 基于自由变形技术的车身气动造型优化方法 Expired - Fee Related CN105243243B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510782742.9A CN105243243B (zh) 2015-11-16 2015-11-16 基于自由变形技术的车身气动造型优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510782742.9A CN105243243B (zh) 2015-11-16 2015-11-16 基于自由变形技术的车身气动造型优化方法

Publications (2)

Publication Number Publication Date
CN105243243A CN105243243A (zh) 2016-01-13
CN105243243B true CN105243243B (zh) 2019-03-19

Family

ID=55040891

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510782742.9A Expired - Fee Related CN105243243B (zh) 2015-11-16 2015-11-16 基于自由变形技术的车身气动造型优化方法

Country Status (1)

Country Link
CN (1) CN105243243B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107273569B (zh) * 2017-05-09 2019-09-10 武汉理工大学 基于网格变形技术的气动外形减阻优化方法
CN108407746A (zh) * 2018-02-06 2018-08-17 北京汽车股份有限公司 汽车前格栅结构优化方法及系统
CN109086492B (zh) * 2018-07-11 2022-12-13 大连理工大学 一种车身结构三维模型的线框表示及变形方法及系统
CN110309531A (zh) * 2019-04-23 2019-10-08 电子科技大学 基于车身自由变形的汽车减阻优化方法
CN110717273B (zh) * 2019-10-11 2023-03-17 内蒙古第一机械集团股份有限公司 一种工艺过程仿真边界条件构建方法
CN111597631B (zh) * 2020-05-07 2022-05-13 中汽研汽车检验中心(天津)有限公司 基于自适应代理模型的汽车风阻系数优化方法
CN113591206B (zh) * 2021-07-09 2023-04-28 武汉理工大学 一种基于几何变形空间特征的船型优化设计方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012953A (zh) * 2010-11-04 2011-04-13 西北工业大学 Cfd/csd耦合求解非线性气动弹性仿真方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080162090A1 (en) * 2006-12-27 2008-07-03 Ernest Clay Perry System, methods, and computer readable media, for product design using t-spline deformation
US20080275677A1 (en) * 2007-03-19 2008-11-06 Optimal Solutions Software, Llc System, methods, and computer readable media, for product design using coupled computer aided engineering models

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012953A (zh) * 2010-11-04 2011-04-13 西北工业大学 Cfd/csd耦合求解非线性气动弹性仿真方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Automation of Vehicle Aerodynamic Shape Exploration and Optimization using Integrated Mesh Morphing and CFD;Ashok D. Khondge 等;《SAE Technical paper》;20110412;第1-17页
基于Morph技术和DOE的微车造型气动特性灵敏度研究;江亮;《中国优秀硕士学位论文全文数据库-工程科技Ⅱ辑》;20140515(第05期);第C035-13页
基于Sculptor和Isight的SUV前阻风板结构优化;李会荣;《计算机辅助工程》;20131031;第22卷;第232-235页

Also Published As

Publication number Publication date
CN105243243A (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
CN105243243B (zh) 基于自由变形技术的车身气动造型优化方法
CN107491616B (zh) 一种适用于格栅构型舵面的结构有限元参数化建模方法
CN105718607B (zh) 一种基于k&c特性的悬架硬点优化方法
CN107341316B (zh) 设计相关压力载荷作用下的结构形状-拓扑联合优化方法
CN103777911A (zh) 3d打印中的自适应分层方法
CN101393580B (zh) 一种三维“人体-服装”接触力学仿真分析系统
CN106156383A (zh) 一种参数化气动外形数模及结构网格自动生成方法
US20110040542A1 (en) Method and system for the integration of functional cae data in a cad based styling process for industrial design, esp. cars, motorbikes or aeronautic vehicles
CN107273569B (zh) 基于网格变形技术的气动外形减阻优化方法
CN110096844B (zh) 非光滑车表汽车的气动特性优化设计方法
CN107563010A (zh) 基于形状特征的多尺度结构材料一体化设计方法
CN109800461A (zh) 用于轮胎结构轻量化设计的关键外廓参数寻优方法及装置
Xu et al. Wing-body junction optimisation with CAD-based parametrisation including a moving intersection
CN104156546A (zh) 基于t样条的汽车覆盖件模具的形面再设计方法
CN103177165A (zh) 客车车身结构设计系统、客车侧翻仿真测试系统及方法
CN109657408A (zh) 一种再生核粒子算法实现结构线性静力学仿真方法
CN115688276A (zh) 一种基于离散伴随方法的飞行器外形自动化优化方法、系统、设备、介质
CN104992023A (zh) 一种基于状态类型函数的飞行器参数化设计方法
CN103294861A (zh) 多弧段曲线形状优化设计方法
CN109657331A (zh) 复杂铝合金带法兰网格筋球形轻量化壁板精确展开方法
Pollák et al. Analysis of software solutions for creating models by a generative design approach
CN108197368B (zh) 飞行器复杂气动外形的几何约束及权函数简捷计算方法
CN113076571B (zh) 一种三维衣物实时仿真编辑方法及系统
CN115310209A (zh) 基于vae的气动形状迁移优化方法及相关装置
CN106096108A (zh) 基于代理模型的半挂货车侧风稳定性的优化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190319

Termination date: 20201116

CF01 Termination of patent right due to non-payment of annual fee