CN105229194A - 用于生产碳纤维增强铝基体复合线材的方法和设备 - Google Patents

用于生产碳纤维增强铝基体复合线材的方法和设备 Download PDF

Info

Publication number
CN105229194A
CN105229194A CN201480023819.8A CN201480023819A CN105229194A CN 105229194 A CN105229194 A CN 105229194A CN 201480023819 A CN201480023819 A CN 201480023819A CN 105229194 A CN105229194 A CN 105229194A
Authority
CN
China
Prior art keywords
carbon fiber
melting salt
molten aluminum
salt
composite wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480023819.8A
Other languages
English (en)
Inventor
G·卡普坦
C·梅克勒
D·斯托姆普
P·博伊梅利
I·布达伊
K·L·尤哈斯
D·萨扎博
J·萨扎博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zortan Bay Institute For Applied Research Coordination Nonprofit School Of Logistics And Production Systems LLC
Original Assignee
Zortan Bay Institute For Applied Research Coordination Nonprofit School Of Logistics And Production Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zortan Bay Institute For Applied Research Coordination Nonprofit School Of Logistics And Production Systems LLC filed Critical Zortan Bay Institute For Applied Research Coordination Nonprofit School Of Logistics And Production Systems LLC
Publication of CN105229194A publication Critical patent/CN105229194A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/04Pretreatment of the fibres or filaments by coating, e.g. with a protective or activated covering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/08Making alloys containing metallic or non-metallic fibres or filaments by contacting the fibres or filaments with molten metal, e.g. by infiltrating the fibres or filaments placed in a mould
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • C22C49/06Aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/10Refractory metals
    • C22C49/11Titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/026Deposition of sublayers, e.g. adhesion layers or pre-applied alloying elements or corrosion protection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明涉及一种生产碳纤维增强铝基体复合线材的方法,其以这样的方式将碳纤维牵引通过熔融盐和熔融铝,即所述熔融铝和所述熔融盐是空间隔开的,并且所述碳纤维首先牵引通过所述熔融盐,然后通过与它隔开的熔融铝。本发明进一步涉及用于实施所述方法的设备。

Description

用于生产碳纤维增强铝基体复合线材的方法和设备
本发明涉及一种通过连续的生产方法来生产碳纤维增强铝基体复合线材的方法和设备。
复合材料由至少两相组成,典型地是基体和第二分散相。铝基体复合材料是金属基复合材料最重要的族,这主要归因于Al的低密度、良好的耐腐蚀性以及相对高的生产体量和低的价格。铝基体复合材料可以用多种类型的分散相来生产,它们之一包括碳(元素碳)的不同改性,这些统一标示为Al/C复合材料。
每种复合材料基本上通过基体和分散相之间的附着能的强度来表征。两相间的附着力越强,复合材料中两种类型的相的相互作用越成功,和典型地复合材料的性能越好。在不易于实现良好的附着力的情况中,典型地通过一些机械装置来提供压力差,以在复合材料生产期间补充或者补偿附着力。但是,需要指出的是,尽管使用压力差允许使两相在一起,但是这并未在复合材料组分的界面处产生强的附着力,并且虽然看起来成功生产,但是该复合材料的性能预期将是不足的。因此,我们应当目标在于不使用压力来生产复合材料。复合材料的性能典型地随着分散相尺寸的降低而改进,因此,在我们的情况中随着碳纤维直径的降低。但是,随着尺寸的降低,使用高压力差用于将碳纤维束的纤维用熔融金属(基体材料)进行渗透的方法在连续方法中变得不太有效。
复合材料生产方法可以分为主要两组:间歇和连续方法。间歇或者静态方法可以用于生产较小的产品,在这种情况中预成型品决定了产品的形状和尺寸。连续方法可以用于生产用长碳纤维制成的线材、棒产品。很显然,连续生产方法相比于批次生产方法是明显更加经济有利的。
几种用于生产碳纤维增强铝基体复合材料的方法在文献中是已知的。
RossiR.C.等人[CeramicBulletin50,484-487(1971)]通过压力渗透生产了碳纤维/Al复合材料。它们呼吁关注清洁碳纤维表面的需要。
在1987年,GoddardD.M.等人[EngineeredMaterialsHandbook1,第867-873页(1987)]综述了现有技术的状况。技术上,只有碳纤维通过化学气相沉积(CVD)涂覆TiB2,熔融铝可以在碳纤维之间渗透。这种方法很显然是非常昂贵的,并且由此生产的C/Al复合材料的市场缩小到航空航天工业。
KendallE.G.等人[US专利4,082,864,(1984)]如下生产长碳纤维增强铝基体线材:将金属硼化物涂层气相沉积到碳纤维表面上,和随后将由此制备的碳纤维浸没在金属基体材料的熔融浴中。
RohatgiP.K.等人[Z.Metallkunde82,763-765(1991)]在用熔融Al渗透之前,用铜涂覆碳纤维。
XiaZ.等人[Metall.Trans.B.23B,295-302(1992)]通过可变的压力渗透来生产复合材料。碳纤维用Ni化学涂覆。
BlucherJ.T.等人[Mater.Sci.Eng.A387-389,867-872(2004)]通过在高压下(30-80bar)将碳纤维牵引通过熔融铝来生产复合材料。发现Al4C3相处于Al/C界面处,其体积可以通过降低接触时间来降低。没有表面处理时,他们不能以可再现方式生产C/Al复合材料。
BaumliP.[CompositesA44,47–50(2013)]如下检验了生产铝基体复合材料的可能性:通过静态(间歇)方法,使用熔融盐,通过将用作增强相的碳纤维切割成短的1cm片,并且将它们置于铝片和盐上。在他的实验中,通过这种方法,他成功地生产了每分批实验最大3-6g的少量的复合材料。成功关键是使用了含有K2TiF6的盐,其溶解在熔融的碱氯化物和氟化物盐中,这可能在熔融Al和碳纤维界面处产生了临时的TiC层。
JuhaszK.L.[Mater.-wiss.Werkstofftech.43,第4期,310-314(2012)]通过使用碘化钾(KI)作为主盐而开发了另一生产复合材料的静态方法。
OrbulovI.N.等人[MaterialsScienceForum659229-234.(2010)]通过压力渗透技术生产了碳纤维增强铝基体复合材料管。由含有约60vol%碳纤维的管制成的测试样本表现出高的比强度。
现有技术方法的共同要素是在每种情况中使用间歇(非连续)方法实现所述结果,在一些情况中是在高压下。
本发明的目标是开发一种方法,其允许通过连续生产方法经济地生产长碳纤维增强铝基体复合线材,而不使用压力差和搅拌。
本发明是基于这样的认识,即如果熔融盐与熔融铝空间隔开,并且将碳纤维束牵引通过由此隔开的熔体,首先是熔融盐,然后是熔融铝,首先是该熔融盐和然后是该熔融铝在正常压力下在碳纤维间流动,完美地填充了纤维之间的间隙。在由此生产的复合材料中,基体材料和增强相表面之间的附着力将可能是最强的,这确保了理论上最佳可实现的性能。
因此,本发明涉及一种适于生产碳纤维增强铝基体复合线材的方法,和一种实施该方法的设备。
本发明的方法允许通过在800±100℃的温度、在正常压力和正常气氛中的连续生产方法来生产长碳纤维增强铝基体复合线材。
该方法所用的熔融盐是K2TiF6,其溶解在熔融的碱卤化物盐中。优选将等摩尔量的NaCl和KCl用作碱卤化物盐,其含有10-20wt%的K2TiF6
该方法可以在大气压下在空气或惰性气体气氛中实施。任选地,该方法也可以在真空下、或者在任何压力和所用的盐混合物和金属的熔点和沸点之间的温度下实施。
我们的方法参考下面的附图来更详细地描述:
图1:实验装置的示意图,其中熔融盐和熔融铝在单U形管中彼此没有空间隔开。
图2:实验室装置的示意图,其中熔融盐和熔融铝在双U形管中彼此空间隔开。
图3:适于连续工业生产的设备的示意图。
对于实验室实施所述方法来说,使用了图2所示的专门设计的双U形管。
在该方法中使用U形管1允许将熔融盐3与熔融铝4空间隔开,由此确保仅仅必需量的熔融盐3进入熔融铝4中,差不多可以在碳纤维2之间渗透,并且可以稳固地停留在那里,直到碳纤维束从熔融盐送到熔融金属。
但是,我们发现,当使用图1所示的实验装置(其是单U形管1和在其中熔融盐3和熔融铝4没有彼此空间隔开)时,它们具有共同的界面,我们不能通过连续方法生产复合线材。
在该方法中,碳纤维2束卷绕在供带盘5上,然后引导通过U形管1,并且所述束的端部连接到收带盘6。将其中具有碳纤维束的U形管1置于炉子中。
优选首先将碳纤维的表面进行热处理来除去表面上的涂层(树脂)。这通过在实验过程中加热炉子来进行,并且当该炉子达到某个温度范围(300-400℃)时,将碳纤维以这样的方式从供带盘5卷绕到收带盘6上,使得碳纤维的整个长度通过该炉子(管),并且烧掉有机涂层。将它卷绕完后,反转该操作,以使得纤维束卷绕回供带盘。
将该炉子加热到实验温度(800±100℃)。在炉子中提供1bar压力的氩气氛,或者1bar压力的空气气氛。在达到目标温度后,将该系统在这个温度保持10分钟-1小时,来均化室内的温度。
将盐混合物和铝置于U形管1中,并且在氩气氛中熔融。选择熔融盐3和熔融铝4的体积为相同的,因此碳纤维2束的长度在单U形管1中的熔融盐3和熔融铝4两者中是相同的(约130mm),在双U形管1中也是如此。
碳纤维2束从供带盘卷绕到收带盘上,由此将它牵引通过U形管1中的熔融盐3和熔融铝4。最大牵引/卷绕速度是32mm/s。
重要地,碳纤维2束在熔融盐3和熔融铝4中的停留长度不应当小于临界值。这个临界值随着碳纤维束直径的增加而以二次方增加。对于2mm的碳纤维束直径来说,该临界值是约6s。
图3显示了适于实施连续工业生产的设备的示意图。该设备的主要部件是分别用于保持熔融盐3和熔融铝4的可加热的熔融盐容器1a和熔融铝容器1b,和用于移动碳纤维2的供带盘5和收带盘6。熔融盐容器1a和熔融铝容器1b是空间隔开的。优选它们通过陶瓷管7连接以防止碳纤维氧化,和引导碳纤维2束。
我们的方法在下面的实施例中详细说明。
在实施例中,将直径为7微米的碳纤维用于直径为1-3mm的紧密填充的束中。
U形管由99.7%冶金级氧化铝陶瓷制成。将复合线材样品用扫描电子显微镜(SEM)检查。将样品横切、嵌入合成树脂中,并且研磨和抛光来获得横截面研磨。该SEM设备装备有能量分散(EDAX)检测器,依靠其我们能够测定在SEM图像中不同色调所示的相的元素组成。
实施例1
在这种情况中,我们想要证实当熔融盐不与熔融铝隔开时,即图1所示的单U形管用于生产时,则不可能生产具有适当的微结构的复合材料。实验的其他参数是:碳纤维束直径2mm;盐混合物NaCl-KCl(摩尔比1:1)+15%w/wK2TiF6;实验温度850℃。牵引速度是8mm/s,即在熔融盐和熔融铝二者中的停留长度是130mm/8mm/s=16s。该复合材料的SEM图像显示该碳纤维没有被熔融铝包围,因此未能生产具有适当的微结构的碳纤维增强铝基体复合材料。
实施例2
在这种情况中,我们想要证实当熔融盐与熔融铝空间隔开(图2中的装置)并且碳纤维束以低速牵引通过熔融盐然后通过熔融铝(牵引速度8mm/s)时,则可以生产具有适当的微结构的复合材料。实验的其他参数是:碳纤维束直径2mm;盐混合物NaCl-KCl(摩尔比1:1)+15%w/wK2TiF6;实验温度850℃。牵引速度是8mm/s,即在熔融盐和熔融铝二者中的停留长度是130mm/8mm/s=16s。实施例1和2的参数是相同的,唯一区别是使用单U形管(实施例1)或使用双U形管(实施例2)。复合线材的SEM图像显示碳纤维之间的空间完全被铝填充,该碳纤维的表面被熔融铝润湿,因此生产了具有完美的微结构的复合材料。
实施例3
在这种情况中,我们想要证实当熔融盐与熔融铝空间隔开并且碳纤维束以中速牵引通过熔融盐然后通过熔融铝(牵引速度16mm/s)时,则可以生产具有适当的微结构的复合材料。实验的其他参数是:碳纤维束直径2mm;盐混合物NaCl-KCl(摩尔比1:1)+15%w/wK2TiF6;实验温度850℃。实施例2和3的参数唯一区别在于牵引速度(停留长度)。在实施例3中,牵引速度是16mm/s,即在熔融盐和熔融铝二者中的停留长度是130mm/16mm/s=8s。复合线材的SEM图像显示碳纤维之间的空间完全被铝填充,因此生产了具有完美的微结构的复合材料。
实施例4
在这种情况中,我们想要证实当熔融盐与熔融铝空间隔开,但是碳纤维束以高速牵引通过熔融盐然后通过熔融铝(牵引速度32mm/s)时,则仅仅部分可能生产具有适当的微结构的复合材料。实验的其他参数是:碳纤维束直径2mm;盐混合物NaCl-KCl(摩尔比1:1)+15%w/wK2TiF6;盐/Al重量比=1;实验温度850℃。实施例2、3和4的参数唯一区别在于牵引速度(停留长度)。牵引速度是32mm/s,即在熔融盐和熔融铝二者中的停留长度是130mm/32mm/s=4s。复合线材的SEM图像显示大部分碳纤维没有被熔融铝包围,因此在整个体积上没有生产具有适当的微结构的碳纤维增强铝基体复合材料,该复合材料的生产仅仅是部分成功的,其归因于过高的牵引速度,或者过短的停留长度。
所述方法的优点是它适于通过连续生产方法在大气压生产无孔的长纤维碳纤维增强铝基体复合线材。该方法是可再现的,并且提供了具有优异的机械性能的品质可靠的产品。

Claims (8)

1.一种将碳纤维牵引通过熔融盐和熔融铝来生产碳纤维增强铝基体复合线材的方法,特征在于所述熔融铝和所述熔融盐是空间隔开的,和所述碳纤维首先牵引通过所述熔融盐,然后牵引通过与它隔开的所述熔融铝。
2.根据权利要求1的方法,特征在于使用700-900℃的温度。
3.根据权利要求1的方法,特征在于所述熔融盐是K2TiF6,其溶解在熔融的碱卤化物中。
4.根据权利要求3的方法,特征在于所述熔融盐是NaCl和KCl的等摩尔混合物,其含有10-20wt%的K2TiF6
5.根据权利要求1的方法,特征在于使用1bar压力的空气气氛或者1bar压力的惰性气体气氛。
6.根据权利要求1的方法,特征在于所述碳纤维在所述熔融盐和所述熔融铝中的停留长度等于或者超过临界值,所述临界值随着碳纤维束直径的增加而以二次方增加。
7.根据权利要求6的方法,特征在于对于直径为2mm的碳纤维束,临界停留长度是约6s。
8.一种用于生产碳纤维增强铝基体复合线材的设备,所述设备的主要部件是用于保持熔融盐3和熔融铝4的可加热的容器,和用于移动碳纤维的供带盘5和收带盘6,特征在于熔融盐容器1a和熔融铝容器1b是空间隔开的,和优选通过陶瓷管7连接来引导所述碳纤维2。
CN201480023819.8A 2013-03-27 2014-03-24 用于生产碳纤维增强铝基体复合线材的方法和设备 Pending CN105229194A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
HU1300181A HU230358B1 (hu) 2013-03-27 2013-03-27 Eljárás és berendezés karbon szálakkal erősített alumínium mátrixú kompozit huzalok előállítására
HUP1300181 2013-03-27
PCT/IB2014/060101 WO2014155276A1 (en) 2013-03-27 2014-03-24 Method and apparatus for the production of carbon fibre reinforced aluminium matrix composite wires

Publications (1)

Publication Number Publication Date
CN105229194A true CN105229194A (zh) 2016-01-06

Family

ID=89991079

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480023819.8A Pending CN105229194A (zh) 2013-03-27 2014-03-24 用于生产碳纤维增强铝基体复合线材的方法和设备

Country Status (6)

Country Link
US (1) US9816167B2 (zh)
EP (1) EP2999804A1 (zh)
CN (1) CN105229194A (zh)
HU (1) HU230358B1 (zh)
RU (1) RU2015145539A (zh)
WO (1) WO2014155276A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444320A (zh) * 2019-08-09 2019-11-12 大连理工大学 一种高强高导碳纤维增强铝基复合导线及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082864A (en) 1974-06-17 1978-04-04 Fiber Materials, Inc. Reinforced metal matrix composite
JP2830051B2 (ja) * 1989-05-18 1998-12-02 東レ株式会社 炭素繊維強化金属複合材料用プリフォームの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P. BAUMLI等: ""Fabrication of carbon fiber reinforced aluminum matrix composites via a titanium-ion containing flux"", 《COMPOSITES: PART A 》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444320A (zh) * 2019-08-09 2019-11-12 大连理工大学 一种高强高导碳纤维增强铝基复合导线及其制备方法

Also Published As

Publication number Publication date
HUP1300181A2 (en) 2014-10-28
RU2015145539A3 (zh) 2018-03-21
RU2015145539A (ru) 2017-05-03
WO2014155276A1 (en) 2014-10-02
US9816167B2 (en) 2017-11-14
HU230358B1 (hu) 2016-03-29
US20160060743A1 (en) 2016-03-03
EP2999804A1 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
Bracke et al. Inorganic Fibres & Composite Materials: A Survey of Recent Developments
Yi et al. Micro‐and nanoscale metallic glassy fibers
EP1867619B1 (en) Method of coating a ceramic based felt
JP6813495B2 (ja) 高強度耐熱繊維材料
US10124402B2 (en) Methods for manufacturing carbon fiber reinforced aluminum composites using stir casting process
GB2062075A (en) Mposite material heat-resistant spring made of fibre-reinforced metallic co
CN110272611A (zh) 一种导热材料的制备方法
Zhang et al. Mass‐productions of vertically aligned extremely long metallic micro/nanowires using fiber drawing nanomanufacturing
Krakhmalev et al. Manufacturing of intermetallic Mn-46% Al by laser powder bed fusion
JP2008503433A (ja) 材料にドーピングするための方法およびドーピングされた材料
CN105229194A (zh) 用于生产碳纤维增强铝基体复合线材的方法和设备
CN108178648B (zh) 三维碳纤维增强氧化铝-氧化锆复合材料及其制备方法
Yang et al. Microstructure and antioxidation performance of SiC-ZrO-MoSi2/Ni coated carbon fiber produced by composite electroplating
JP2010065253A (ja) プラズマ衝撃波を用いたコーティング方法
US20170002459A1 (en) Film And Coatings From Nanoscale Graphene Platelets
Hashimoto et al. Fabrication and properties of novel composites in the system Al–Zr–C
Marcinauskas et al. Effect of torch power on the microstructure of plasma sprayed Al2O3 coatings
Rudnev et al. Certain characteristics of composite polytetrafluoroethylene-oxide coatings on aluminum alloy
Minkoff Materials processes: a short introduction
US20190003041A1 (en) Composite matrix using a hybrid deposition technique
Chen et al. A study of silica coatings on the surface of carbon or graphite fiber and the interface in a carbon/magnesium composite
JP2012057243A (ja) 耐プラズマエロージョン性に優れるサーメット皮膜の形成方法とサーメット皮膜被覆部材
Steglich et al. Dross formation mechanisms of thermally pre-treated used beverage can scrap bales with different density
Guo et al. FeCoNiAlTiCrSi high entropy alloy coating prepared by laser cladding
LEI et al. Experimental and Thermodynamic Analysis of Laser Clad Cr 3 C 2/Ni Coatings on a Ti6Al4V Substrate Produced with Different Incident Laser Powers.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160106