CN105224743A - 一种基于粒子群算法的全频段上的天线布局优化 - Google Patents
一种基于粒子群算法的全频段上的天线布局优化 Download PDFInfo
- Publication number
- CN105224743A CN105224743A CN201510633894.2A CN201510633894A CN105224743A CN 105224743 A CN105224743 A CN 105224743A CN 201510633894 A CN201510633894 A CN 201510633894A CN 105224743 A CN105224743 A CN 105224743A
- Authority
- CN
- China
- Prior art keywords
- particle
- antenna
- value
- delta
- file
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明公开了一种基于粒子群算法的全频段上的天线布局优化方法,该方法步骤一在FEKO中建立优化模型,生成*.pre文件;步骤二设置PSO参数;步骤三设置初始迭代步长t=1,随机初始化粒子位置xi(t)和速度vi(t);步骤四将xi(t)写入*.pre文件;步骤五启动PREFEKO、RUNFEKO模块,生成*.out文件;步骤六采用“欠设计率”的方法设置目标函数;步骤七计算粒子i的适应值fi(t);步骤八更新步骤九更新所有粒子的速度vi(t)和位置xi(t);步骤十判断是否完成全部迭代,若否,设置t=t+1并返回第四步;步骤十一得到所有天线最优位置的向量本发明相对于FEKO解决了机载多天线优化布局时,由于天线工作频段不同而造成的无法统一进行量化评估的问题。
Description
技术领域
本发明涉及一种天线布局的优化方法,更特别地说,是一种利用粒子群算法,在某频段上针对天线间隔离度的天线布局优化方法。
背景技术
随着电子信息技术的发展,机载电子设备的种类和数量急剧增加。为了满足现代战场环境下对通信、导航、目标识别等的需要,越来越多的天线被安装在飞机上,其电磁兼容性设计便成为工程设计中的一个重要课题。与天线密集布置相伴的是严重的无线电干扰,无线电系统间电磁干扰主要传输途径是天线间的耦合。常用隔离度来定量表征这种耦合的强弱程度,它定义为一根天线发射功率与另一根天线所接收功率之比,用dB来表示。
飞机上由于可用空间有限,多部天线同时在很小的区域内工作的情况不可避免,因此,天线间的耦合和干扰非常严重。现有技术对于一个多天线系统进行电磁兼容设计时,只能保证某对天线的隔离度达到最大,而不能提高整个天线系统的隔离度,使得系统内所有天线间电磁兼容。
粒子群优化算法,缩写为PSO,是一种为了解决多目标优化问题的进化算法。粒子群由m个粒子组成,每个粒子在n维空间中按一个速度飞行,飞行的位置就是优化问题的潜在解。粒子i的当前位置可以表示为xi(t)=(xi1,xi2,…,xin),xin代表第i个粒子在第n维上的坐标。粒子i的当前速度可以表示为vi(t)=(vi1,vi2,…,vin),vin代表第i个粒子在第n维上的移动速度。粒子i根据其当前位置可以得到当前的适应值fi(t),或称为目标函数值。粒子已经经历的最优位置对应的适应值为个体极值,用表示,此时粒子的位置用表示。所有粒子的个体极值中的最优解为全局极值,用表示,此时粒子的位置用来表示。每个粒子按照以下两个公式更新它的速度和位置:
xij(t+1)=xij(t)+vij(t+1)(2)
其中:i=1,2,…,m表示第i个粒子,j=1,2,…,n表示粒子的第j维,c1、c2为学习因子或加速常数,r1、r2是均匀分布在(0,1)区间中的随机函数,t为迭代次数的步长,w为惯性权重。
发明内容
本发明的目的是为了解决上述问题,提高存在相互干扰隐患的机载天线间隔离度,优化天线布局,提出一种基于粒子群算法的全频段上的天线布局优化,本发明利用MATLAB编写粒子群算法(PSO)程序,采用频率归一化和“欠设计率”的方法设置目标函数,使得工作在不同频段的天线能够统一考虑,采用MATLAB调用FEKO优化机载天线隔离度。
一种基于粒子群算法的天线布局优化方法,具体包括以下几个步骤:
其中第二步到第十步均在MATLAB中进行:
第一步:建立天线优化模型;
第二步:在MATLAB中设置PSO中的参数;
第三步:设置初始迭代步长t=1,随机初始化所有粒子的位置xi(t)和速度vi(t);
第四步:读取第一步生成的*.pre文件,将xi(t)写入*.pre文件,每当一个粒子的xi(t)被写入*.pre文件中,就会生成一个新的*.pre文件,在此假设粒子群中共有N个粒子,最终就生成了N个*.pre文件;
第五步:在MATLAB中依次运行N个*.pre文件,计算当前优化变量的仿真结果,生成N个新的*.out文件;
第六步:从*.out文件中读取S参数,设置目标函数;
第七步:计算粒子i的目标函数值,即其适应值fi(t);
第八步:更新粒子i和种群最优值如果 则 如果 则
第九步:更新所有粒子的速度vi(t)和位置xi(t),每个粒子都会根据个体极值和全局极值以速度vi(t)在指定区域内搜索最优解和最优位置;
第十步:根据和当前的迭代次数进行判断,判断是否完成全部迭代,或连续多次迭代结果相同,若满足,停止迭代,若不满足,则设置t=t+1并返回第四步;
第十一步:迭代结束后,得到和
本发明采用频率归一化和“欠设计率”的方法设置目标函数,其特征包括:
设置目标函数,目的是为了使多对天线间隔离度同时都最大,而不是单使某对天线间的隔离度最大。由于各个天线的工作频段不同,因此在此采用频率归一化的方法,对同工作频段上的天线对进行分析,得到各自的隔离度裕值δij,可表示为:
其中Tij(f)表示天线i与天线j之间的隔离度标准值,可以通过发射端反射功率和接收端接收机灵敏度来确定,Tij'(f)表示相应的实测隔离度值。因此,可以得到不满足设计要求部分的面积与标准门限值面积的比率,即欠设计的百分比,如图2中阴影部分所示。
仿真中得到的隔离度数据为离散值,将工作频域划分成M段,则:
若得到Tij(fk)-Tij'(fk)>0,说明在频点fk处隔离度不满足要求,δij取差值;
若Tij(fk)-Tij'(fk)≤0,说明在频点fk处隔离度满足要求,δij取0。最终形成裕值矩阵:
对于整个系统的天线隔离度而言,由于系统中存在多对天线需要进行优化,属于多目标优化问题,多目标优化可以采用下面的数学模型进行描述:
V_minF(x)=[F1(x),F2(x),F3(x),…,Fm(x)]x∈Rm(6)
V_min表示向量极小化,即目标向量F(x)=[F1(x),F2(x),F3(x),…,Fm(x)]中的各子目标函数都尽可能小。因此最终目标函数定义为:
F(Φ,δij)=minΣδij(i≠j)(7)
本发明对比已有技术具有以下显著优点:
FEKO中对于天线位置的优化只能基于单个频点进行操作,不能处理频段上的问题。本发明在设置PSO算法的目标函数时,将工作频段进行“归一化”处理,使得工作在不同频段的天线能够统一考虑,并采用“欠设计比率”来衡量系统多天线间隔离度,建立优化目标,解决了机载多天线优化布局时,由于天线工作频段不同而造成的无法统一进行量化评估的问题。
附图说明
图1是本发明的方法流程图。
图2隔离度与频率的关系图。
具体实施方式
下面将结合附图和实施例对本发明作进一步的详细说明。
在FEKO中生成的*.pre和*.out可以以文本的形式打开,所以在MATLAB中可以像处理文本那样来处理这些文件。在MATLAB中定义一个变量,该变量对应于FEKO的*.pre文件中某一个变量(如:工作频率、几何模型的尺寸变量、模型旋转角等)。这样,就可以用MATLAB控制FEKO中的这个变量,每改变一次该变量的值就可以重新生成一个新的*.pre文件,然后调用RUNFEKO运行新生成的*.pre文件。同样,可以应用MATLAB像处理文本一样来处理FEKO的结果文件*.out,来对仿真结果进行处理。
在PSO算法中,实体被抽象为粒子,而粒子的位置就是所求问题的解。每个粒子都会根据个体极值和全局极值在一定随机扰动的情况下决定下一步的移动方向。在对机载天线进行布局时,天线的几何结构参数是固定的,只有几何位置参数可以看作是自变量,而隔离度实际上就成为随天线几何位置参量变化的因变量。如果收发天线都位于远场区,天线间的S参数的绝对值即为天线间的隔离度。所以,选用S参数作为参量编写目标函数,选取待优化天线的位置坐标作为优化变量,即粒子群算法所处理的对象。
根据天线的种类,在CADFEKO中设置优化模型,每根天线都代表一个优化模型。在EDITFEKO中为每个优化模型设置优化变量,优化变量即为每根天线的几何位置参量。在MATLAB中不断更新FEKO中的优化变量,直到该优化变量使目标函数值最小为止,即使每根天线间的隔离度都达到最大,该优化变量就是每根天线的最优位置。
本发明的一种基于粒子群算法的天线布局优化方法,流程如图1所示,具体包括以下几个步骤,其中第二步到第十步均在MATLAB中进行:
第一步:建立优化模型。
飞机上由于存在多对天线,每对天线在某一频段上都存在相互干扰,因此需要对每根天线都进行优化。
首先根据天线的种类,在CADFEKO中设置优化模型,设置天线的工作频段,将工作频段划分成M个频点,进入EDITFEKO中定义优化变量,将天线的几何位置设置为优化变量,设置完成后生成一个*.pre文件,该文件用MATLAB可以读写。
在PSO算法中,设xi(t)=(xi1,xi2,…,xin)表示第i个粒子的n维位置向量,每个粒子的位置都代表了一种可能的解,vi(t)=(vi1,vi2,…,vin)表示第i个粒子的n维速度向量,在本发明的天线布局方案中,将优化变量抽象为粒子的位置向量xi(t),优化变量和粒子的位置向量存在一一对应的关系,假设要优化k根天线,可由待优化的所有天线的位置集合Φ表示优化变量,Pi表示第i根天线的三维位置坐标,则优化变量Φ如下:
Φ={P1,P2,…,Pk}={(x1,y1,z1),(x2,y2,z2),…(xk,yk,zk)}(8)
由于粒子的不同只取决于优化变量的取值,所以对于每个粒子来说,优化变量Φ和每个粒子的位置向量之间的对应关系都是一致的,就拿第i个粒子的n维位置向量xi(t)=(xi1,xi2,…,xin)来说,其中的每个坐标都依次对应Φ中的每个坐标,x1对应xi1,zk对应xin,维数代表优化变量的个数,粒子的维数n等于3×k,这样就可以用粒子的位置向量xi(t)来代表优化变量Φ。
第二步:在MATLAB中设置PSO中的参数。主要有维数D、优化变量的变化范围VarRange、最大速度mv、迭代次数T、粒子个数N、学习因子c1和c2、惯性权重w等等,这些参数根据具体问题自行调整,可以提高优化速度。
维数代表优化变量的个数,若优化变量Φ如式(8)所示,则维数D为3×k。假设每根天线都位于指定的区域内,这个区域由天线的三维位置坐标确定,每个坐标都有其最大变化范围和最小变化范围,因此需要设置优化变量的变化范围VarRange。利用PSO找到每根天线在自己区域内的最优位置,在此过程中每根天线会根据公式(1)、(2)来更新自己的速度和位置,在此设置一个最大速度。最大速度mv决定当前位置与最优位置之间的分辨率,如果太快,粒子有可能越过极小点;如果太慢,则粒子不能在局部极小点之外进行足够的探索,会陷入局部极值内。这种限制可以达到防止计算溢出、决定问题空间搜索的力度的问题。迭代次数和粒子的个数根据具体问题来设置,对于简单的问题,其值可设置的较小,提高算法的收敛速度。学习因子c1调节粒子飞向自身最好位置方向的步长,c2调节粒子向全局最好位置飞行的步长,c1、c2一般取默认值2。惯性权重w使粒子保持运动惯性,使其有扩展运动空间的趋势,有能力探索新的区域,对全局搜索,通常的好方法是在前期有较高的探索能力,而在后期有较高的开发能力以加快收敛速度,在此可将w设定为随着进化而线性减少,例如由0.9到0.4等等。
第三步:设置初始迭代步长t=1,随机初始化所有粒子的位置xi(t)和速度vi(t)。在PSO算法中为每个粒子都随机设置一个初始位置和初始速度,每个粒子都会在这个初始位置的基础上,以初始速度随机的在优化变量的变化范围内移动。
第四步:读取第一步生成的*.pre文件,将xi(t)写入这个*.pre文件中。每当一个粒子的xi(t)被写入*.pre文件中,就会生成一个新的*.pre文件,文件的个数与粒子个数相等,最终生成N个*.pre文件。
第五步:在MATLAB中通过dos(‘prefekofilename’)命令,启动PREFEKO模块对N个*.pre模型网络刨分;通过dos(‘runfekofilename’)命令,调用RUNFEKO模块,运行这N个*.pre文件,计算当前优化变量的仿真结果,生成N个新的*.out文件。
第六步:从*.out文件中读取天线i与天线j之间M个频点的S参数,根据S参数得到天线i与天线j之间的每个频点上的实测隔离度值Tij'(fk),通过发射端反射功率和接收端接收机灵敏度来确定隔离度标准值Tij(fk),在不同的频点上实测隔离度值是不同的,而隔离度标准值是一个固定的值。根据公式(4)计算隔离度裕值δij,根据公式(7)设置目标函数。
第七步:计算粒子i的目标函数值,即其适应值fi(t)。因为在远场S参数的绝对值等于天线间的隔离度,要使天线间的隔离度都达到最大,则要求fi(t)最小。
第八步:更新粒子i和种群最优值如果则如果则在每一次的迭代过程中,对于每个粒子都有自己的个体极值和该极值所对应的粒子的位置表示第i个粒子适应值的极小值,表示此极小值所对应的天线的几何位置向量。对于粒子i来说,如果每根天线在这个位置上,可以保证天线间隔离度最大。对于整个种群来说,所有粒子的个体极值的最优解是全局极值其表示在本次迭代过程中,所有粒子适应值最小的值。对应的粒子位置表示在本次迭代过程中,所得到的使天线间隔离度最大的每根天线的几何位置向量。
第九步:按照公式(1)、(2)更新所有粒子的速度vi(t)和位置xi(t),每个粒子都会根据个体极值和全局极值以速度vi(t)在指定区域内搜索最优解和最优位置。
第十步:根据和当前的迭代次数判断迭代是否结束。若完成全部迭代,或连续多次迭代结果相同(这个次数在PSO参数中可自行设置),则迭代结束;否则设置t=t+1并返回第四步。
第十一步:当迭代结束后,得到表示全过程中最优的适应值,表示使天线间隔离度最大的每根天线的几何位置向量。
实施例:
本发明是一种基于粒子群算法的全频段上的天线布局优化,
现在分析一个平面上(Z=0),在400MHz-490MHz频段内的三根偶极子天线之间的隔离度与其距离的关系。固定天线1于(0,0)点,移动天线2、3,最终找出让三根天线间隔离度都最大的天线2、3的位置。
具体步骤如下:
第一步:先在CADFEKO中设置一根偶极子天线,将其中心位置固定于(0,0)点,设置频率为400MHz-490MHz,取10个频点,进入EDITFEKO中定义X2,Y2,X3,Y3四个变量,通过TG选项卡,将原天线1沿X轴、Y轴分别平移X2、Y2生成天线2,同样平移X3、Y3生成天线3。设置源和S参数,保存生成.pre文件。以下步骤均在MATLAB中完成。
第二步:初始化PSO中的参数。在该设计中,PSO各参数的值如下:
1)D:4
维数取4是因为有4个变量X2,Y2,X3,Y3。
2)VarRange:
[50100
050
050
50100]
输入变量的范围是一个矩阵,每行分别代表X2,Y2,X3,Y3的运动范围。
3)mv:[25;25;25;25]
最大速度是一个矩阵,每行分别代表X2,Y2,X3,Y3的最大速度。其值设为每个变量运动范围之差的0.5倍。
4)minmax:0
0表示计算目标函数的最小值。
5)PSOparams:[5303220.90.4101e-255]
P(1):每迭代5次在绘图窗口显示1次粒子的位置,因为总的迭代次数选择30,所以选择5可以显示6次。
P(2):迭代次数选择30,因为待优化模型并不复杂,30次迭代就能产生最优解。
P(3):粒子数选择3,因为待优化模型并不复杂,3个粒子可以快速收敛,再多的粒子计算出的结果和3个也是一样的。
P(4):学习因子1,取默认值2。
P(5):学习因子2,取默认值2。
P(6):初始时刻的惯性权重0.9。
P(7):终止时刻的惯性权重0.4。
P(8):当迭代次数超过10时惯性权重取0.4,使其局部搜索能力最强。因为在前5次迭代的过程中就已经确定了最优值的大体位置,所以取10是让迭代结果更精确。
P(9):当连续的两次迭代中对应的种群最优值之差小于1e-25时,停止迭代,所以此值设置越小,结果越精确,此值取默认值。
P(10):当连续5次迭代中函数的适应值不变时,停止迭代,因为总共迭代30次,所以P(9)、P(10)的值影响不大。
第三步:设置初始迭代步长t=1,随机初始化所有粒子的位置xi(t)和速度vi(t)。在此实验中,粒子的位置向量就是优化变量,记为xi=(X2i,Y2i,X3i,Y3i),其中i=1,2,3。
第四步:读取.pre文件,找到其中变量X2,Y2,X3,Y3的值,利用for循环,将第i个粒子所对应的xi=(X2i,Y2i,X3i,Y3i)写入*.pre文件中,更新*.pre文件中的X2,Y2,X3,Y3的值,每写入一次便生成一个新的*.pre文件,最终生成了3个*.pre文件。
第五步:通过dos函数调用PREFEKO、RUNFEKO,生成新的*.out文件,最终生成了3个*.out文件。
第六步:编写目标函数。在此例中网络互易,有S21=S12,S31=S13,S32=S23,只需分别从每个*.out文件中读取S21、S31、S32的值,对每个S参数都将读取10个频点的值,将其取绝对值,然后放入定义好的向量中。因为粒子数等于3,频点为10,所以最终生成3个10维的向量T',定义隔离度标准值为T=104dB的10维向量,利用公式(4)计算δ21、δ31、δ32,则目标函数F(Φ,δij)=δ21+δ31+δ32。
第七步:根据目标函数计算粒子i的适应值fi(t),分别得到3个粒子的适应值。
第八步:更新粒子i和种群最优值比较每个粒子的适应值fi(t)与个体极值和全局极值的优劣。如果 则 如果 则
第九步:按照公式(1)、(2)更新所有粒子的速度vi(t)和位置xi(t)。
第十步:根据和当前的迭代次数判断迭代是否结束。若完成全部迭代,或连续多次迭代结果相同,则迭代结束;否则设置t=t+1并返回第四步。
第十一步:当迭代结束后,得到
最终优化的结果如表1所示:
表1实施方式中天线2和3的位置优化的结果
天线2的X方向范围X2设置在[50100],Y方向范围Y2设置在[050];天线3的X方向范围X3设置在[050],Y方向范围Y3设置在[50100]。本设计的结果显示,三根天线间的距离同时都保持最远,此时三根天线间的隔离度同时都尽可能最大,虽然优化结果与理论值有一定误差,但误差不大,证明了该方法的正确性。
Claims (2)
1.一种基于粒子群算法的全频段上的天线布局优化方法,具体包括以下几个步骤:
其中第二步到第十步均在MATLAB中进行:
第一步:建立天线优化模型;
根据天线的种类,在CADFEKO中建立天线优化模型,设置每种天线的工作频率,在EDITFEKO中将天线的几何位置设置为优化变量,生成*.pre文件;
在PSO算法中,设xi(t)=(xi1,xi2,…,xin)表示第i个粒子的n维位置向量,vi(t)=(vi1,vi2,…,vin)表示第i个粒子的n维速度向量,在天线布局方案中,将优化变量抽象为粒子的位置向量xi(t),优化变量和粒子的位置向量存在一一对应的关系,假设要优化k根天线,由待优化的所有天线的位置集合Φ表示优化变量,Pi表示第i根天线的三维位置坐标,则优化变量Φ如下:
Φ={P1,P2,…,Pk}={(x1,y1,z1),(x2,y2,z2),…(xk,yk,zk)}
采用粒子的位置向量xi(t)来代表优化变量Φ;
第二步:在MATLAB中设置PSO中的参数;
设置优化变量的维数D、优化变量的变化范围VarRange、最大速度mv、迭代次数T、粒子个数N、学习因子c1、学习因子c2、惯性权重w;
第三步:设置初始迭代步长t=1,随机初始化所有粒子的位置xi(t)和速度vi(t),其中粒子的位置在VarRange的范围内,粒子的速度被限制在[0,mv]内;
第四步:读取第一步生成的*.pre文件,将xi(t)写入*.pre文件,每当一个粒子的xi(t)被写入*.pre文件中,就生成一个新的*.pre文件,文件的个数与粒子个数相等,在此假设粒子群中共有N个粒子,最终就生成N个*.pre文件;
第五步:在MATLAB中通过dos(‘prefekofilename’)命令,启动PREFEKO模块对N个*.pre模型进行网络刨分,通过dos(‘runfekofilename’)命令,调用RUNFEKO模块,运行N个*.pre文件,计算当前优化变量的仿真结果,生成N个新的*.out文件;
第六步:从*.out文件中读取S参数,设置目标函数;
第七步:计算粒子i的目标函数值,即其适应值fi(t);
第八步:更新粒子i和种群最优值如果则如果则在每一次的迭代过程中,对于每个粒子都有自己的个体极值和该极值所对应的粒子的位置表示第i个粒子适应值的极小值,表示此极小值所对应的天线的几何位置;对于整个种群具有全局极值和该极值所对应的粒子的位置表示所有粒子的个体极值中的最优解,表示此最优解所对应的天线的几何位置;
第九步:按照公式(1)、(2)更新所有粒子的速度vi(t)和位置xi(t),每个粒子都会根据个体极值和全局极值以速度vi(t)在指定区域内搜索最优解和最优位置;
其中:每个粒子按照以下两个公式更新它的速度和位置:
xij(t+1)=xij(t)+vij(t+1)(2)
其中:i=1,2,…,m表示第i个粒子,j=1,2,…,n表示粒子的第j维,c1、c2为学习因子或加速常数,r1、r2是均匀分布在(0,1)区间中的随机函数,t为迭代次数的步长,w为惯性权重;
第十步:根据和当前的迭代次数判断迭代是否结束,若完成全部迭代,或连续多次迭代结果相同,则迭代结束;否则设置t=t+1并返回第四步;
第十一步:迭代结束后,得到和为所有天线间相互干扰都最小时天线的几何位置的向量。
2.根据权利要求1所述的一种基于粒子群算法的全频段上的天线布局优化方法,第六步中所述目标函数的设置方法为:
采用频率归一化和“欠设计率”的方法设置目标函数,对同工作频段上的天线对进行分析,得到各自的隔离度裕值δij,表示为:
其中:Tij(f)表示天线i与天线j之间的隔离度标准值,通过发射端反射功率和接收端接收机灵敏度来确定,Tij'(f)表示相应的实测隔离度值,得到不满足设计要求部分的面积与标准门限值面积的比率,即欠设计的百分比;
仿真中得到的隔离度数据为离散值,将工作频域划分成M段,则:
若得到Tij(fk)-Tij'(fk)>0,则在频点fk处隔离度不满足要求,δij取差值;
若Tij(fk)-Tij'(fk)≤0,则在频点fk处隔离度满足要求,δij取0;
最终得到裕值矩阵:
由于系统中存在多对天线需要进行优化,属于多目标优化问题,多目标优化采用下面的数学模型进行描述:
V_minF(x)=[F1(x),F2(x),F3(x),…,Fm(x)]x∈Rm(6)
其中:V_min表示向量极小化,即目标向量F(x)=[F1(x),F2(x),F3(x),…,Fm(x)]中的各子目标函数都尽可能小;
得到最终目标函数为:
F(Φ,δij)=minΣδij(i≠j)(7)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510633894.2A CN105224743B (zh) | 2015-09-29 | 2015-09-29 | 一种基于粒子群算法的全频段上的天线布局优化 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510633894.2A CN105224743B (zh) | 2015-09-29 | 2015-09-29 | 一种基于粒子群算法的全频段上的天线布局优化 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105224743A true CN105224743A (zh) | 2016-01-06 |
CN105224743B CN105224743B (zh) | 2018-09-28 |
Family
ID=54993709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510633894.2A Active CN105224743B (zh) | 2015-09-29 | 2015-09-29 | 一种基于粒子群算法的全频段上的天线布局优化 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105224743B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106021825A (zh) * | 2016-07-07 | 2016-10-12 | 中南大学 | 一种基于二进制粒子群算法的Fragment型天线结构设计方法 |
CN106611104A (zh) * | 2016-10-31 | 2017-05-03 | 中南大学 | 复杂冶金过程模拟计算方法及系统 |
CN109871617A (zh) * | 2019-02-22 | 2019-06-11 | 中南大学 | Fragment型多频带天线结构设计方法 |
CN110059406A (zh) * | 2019-04-18 | 2019-07-26 | 成都德杉科技有限公司 | 采用连续分段适应值函数的天线阵列优化方法、系统、存储介质和终端 |
CN111062109A (zh) * | 2019-07-11 | 2020-04-24 | 中国地质大学(武汉) | 一种天线设计的多目标约束优化建模与演化求解方法 |
CN111381600A (zh) * | 2018-12-28 | 2020-07-07 | 陕西师范大学 | 一种基于粒子群算法的uuv路径规划方法 |
CN115310341A (zh) * | 2022-08-19 | 2022-11-08 | 中国电子科技集团公司第五十四研究所 | 一种深空测控天线组阵布局优化设计方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100323653A1 (en) * | 2009-06-23 | 2010-12-23 | Lockheed Martin Corporation | Device and method for matrixed adaptive equalizing for communication receivers configured to an antenna array |
US20140044043A1 (en) * | 2012-08-08 | 2014-02-13 | Golba Llc | Method and system for optimizing communication in leaky wave distributed transceiver environments |
CN103646144A (zh) * | 2013-12-19 | 2014-03-19 | 西安电子科技大学 | 非周期阵列天线设计方法 |
CN104899374A (zh) * | 2015-06-05 | 2015-09-09 | 江苏科技大学 | 基于小波变异风驱动优化算法直线天线阵方向图综合方法 |
-
2015
- 2015-09-29 CN CN201510633894.2A patent/CN105224743B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100323653A1 (en) * | 2009-06-23 | 2010-12-23 | Lockheed Martin Corporation | Device and method for matrixed adaptive equalizing for communication receivers configured to an antenna array |
US20140044043A1 (en) * | 2012-08-08 | 2014-02-13 | Golba Llc | Method and system for optimizing communication in leaky wave distributed transceiver environments |
CN103646144A (zh) * | 2013-12-19 | 2014-03-19 | 西安电子科技大学 | 非周期阵列天线设计方法 |
CN104899374A (zh) * | 2015-06-05 | 2015-09-09 | 江苏科技大学 | 基于小波变异风驱动优化算法直线天线阵方向图综合方法 |
Non-Patent Citations (1)
Title |
---|
王维博等: "《粒子群算法在阵列天线方向图综合中的应用》", 《电子科技大学学报(自然科学版)》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106021825A (zh) * | 2016-07-07 | 2016-10-12 | 中南大学 | 一种基于二进制粒子群算法的Fragment型天线结构设计方法 |
CN106021825B (zh) * | 2016-07-07 | 2019-03-15 | 中南大学 | 一种基于二进制粒子群算法的Fragment型天线结构设计方法 |
CN106611104A (zh) * | 2016-10-31 | 2017-05-03 | 中南大学 | 复杂冶金过程模拟计算方法及系统 |
CN106611104B (zh) * | 2016-10-31 | 2021-04-20 | 中南大学 | 复杂冶金过程模拟计算方法及系统 |
CN111381600A (zh) * | 2018-12-28 | 2020-07-07 | 陕西师范大学 | 一种基于粒子群算法的uuv路径规划方法 |
CN109871617A (zh) * | 2019-02-22 | 2019-06-11 | 中南大学 | Fragment型多频带天线结构设计方法 |
CN109871617B (zh) * | 2019-02-22 | 2022-12-23 | 中南大学 | Fragment型多频带天线结构设计方法 |
CN110059406A (zh) * | 2019-04-18 | 2019-07-26 | 成都德杉科技有限公司 | 采用连续分段适应值函数的天线阵列优化方法、系统、存储介质和终端 |
CN111062109A (zh) * | 2019-07-11 | 2020-04-24 | 中国地质大学(武汉) | 一种天线设计的多目标约束优化建模与演化求解方法 |
CN111062109B (zh) * | 2019-07-11 | 2022-03-15 | 中国地质大学(武汉) | 一种天线设计的多目标约束优化建模与演化求解方法 |
CN115310341A (zh) * | 2022-08-19 | 2022-11-08 | 中国电子科技集团公司第五十四研究所 | 一种深空测控天线组阵布局优化设计方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105224743B (zh) | 2018-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105224743A (zh) | 一种基于粒子群算法的全频段上的天线布局优化 | |
Lv et al. | WSN localization technology based on hybrid GA-PSO-BP algorithm for indoor three-dimensional space | |
CN103715512A (zh) | 用于共址和多径干扰减少的共形主动反射阵列 | |
CN109981195B (zh) | 无线信号强度的处理方法及装置 | |
CN112070894A (zh) | 真实环境导航多径实时仿真方法、装置、介质及电子设备 | |
CN110059422B (zh) | 频率选择表面曲面天线罩的电磁散射特性仿真方法 | |
CN111122989B (zh) | K聚类智能择取的微波信号多径干扰抑制方法 | |
CN108319759A (zh) | 一种用于提高同平台天线隔离度的天线布局方法 | |
CN114218849B (zh) | 基于深度强化学习的复杂阵列天线智能设计方法 | |
CN109992845A (zh) | 一种基于matlab和hfss的波束控制和阵列方向图优化方法 | |
CN113342034A (zh) | 一种无人机通道巡检与精细化巡检的组合策略算法 | |
CN116518979B (zh) | 一种无人机路径规划方法、系统、电子设备及介质 | |
CN104485513A (zh) | 宽频带天线阵列实时综合方法 | |
CN112883651A (zh) | 基于改进pbi方法的系统级测试性设计多目标优化方法 | |
CN110146855A (zh) | 雷达间断干扰抑制门限计算方法及装置 | |
CN105243207A (zh) | 一种基于粒子群算法的单频点上的天线布局优化 | |
CN107910880B (zh) | 基于区间振荡模式的广域阻尼控制器最优参数整定方法 | |
CN116225053A (zh) | 一种面向任务分级目标运动特性的跟踪轨迹优化方法 | |
Mortazavi et al. | Optimal midcourse guidance of an air-to-air missile via SVM and RVM | |
WO2023187447A1 (en) | Method for determining the correct placement of an antenna with radiation pattern prediction | |
Mohammad et al. | Software Complex for Modelling Routing in Heterogeneous Model of Wireless Sensor Network | |
CN108387865B (zh) | 一种基于向量误差模型的波达方向估计方法 | |
Du et al. | A fuzzy clustering algorithm based on multipath component trajectory for millimeter wave radio channels | |
CN112836784A (zh) | 一种基于蚁群与l-m混合算法的磁性运动目标定位方法 | |
US9900792B2 (en) | Aggregate radio interference modeling and simulation platform |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |