CN105222900B - Infrared focal plane array reading circuit - Google Patents
Infrared focal plane array reading circuit Download PDFInfo
- Publication number
- CN105222900B CN105222900B CN201510586598.1A CN201510586598A CN105222900B CN 105222900 B CN105222900 B CN 105222900B CN 201510586598 A CN201510586598 A CN 201510586598A CN 105222900 B CN105222900 B CN 105222900B
- Authority
- CN
- China
- Prior art keywords
- operational amplifier
- sampling
- module
- signal
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005070 sampling Methods 0.000 claims abstract description 75
- 239000003990 capacitor Substances 0.000 claims abstract description 56
- 230000010354 integration Effects 0.000 claims abstract description 24
- 230000003321 amplification Effects 0.000 claims abstract description 11
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 11
- 239000000872 buffer Substances 0.000 claims abstract description 6
- 230000003139 buffering effect Effects 0.000 claims description 4
- 230000008859 change Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000004297 night vision Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
本发明提供一种红外焦平面阵列读出电路,包括负电荷泵模块、相互连接的信号输入模块以及积分采样保持模块、以及与所述积分采样保持模块连接的增益放大模块,所述负电荷泵模块分别与信号输入模块以及积分采样保持模块连接。通过预设或者调节负偏压,使得第一运算放大器以及第二运算放大器的共模输入电压为零,从而使得积分电容电压以及采样电容电压从基准电压变化到接地电压,实现光电流信号全摆幅积分以及光电压信号全摆幅采样保持,并将光电压采样信号进行全摆幅缓冲输出,从而延长了积分时间,输出全摆幅信号,达到提高红外焦平面阵列中读出电路的信号输出质量的目的。
The invention provides an infrared focal plane array readout circuit, comprising a negative charge pump module, a signal input module connected to each other, an integral sampling and holding module, and a gain amplification module connected with the integral sampling and holding module, and the negative charge pump The modules are respectively connected with the signal input module and the integral sampling and holding module. By presetting or adjusting the negative bias voltage, the common-mode input voltage of the first operational amplifier and the second operational amplifier is zero, so that the integration capacitor voltage and the sampling capacitor voltage change from the reference voltage to the ground voltage, and realize the full swing of the photocurrent signal Amplitude integration and full-swing sampling and holding of photovoltage signals, and full-swing buffer output of photovoltage sampling signals, thereby prolonging the integration time and outputting full-swing signals to improve the signal output of the readout circuit in the infrared focal plane array purpose of quality.
Description
技术领域technical field
本发明涉及读出集成电路领域,特别是一种红外焦平面阵列读出电路。The invention relates to the field of readout integrated circuits, in particular to an infrared focal plane array readout circuit.
背景技术Background technique
红外焦平面阵列是先进红外系统中的核心器件,广泛应用在红外热成像、侦察夜视、精确制导、搜索跟踪及监视预警等领域中。红外焦平面阵列一般由两部分组成:红外探测器和读出电路,红外探测器在接收到入射的红外辐射后,在红外辐射的入射位置产生一个与入射红外辐射性能有关的局部电荷,传输给对应的读出电路,读出电路将对这些电信号进行积分放大、采样保持,再通过输出缓冲和多路传输系统,最终将信号送达监视系统,形成图像。Infrared focal plane array is the core device in advanced infrared systems, widely used in infrared thermal imaging, reconnaissance night vision, precision guidance, search and tracking, surveillance and early warning and other fields. The infrared focal plane array generally consists of two parts: an infrared detector and a readout circuit. After the infrared detector receives the incident infrared radiation, it generates a local charge related to the incident infrared radiation performance at the incident position of the infrared radiation, which is transmitted to the Corresponding to the readout circuit, the readout circuit will integrate and amplify these electrical signals, sample and hold them, and then pass through the output buffer and multiplex transmission system, and finally send the signals to the monitoring system to form an image.
读出电路(ROIC)是采用标准CMOS硅工艺制作的集成电路,是红外焦平面阵列的重要组成部分,通过铟柱倒焊方式与红外探测器连接,读出电路一般由单元运算放大器、信号预处理及传输电路、输出放大器以及数字控制电路等部分构成。The readout circuit (ROIC) is an integrated circuit made by standard CMOS silicon technology. It is an important part of the infrared focal plane array. It is composed of processing and transmission circuit, output amplifier and digital control circuit.
现阶段红外焦平面阵列的发展方向是大面阵、高分辨率、双色/多色、甚长波红外探测器、主被动雪崩光电二极管等,而这些都要求读出电路具备较小的面积,以便实现与红外探测器的匹配;并要求读出电路具备较长的积分时间,以便达到所需要的信噪比(SNR)。At present, the development direction of infrared focal plane array is large area array, high resolution, two-color/multi-color, very long-wave infrared detector, active and passive avalanche photodiode, etc., and these all require the readout circuit to have a small area, so that To achieve matching with the infrared detector; and require the readout circuit to have a long integration time in order to achieve the required signal-to-noise ratio (SNR).
专利201310150721.6《一种具有记忆功能背景抑制结构的读出集成电路》和专利CN203629686U《一种具有两步背景抑制功能的读出集成电路》介绍了通过减除背景电流来提高积分时间的方法。专利201310150721.6通过部分模块共享的方式来节省面积,从而在单元内放置较大的积分电容,延长读出电路积分时间,专利CN203629686U通过简化单元电路的结构来获得足够的电容大小,目前也有通过层叠电容的方式来增大积分电容,延长积分时间,提高焦平面输出信号的信噪比。但是随着读出电路工艺尺寸的减小以及电源电压的降低,上述读出集成电路的输出摆幅难以满足需求。Patent 201310150721.6 "A readout integrated circuit with memory function background suppression structure" and patent CN203629686U "A readout integrated circuit with two-step background suppression function" introduced the method of increasing the integration time by subtracting the background current. Patent 201310150721.6 saves area by sharing some modules, thereby placing a larger integral capacitor in the unit and prolonging the integration time of the readout circuit. Patent CN203629686U obtains sufficient capacitance by simplifying the structure of the unit circuit. At present, there are also stacked capacitors The way to increase the integration capacitance, prolong the integration time, improve the signal-to-noise ratio of the focal plane output signal. However, with the reduction of the process size of the readout circuit and the reduction of the power supply voltage, the output swing of the above-mentioned readout integrated circuit is difficult to meet the demand.
发明内容Contents of the invention
针对上述现有技术中存在的输出摆幅难以满足需求的问题,本发明的目的在于提供一种红外焦平面阵列读出电路,使得红外焦平面阵列中读出电路能够输出全摆幅信号,从而提高红外焦平面阵列中读出电路的信号输出质量。Aiming at the problem that the output swing in the above-mentioned prior art is difficult to meet the demand, the purpose of the present invention is to provide an infrared focal plane array readout circuit, so that the readout circuit in the infrared focal plane array can output a full-swing signal, thereby Improving the signal output quality of a readout circuit in an infrared focal plane array.
一种红外焦平面阵列读出电路,包括负电荷泵模块、相互连接的信号输入模块以及积分采样保持模块、以及与所述积分采样保持模块连接的增益放大模块,所述负电荷泵模块分别与信号输入模块以及积分采样保持模块连接;An infrared focal plane array readout circuit, comprising a negative charge pump module, a signal input module connected to each other and an integral sampling and holding module, and a gain amplification module connected with the integral sampling and holding module, and the negative charge pump module is connected with the negative charge pump module respectively Signal input module and integral sample hold module connection;
所述信号输入模块包括第一运算放大器以及积分电容,第一运算放大器的电源负极端接收负电荷泵模块输出的负偏压、调节共模输入电压,所述第一运算放大器将从反相输入端接收的光电流信号放大,通过输出端输出放大后的光电流信号至积分电容;所述积分电容将光电流信号转换为光电压信号;The signal input module includes a first operational amplifier and an integrating capacitor. The negative terminal of the power supply of the first operational amplifier receives the negative bias voltage output by the negative charge pump module and adjusts the common-mode input voltage. The first operational amplifier will input from the negative phase The photocurrent signal received by the terminal is amplified, and the amplified photocurrent signal is output to the integrating capacitor through the output terminal; the integrating capacitor converts the photocurrent signal into a photovoltage signal;
所述积分采样保持模块包括第二运算放大器以及采样电容,第二运算放大器的电源负极端接收负电荷泵模块输出的负偏压、调节共模输入电压,所述第二运算放大器将从同相输入端接收的光电压信号放大,通过输出端输出放大后的光电压信号至采样电容;所述采样电容对所述光电压信号进行采样和保持;The integral sample-and-hold module includes a second operational amplifier and a sampling capacitor. The negative terminal of the power supply of the second operational amplifier receives the negative bias voltage output by the negative charge pump module and adjusts the common-mode input voltage. The photovoltage signal received by the terminal is amplified, and the amplified photovoltage signal is output to the sampling capacitor through the output terminal; the sampling capacitor samples and holds the photovoltage signal;
所述增益放大模块将光电压采样信号进行缓冲输出。The gain amplification module buffers and outputs the photovoltage sampling signal.
本发明中的红外焦平面阵列读出电路,通过预设或者调节负偏压,使得第一运算放大器以及第二运算放大器的共模输入电压为零,从而使得积分电容电压以及采样电容电压从基准电压变化到接地电压,实现光电流信号全摆幅积分以及光电压信号全摆幅采样保持,并将光电压采样信号进行全摆幅缓冲输出,从而延长了积分时间,输出全摆幅信号,达到提高红外焦平面阵列中读出电路的信号输出质量的目的。In the infrared focal plane array readout circuit in the present invention, by presetting or adjusting the negative bias voltage, the common-mode input voltage of the first operational amplifier and the second operational amplifier is zero, so that the voltage of the integrating capacitor and the voltage of the sampling capacitor are changed from the reference When the voltage changes to the ground voltage, the full-swing integration of the photocurrent signal and the full-swing sampling and holding of the photovoltage signal are realized, and the photovoltage sampling signal is buffered and output at the full swing, thereby prolonging the integration time and outputting the full-swing signal to achieve The purpose of improving the signal output quality of the readout circuit in the infrared focal plane array.
附图说明Description of drawings
图1为一个实施例的红外焦平面阵列读出电路的结构示意图;Fig. 1 is a structural schematic diagram of an infrared focal plane array readout circuit of an embodiment;
图2为一个实施例的红外焦平面阵列读出电路的电路结构图;Fig. 2 is the circuit structural diagram of the infrared focal plane array readout circuit of an embodiment;
图3为另一个实施例的红外焦平面阵列读出电路的结构示意图。Fig. 3 is a schematic structural diagram of an infrared focal plane array readout circuit in another embodiment.
具体实施方式Detailed ways
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。In order to make the purpose, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings.
请参阅图1中一个实施例的红外焦平面阵列读出电路的结构示意图。Please refer to FIG. 1 for a schematic structural diagram of an infrared focal plane array readout circuit of an embodiment.
一种红外焦平面阵列读出电路,包括负电荷泵模块103、相互连接的信号输入模块100以及积分采样保持模块101、以及与所述积分采样保持模块连接的增益放大模块102,所述负电荷泵模块103分别与信号输入模块100以及积分采样保持模块连接101;An infrared focal plane array readout circuit, comprising a negative charge pump module 103, an interconnected signal input module 100 and an integral sampling and holding module 101, and a gain amplification module 102 connected with the integral sampling and holding module, the negative charge The pump module 103 is connected 101 to the signal input module 100 and the integral sample and hold module respectively;
所述信号输入模块100包括第一运算放大器104以及积分电容105,第一运算放大器的电源负极端接收负电荷泵模块103输出的负偏压、调节共模输入电压,所述第一运算放大器104将从反相输入端接收的光电流信号放大,通过输出端输出放大后的光电流信号至积分电容105;所述积分电容105将光电流信号转换为光电压信号;The signal input module 100 includes a first operational amplifier 104 and an integrating capacitor 105. The negative terminal of the power supply of the first operational amplifier receives the negative bias voltage output by the negative charge pump module 103 to adjust the common-mode input voltage. The first operational amplifier 104 Amplify the photocurrent signal received from the inverting input terminal, and output the amplified photocurrent signal to the integrating capacitor 105 through the output terminal; the integrating capacitor 105 converts the photocurrent signal into a photovoltage signal;
所述积分采样保持模块101包括第二运算放大器106以及采样电容107,第二运算放大器106的电源负极端接收负电荷泵103模块输出的负偏压、调节共模输入电压,所述第二运算放大器106将从同相输入端接收的光电压信号放大,通过输出端输出放大后的光电压信号至采样电容107;所述采样电容107对所述光电压信号进行采样和保持;The integral sample-and-hold module 101 includes a second operational amplifier 106 and a sampling capacitor 107. The negative terminal of the power supply of the second operational amplifier 106 receives the negative bias voltage output by the negative charge pump 103 module and adjusts the common-mode input voltage. The amplifier 106 amplifies the photovoltage signal received from the non-inverting input terminal, and outputs the amplified photovoltage signal to the sampling capacitor 107 through the output terminal; the sampling capacitor 107 samples and holds the photovoltage signal;
所述增益放大模块102将光电压采样信号进行缓冲输出。The gain amplification module 102 buffers and outputs the photovoltage sampling signal.
本实施例中,通过预设或者调节负偏压,使得第一运算放大器104以及第二运算放大器106的共模输入电压为零,从而使得积分电容105电压以及采样电容107电压从基准电压变化到接地电压,实现光电流信号全摆幅积分以及光电压信号全摆幅采样保持,并将光电压采样信号进行全摆幅缓冲输出,从而延长了积分时间,输出全摆幅信号,达到提高红外焦平面阵列中读出电路的信号输出质量的目的。In this embodiment, by presetting or adjusting the negative bias voltage, the common-mode input voltage of the first operational amplifier 104 and the second operational amplifier 106 is zero, so that the voltage of the integrating capacitor 105 and the voltage of the sampling capacitor 107 change from the reference voltage to The ground voltage realizes the full-swing integration of the photocurrent signal and the full-swing sampling and holding of the photovoltage signal. The purpose of the signal output quality of the readout circuit in the planar array.
在其中一个实施例中,所述第一运算放大器104为折叠式共源共栅运算放大器。所述折叠式共源共栅运算放大器的开环增益高,输出失调电压小,共模抑制比高,低温可靠性强。In one embodiment, the first operational amplifier 104 is a folded cascode operational amplifier. The folded cascode operational amplifier has high open-loop gain, low output offset voltage, high common-mode rejection ratio, and strong low-temperature reliability.
在其中一个实施例中,所述第二运算放大器106为五管运算放大器。所述五管运算放大器即节省面积,又能满足驱动的要求。In one embodiment, the second operational amplifier 106 is a five-tube operational amplifier. The five-tube operational amplifier not only saves area, but also meets driving requirements.
如图2所示,为一个实施例的红外焦平面阵列读出电路的电路结构图。As shown in FIG. 2 , it is a circuit structure diagram of an infrared focal plane array readout circuit of an embodiment.
在其中一个实施例中,所述信号输入模块还包括第一开关K1和第二开关K2,所述第一开关K1连接在第一运算放大器A1的输出端和积分电容C1之间,所述第二开关K2连接在基准电压与积分电容C1之间,通过控制第一开关K1和第二开关K2通路或断路,使得积分电容C1处于复位状态或者积分状态。In one of the embodiments, the signal input module further includes a first switch K1 and a second switch K2, the first switch K1 is connected between the output terminal of the first operational amplifier A1 and the integrating capacitor C1, and the first switch K1 The second switch K2 is connected between the reference voltage and the integrating capacitor C1, and the integrating capacitor C1 is in a reset state or an integrating state by controlling the first switch K1 and the second switch K2 to be on or off.
具体地,通过控制第一开关K1断路、第二开关K2通路,使得积分电容C1电压为基准电压,处于复位状态;通过控制第一开关K1通路、第二开关K2断路,使得光电流信号积分到积分电容C1中,进而控制积分电容C1的积分时间,并防止红外焦平面阵列中红外探测器的过热象元击穿积分电容C1的电容芯片。因此,延长了光电流信号的积分时间,从而提高了红外焦平面阵列输出信号的信噪比。Specifically, by controlling the open circuit of the first switch K1 and the open circuit of the second switch K2, the voltage of the integrating capacitor C1 is the reference voltage and is in a reset state; by controlling the open circuit of the first switch K1 and the open circuit of the second switch K2, the photocurrent signal is integrated to In the integrating capacitor C1, the integration time of the integrating capacitor C1 is further controlled, and the overheating pixel of the infrared detector in the infrared focal plane array is prevented from breaking down the capacitor chip of the integrating capacitor C1. Therefore, the integration time of the photocurrent signal is prolonged, thereby improving the signal-to-noise ratio of the output signal of the infrared focal plane array.
在其中一个实施例中,所述积分采样保持模块包括第三开关K3,所述第三开关K3连接在基准电压与第二运算放大器A2的电源正极端之间,用于控制采样电容C2的采样时间。In one of the embodiments, the integral sample and hold module includes a third switch K3, the third switch K3 is connected between the reference voltage and the positive power supply terminal of the second operational amplifier A2, and is used to control the sampling of the sampling capacitor C2 time.
具体地,通过控制第三开关K3通路,第二运算放大器A2开始正常工作,积分电容C1通过第二运算放大器A2输出光电压信号至采样电容C2中;通过控制第三开关K3断路,使得采样电容C2停止采样。因此,所述第三开关K3用于控制采样电容C2的采样时间,从而进一步保证光电压信号全摆幅采样,提高红外焦平面阵列中读出电路的信号采样质量。Specifically, by controlling the path of the third switch K3, the second operational amplifier A2 starts to work normally, and the integrating capacitor C1 outputs a photovoltage signal to the sampling capacitor C2 through the second operational amplifier A2; by controlling the third switch K3 to open the circuit, the sampling capacitor C2 stops sampling. Therefore, the third switch K3 is used to control the sampling time of the sampling capacitor C2, thereby further ensuring the full-swing sampling of the photovoltage signal and improving the signal sampling quality of the readout circuit in the infrared focal plane array.
在其中一个实施例中,所述增益放大模块包括:In one of the embodiments, the gain amplification module includes:
第三运算放大器A3,所述第三运算放大器A3的同相输入端连接采样电容C2、反相输入端连接输出端、电源负极端接地以及电源正极端连接基准电压,第三运算放大器A3将从同相输入端接收的光电压采样信号放大,通过输出端输出放大后的光电压采样信号;The third operational amplifier A3, the non-inverting input terminal of the third operational amplifier A3 is connected to the sampling capacitor C2, the inverting input terminal is connected to the output terminal, the negative terminal of the power supply is grounded, and the positive terminal of the power supply is connected to the reference voltage. The photovoltage sampling signal received by the input terminal is amplified, and the amplified photovoltage sampling signal is output through the output terminal;
第四开关K4,所述第四开关K4连接在基准电压与第三运算放大器A3的电源正极端之间,用于控制第三运算放大器A3输出光电压采样信号的缓冲时间;The fourth switch K4, the fourth switch K4 is connected between the reference voltage and the positive terminal of the power supply of the third operational amplifier A3, and is used to control the buffering time of the photovoltage sampling signal output by the third operational amplifier A3;
第四运算放大器A4,所述第四运算放大器A4的同相输入端连接第三运算放大器A3的输出端、反相输入端连接输出端、电源负极端接地以及电源正极端连接基准电压,第四运算放大器A4将从同相输入端接收的光电压采样信号放大,通过输出端输出放大后的光电压采样信号;The fourth operational amplifier A4, the non-inverting input terminal of the fourth operational amplifier A4 is connected to the output terminal of the third operational amplifier A3, the inverting input terminal is connected to the output terminal, the negative terminal of the power supply is grounded, and the positive terminal of the power supply is connected to the reference voltage, the fourth operation The amplifier A4 amplifies the photovoltage sampling signal received from the non-inverting input terminal, and outputs the amplified photovoltage sampling signal through the output terminal;
第五开关K5,所述第五开关K5连接在基准电压与第四运算放大器A4的电源正极端之间,用于控制第四运算放大器A4输出光电压采样信号的缓冲时间。The fifth switch K5, which is connected between the reference voltage and the positive power supply terminal of the fourth operational amplifier A4, is used to control the buffering time of the photovoltage sampling signal output by the fourth operational amplifier A4.
该实施例中,控制第四开关K4通路、第五开关K5断路,所述第三运算放大器A3的同相输入端开始接收从采样电容C2输出的光电压采样信号;控制第五开关K5通路,所述第四运算放大器A4的同相输入端开始接收从第三运算放大器A3输出端输出的光电压采样信号。因此,通过逐次控制第四开关K4以及第五开关K5通路,从而将采样电容C2中的光电压采样信号依次进行全摆幅输出,提高光电压采样信号的输出质量。In this embodiment, the channel of the fourth switch K4 and the circuit of the fifth switch K5 are controlled, and the non-inverting input terminal of the third operational amplifier A3 starts to receive the photovoltage sampling signal output from the sampling capacitor C2; the channel of the fifth switch K5 is controlled, so The non-inverting input terminal of the fourth operational amplifier A4 starts to receive the photovoltage sampling signal output from the output terminal of the third operational amplifier A3. Therefore, by sequentially controlling the channels of the fourth switch K4 and the fifth switch K5, the photovoltage sampling signal in the sampling capacitor C2 is sequentially output with full swing, and the output quality of the photovoltage sampling signal is improved.
作为该实施例的一个优选实施方式,可以在将光电压采样信号进行输出的同时,信号输入模块进行光电流信号的积分,以及积分采样保持模块进行光电压信号的采样与保持,从而实现同时进行信号积分与输出,提高红外焦平面阵列中读出电路信号输出的效率。As a preferred implementation of this embodiment, while the photovoltage sampling signal is output, the signal input module performs integration of the photocurrent signal, and the integral sampling and holding module performs sampling and holding of the photovoltage signal, thereby realizing simultaneous The signal integration and output improve the efficiency of the signal output of the readout circuit in the infrared focal plane array.
在其中一个实施例中,如图3所示,所述红外焦平面阵列读出电路还包括时序控制电路模块300,所述时序控制电路模块300分别与负电荷泵模块103、信号输入模块100、积分采样保持模块101以及增益放大模块102连接,用于向所述负电荷泵模块103、信号输入模块100、积分采样保持模块101以及增益放大模块102提供时序脉冲。因此,保证红外焦平面阵列读出电路正常有序的运行。In one of the embodiments, as shown in FIG. 3 , the infrared focal plane array readout circuit further includes a timing control circuit module 300, and the timing control circuit module 300 is connected to the negative charge pump module 103, the signal input module 100, the The integral sample and hold module 101 and the gain amplification module 102 are connected to provide timing pulses to the negative charge pump module 103 , the signal input module 100 , the integral sample and hold module 101 and the gain amplification module 102 . Therefore, the normal and orderly operation of the infrared focal plane array readout circuit is guaranteed.
以下是本发明的一个优选实施方式,如图2所示:Below is a preferred embodiment of the present invention, as shown in Figure 2:
通过时序控制电路模块提供时钟信号,控制红外焦平面阵列读出电路中各模块的工作:控制第一开关K1断路、第二开关K2通路,使得积分电容C1电压为基准电压,处于复位状态;控制第二开关K2断路、第一开关K1通路,第一运算放大器A1的电源负极端接收负电荷泵模块预设的负偏压,使得第一运算放大器A1的共模输入电压为零,通过输出端输出放大后的光电流信号至积分电容C1,积分电容C1将光电流信号转换为光电压信号,达到预设积分时间之后,控制第一开关K1断路;控制第三开关K3通路,第二运算放大器A2的电源负极端接收负电荷泵模块预设的负偏压,使得第二运算放大器A2的共模输入电压为零,通过输出端输出光电压信号至采样电容C2,采样电容C2对所述光电压信号进行采样和保持,达到预设采样保持时间之后,控制第三开关K3断路;控制第四开关K4通路、第五开关K5断路,第三运算放大器A3的同相输入端开始接收从采样电容C2输出的光电压采样信号,达到预设输出时间之后,控制第五开关K5通路,第四运算放大器A4的同相输入端开始接收从第三运算放大器A3输出端输出的光电压采样信号,并进行输出。The clock signal is provided by the timing control circuit module to control the work of each module in the infrared focal plane array readout circuit: control the first switch K1 to open the circuit and the second switch K2 to make the voltage of the integrating capacitor C1 the reference voltage and be in the reset state; control The second switch K2 is disconnected and the first switch K1 is open. The negative terminal of the power supply of the first operational amplifier A1 receives the preset negative bias voltage of the negative charge pump module, so that the common-mode input voltage of the first operational amplifier A1 is zero, and the output terminal Output the amplified photocurrent signal to the integrating capacitor C1. The integrating capacitor C1 converts the photocurrent signal into a photovoltage signal. After the preset integration time is reached, the first switch K1 is controlled to open the circuit; the third switch K3 channel is controlled, and the second operational amplifier The negative terminal of the power supply of A2 receives the preset negative bias voltage of the negative charge pump module, so that the common-mode input voltage of the second operational amplifier A2 is zero, and the photovoltage signal is output to the sampling capacitor C2 through the output terminal, and the sampling capacitor C2 is responsible for the photo The voltage signal is sampled and held, and after the preset sampling and holding time is reached, the third switch K3 is controlled to be disconnected; the fourth switch K4 channel is controlled, the fifth switch K5 is disconnected, and the non-inverting input terminal of the third operational amplifier A3 starts to receive the signal from the sampling capacitor C2 After the output photovoltage sampling signal reaches the preset output time, the fifth switch K5 channel is controlled, and the non-inverting input terminal of the fourth operational amplifier A4 starts to receive the photovoltage sampling signal output from the output terminal of the third operational amplifier A3, and outputs .
因此,通过预设的负偏压,使得第一运算放大器A1以及第二运算放大器A2的共模输入电压为零,从而使得积分电容C1电压以及采样电容C2电压从基准电压变化到接地电压,实现光电流信号全摆幅积分以及光电压信号全摆幅采样保持,并将光电压采样信号进行全摆幅缓冲输出,从而延长了积分时间,输出全摆幅信号,达到提高红外焦平面阵列中读出电路的信号输出质量的目的。Therefore, through the preset negative bias voltage, the common-mode input voltage of the first operational amplifier A1 and the second operational amplifier A2 is zero, so that the voltage of the integrating capacitor C1 and the voltage of the sampling capacitor C2 change from the reference voltage to the ground voltage, realizing Full-swing integration of photocurrent signals and full-swing sampling and holding of photovoltage signals, and full-swing buffer output of photovoltage sampling signals, thereby prolonging the integration time and outputting full-swing signals to improve the reading efficiency of infrared focal plane arrays. out of the circuit for signal output quality purposes.
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The various technical features of the above-mentioned embodiments can be combined arbitrarily. To make the description concise, all possible combinations of the various technical features in the above-mentioned embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, should be considered as within the scope of this specification.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510586598.1A CN105222900B (en) | 2015-09-15 | 2015-09-15 | Infrared focal plane array reading circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510586598.1A CN105222900B (en) | 2015-09-15 | 2015-09-15 | Infrared focal plane array reading circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105222900A CN105222900A (en) | 2016-01-06 |
CN105222900B true CN105222900B (en) | 2018-09-28 |
Family
ID=54991979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510586598.1A Active CN105222900B (en) | 2015-09-15 | 2015-09-15 | Infrared focal plane array reading circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105222900B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9753138B1 (en) * | 2016-04-13 | 2017-09-05 | Microsoft Technology Licensing, Llc | Transducer measurement |
JP2018084462A (en) | 2016-11-22 | 2018-05-31 | 株式会社ミツトヨ | Encoder and signal processing circuit |
CN112556862B (en) * | 2020-11-05 | 2022-07-01 | 天津大学 | Large Dynamic Range, Small Area Readout Circuit Using Current Mirrors for Mode Switching |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101582978A (en) * | 2009-06-18 | 2009-11-18 | 东南大学 | Background suppression method for infrared reading circuit and circuit thereof |
CN102237850A (en) * | 2010-05-05 | 2011-11-09 | 普诚科技股份有限公司 | Motor control circuit applied to multiple control modes |
CN103532382A (en) * | 2013-10-28 | 2014-01-22 | 无锡中星微电子有限公司 | Switching power supply circuit |
CN103780231A (en) * | 2014-02-10 | 2014-05-07 | 绍兴光大芯业微电子有限公司 | Circuit structure for achieving peak value sampling and holding |
US8830776B1 (en) * | 2013-03-15 | 2014-09-09 | Freescale Semiconductor, Inc. | Negative charge pump regulation |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1770609A (en) * | 2004-11-03 | 2006-05-10 | 上海贝岭股份有限公司 | Single-power low-distortion wide-range positive/negative voltage signal sampling switch circuit |
JP5093768B2 (en) * | 2007-07-31 | 2012-12-12 | パナソニック株式会社 | Signal readout circuit |
US20140048683A1 (en) * | 2012-08-14 | 2014-02-20 | Luxen Technologies, Inc. | Readout integrated circuit for dynamic imaging |
CN103247636A (en) * | 2013-04-26 | 2013-08-14 | 中国科学院上海技术物理研究所 | Readout integrated circuit adopting background suppression structure provided with memory function |
CN104568169B (en) * | 2015-01-28 | 2017-12-26 | 江苏物联网研究发展中心 | The infrared focal plane read-out circuit of function is eliminated with imbalance |
-
2015
- 2015-09-15 CN CN201510586598.1A patent/CN105222900B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101582978A (en) * | 2009-06-18 | 2009-11-18 | 东南大学 | Background suppression method for infrared reading circuit and circuit thereof |
CN102237850A (en) * | 2010-05-05 | 2011-11-09 | 普诚科技股份有限公司 | Motor control circuit applied to multiple control modes |
US8830776B1 (en) * | 2013-03-15 | 2014-09-09 | Freescale Semiconductor, Inc. | Negative charge pump regulation |
CN103532382A (en) * | 2013-10-28 | 2014-01-22 | 无锡中星微电子有限公司 | Switching power supply circuit |
CN103780231A (en) * | 2014-02-10 | 2014-05-07 | 绍兴光大芯业微电子有限公司 | Circuit structure for achieving peak value sampling and holding |
Also Published As
Publication number | Publication date |
---|---|
CN105222900A (en) | 2016-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7554591B2 (en) | Photoelectric conversion apparatus and image sensing system using the same | |
US9848140B2 (en) | Horizontal banding reduction with ramp generator isolation in an image sensor | |
US20130256510A1 (en) | Imaging device with floating diffusion switch | |
KR101807439B1 (en) | Pixel circuit with constant voltage biased photodiode and related imaging method | |
CN104251739B (en) | A kind of single capacitor correlated-double-sampling uncooled ir reading circuit | |
CN110121037A (en) | The imaging sensor read with dual conversion gain | |
CN102333195A (en) | A Active and Passive Imaging Readout Circuit Working in Linear Mode APD Array | |
US9041842B2 (en) | Image sensor pixel cell readout architecture | |
CN107925731B (en) | Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus | |
US8582008B2 (en) | Fast-settling line driver design for high resolution video IR and visible images | |
CN104967793B (en) | Power supply noise cancellation circuit suitable for CMOS image sensor | |
TWI776971B (en) | Multimode readout integrated circuit (roic) pixel with laser range finding (lrf) capability, and related focal plane array and multimode lrf apparatus | |
ES2750613T3 (en) | Amplifier adapted for CMOS imaging sensors | |
CN104568169A (en) | Infrared focal plane reading circuit with offset cancelling function | |
CN105222900B (en) | Infrared focal plane array reading circuit | |
US6344651B1 (en) | Differential current mode output circuit for electro-optical sensor arrays | |
EP3611919A1 (en) | Analog read circuit and image sensing module | |
US20200169681A1 (en) | Ctia based pixel for simultaneous synchronous frame-based & asynchronous event-driven readouts | |
US10070089B2 (en) | Inverting amplifier, integrator, sample hold circuit, ad converter, image sensor, and imaging apparatus | |
JP5729947B2 (en) | Photoelectric conversion device, focus detection device, and imaging system | |
CN111464157A (en) | Pixel-level high-speed narrow pulse peak holding circuit | |
CN103852174B (en) | There is the reading integrated circuit of memory function background suppression structure | |
CN104065890A (en) | A high-speed BDI type pixel unit circuit | |
CN102143317B (en) | Photoelectric conversion apparatus, focus detection apparatus, and image pickup system | |
KR20150130186A (en) | Image sensor and stacked structure thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |