CN105220011A - A kind of high strength carbonizing titanium particle enhanced copper base alloy material and preparation method thereof - Google Patents

A kind of high strength carbonizing titanium particle enhanced copper base alloy material and preparation method thereof Download PDF

Info

Publication number
CN105220011A
CN105220011A CN201510728638.1A CN201510728638A CN105220011A CN 105220011 A CN105220011 A CN 105220011A CN 201510728638 A CN201510728638 A CN 201510728638A CN 105220011 A CN105220011 A CN 105220011A
Authority
CN
China
Prior art keywords
high strength
base alloy
alloy material
copper base
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510728638.1A
Other languages
Chinese (zh)
Inventor
孙飞
赵勇
埃里克斯·高登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Lie Zhiai Alliance New Material Technology Shifts Co Ltd
Original Assignee
Suzhou Lie Zhiai Alliance New Material Technology Shifts Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Lie Zhiai Alliance New Material Technology Shifts Co Ltd filed Critical Suzhou Lie Zhiai Alliance New Material Technology Shifts Co Ltd
Priority to CN201510728638.1A priority Critical patent/CN105220011A/en
Publication of CN105220011A publication Critical patent/CN105220011A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

The present invention relates to a kind of high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline and preparation method thereof, this high strength carbonizing titanium particle enhanced copper base alloy material is made up of the component of following volume percent: nano titanium carbide 5.5-9%, copper alloy ZCuSn 3zn 11pb 491-94.5%.High strength carbonizing titanium particle enhanced copper base alloy material for the preparation of Nuclear steam pipeline passes through the steps such as stirring, melting, casting.High strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline provided by the invention, the features such as utilize titanium carbide hardness high, chemically stable is good, is not hydrolyzed, and high-temperature oxidation resistance is good, make copper alloy ZCuSn 3zn 11pb 4while its original solidity to corrosion of guarantee and good casting property, improve its intensity, hardness and working life, thus extend the application of high strength carbonizing titanium particle enhanced copper base alloy material at Nuclear steam pipeline.

Description

A kind of high strength carbonizing titanium particle enhanced copper base alloy material and preparation method thereof
Technical field
The present invention relates to a kind of copper-base alloy composite material and preparation method thereof, particularly relate to a kind of high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline.
Background technology
The standard system of GB GB/T1176-2013 obtains copper alloy ZCuSn 3zn 11pb 4be a kind of polycomponent cast bronze material, it has easy processing, good casting property, the characteristic such as corrosion-resistant; Be mainly used in the tube fittings being manufactured on and working in seawater, light water and steam.But, due to the insufficient strength of its material self, make it drive the application in steam system to be subject to larger restriction at core.Only under the prerequisite ensureing its primary characteristic, promote this copper alloy ZCuSn further 3zn 11pb 4the intensity of material could expand the requirement that this material is applied in core steam propulsion system.
It is high that nano titanium carbide has fusing point, good heat conductivity, and hardness is large, the series of advantages such as chemically stable is good, is not hydrolyzed, and high-temperature oxidation resistance is good.Highly purified nano silicon carbide ti powder is a kind of by TiO 2in the carbon tube furnace or frequency modulation vacuum oven of logical hydrogen, under 1600 DEG C of-1800 DEG C of high temperature, obtained a kind of starting material are reacted with carbon black.Because nano titanium carbide hardness is large, have good mechanical property, therefore it is the important source material of CEMENTED CARBIDE PRODUCTION, can be used for manufacturing high-abrasive material, cutter material, mechanical component etc., also can make the crucible of the metals such as melting tin, lead, cadmium, zinc.
To sum up, by nano titanium carbide and copper alloy ZCuSn 3zn 11pb 4the high strength carbonizing titanium particle enhanced copper base alloy material that the two advantage combines can at guarantee copper alloy ZCuSn 3zn 11pb 4improve its intensity and hardness while original solidity to corrosion and good casting property, thus extend the application of high strength carbonizing titanium particle enhanced copper base alloy material in core driving steam system.
Summary of the invention
The object of the invention is to, by improving nano titanium carbide and copper alloy ZCuSn 3zn 11pb 4between volume proportion and preparation condition, provide a kind of and effectively improve copper alloy ZCuSn 3zn 11pb 4intensity, hardness and and the high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline and preparation method thereof of working life.
For achieving the above object, technical scheme provided by the present invention is:
For a high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline, be made up of the component of following volume percent: nano titanium carbide 5.5-9%, copper alloy ZCuSn 3zn 11pb 491-94.5%.
Preferably, the high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline of the present invention, is made up of the component of following volume percent: nano titanium carbide 5.5%, copper alloy ZCuSn 3zn 11pb 494.5%.
Preferably, the high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline of the present invention, is characterized in that, be made up of the component of following volume percent: nano titanium carbide 7%, copper alloy ZCuSn 3zn 11pb 493%.
Preferably, the high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline of the present invention, is characterized in that, be made up of the component of following volume percent: nano titanium carbide 9%, copper alloy ZCuSn 3zn 11pb 491%.
Further, described nano titanium carbide particle diameter is 300 μm-500 μm.
Further, described copper alloy ZCuSn 3zn 11pb 4be made up of the component of following mass percent: tin slab 2-4%, lead pig 3.0-6.0%, zinc 9.0-13.0%, impurity is less than 1.0, and all the other are copper.
The invention provides a kind of preparation method of the high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline, there are following steps:
1) copper alloy ZCuSn is prepared 3zn 11pb 4: electrolytic copper, tin slab, lead pig, zinc are put into electric furnace melting according to above-mentioned part by weight, and in melting, copper alloy liquid volume is less than 99% of electric furnace volume; Smelting temperature is 1050-1100 DEG C, and the time is 4-5h;
2) use Spike direct-reading spectrometer to the copper alloy ZCuSn of preparation 3zn 11pb 4liquid carries out composition detection, to determine that its chemical constitution is within above-mentioned scope;
3) by nano titanium carbide by volume per-cent 5.5-9% put into above-mentioned copper alloy ZCuSn 3zn 11pb 4the surface of liquid, opens the shaking device of main frequency furnace and stirs with graphite rod simultaneously, makes the two Homogeneous phase mixing; Further rising furnace temperature is to 1200-1300 DEG C and keep 20-30min;
4) be incubated in electric furnace by the high strength carbonizing titanium particle enhanced copper base alloy material completed, the time is 1-1.5h; Adopt the mode of continuous casting that this high strength carbonizing titanium particle enhanced copper base alloy material is cast as high strength carbonizing titanium particle reinforced copper base alloy composite bar afterwards, casting temp is 1000-1100 DEG C;
5) the high strength carbonizing titanium particle reinforced copper base alloy composite bar after having cast is carried out surperficial Vehicle Processing process, and pack according to factory calibration.
Further, in step 3, the volume percent of described nano titanium carbide is 5.5%.
Further, in step 3, the volume percent of described nano titanium carbide is 7%.
Further, in step 3, the volume percent of described nano titanium carbide is 9%.
Adopt technique scheme, beneficial effect of the present invention has:
1. nano titanium carbide material is evenly distributed on copper alloy ZCuSn by certain technique means by the present invention 3zn 11pb 4in material, utilize the features such as nano level titanium carbide hardness is high, and chemically stable is good, is not hydrolyzed, and high-temperature oxidation resistance is good, compensate for copper alloy ZCuSn 3zn 11pb 4the shortcomings such as the hardness of material is low, intensity difference, realize copper alloy ZCuSn 3zn 11pb 4the hardness of material and the further lifting of strength property.
2. the high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline that obtains of the present invention, by changing nano titanium carbide and copper alloy ZCuSn 3zn 11pb 4volume ratio, effectively can improve the intensity of final titanium carbide granule reinforced copper base alloy material, hardness and working life, thus make high strength carbonizing titanium particle enhanced copper base alloy material can drive application in steam system at core.
Accompanying drawing explanation
Fig. 1 is the schema of the method for the high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline of the present invention.
Embodiment
Below in conjunction with drawings and Examples, high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline provided by the invention and preparation method thereof is described further, but and unrestricted range of application of the present invention.
embodiment 1
The high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline of the embodiment of the present invention 1, is made up of the component of following volume percent: nano titanium carbide 5.5%, copper alloy ZCuSn 3zn 11pb 494.5%; Wherein nano titanium carbide particle diameter is 300 μm-500 μm; Copper alloy ZCuSn 3zn 11pb 4be made up of the component of following mass percent: tin slab 2-4%, lead pig 3.0-6.0%, zinc 9.0-13.0%, impurity is less than 1.0, and all the other are copper.
The high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline of the embodiment of the present invention 1, has following steps (as shown in Figure 1):
1) copper alloy ZCuSn is prepared 3zn 11pb 4: electrolytic copper, tin slab, lead pig, zinc are put into electric furnace melting according to above-mentioned part by weight, and in melting, copper alloy liquid volume is less than 99% of electric furnace volume; Smelting temperature is 1050 DEG C, and the time is 4h;
2) use Spike direct-reading spectrometer to the copper alloy ZCuSn of preparation 3zn 11pb 4liquid carries out composition detection, to determine that its chemical constitution is within above-mentioned scope;
3) by nano titanium carbide by volume per-cent 5.5% put into above-mentioned copper alloy ZCuSn 3zn 11pb 4the surface of liquid, opens the shaking device of main frequency furnace and stirs with graphite rod simultaneously, makes the two Homogeneous phase mixing; Further rising furnace temperature to 1200 DEG C also keeps 20min;
4) be incubated in electric furnace by the high strength carbonizing titanium particle enhanced copper base alloy material completed, the time is 1h; Adopt the mode of continuous casting that this high strength carbonizing titanium particle enhanced copper base alloy material is cast as high strength carbonizing titanium particle reinforced copper base alloy composite bar afterwards, casting temp is 1000 DEG C;
5) the high strength carbonizing titanium particle reinforced copper base alloy composite bar after having cast is carried out surperficial Vehicle Processing process, and pack according to factory calibration.
embodiment 2
The high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline of the embodiment of the present invention 2, is made up of the component of following volume percent: nano titanium carbide 7%, copper alloy ZCuSn 3zn 11pb 493%; Wherein nano titanium carbide particle diameter is 300 μm-500 μm; Copper alloy ZCuSn 3zn 11pb 4be made up of the component of following mass percent: tin slab 2-4%, lead pig 3.0-6.0%, zinc 9.0-13.0%, impurity is less than 1.0, and all the other are copper.
The high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline of the embodiment of the present invention 2, has following steps (as shown in Figure 1):
1) copper alloy ZCuSn is prepared 3zn 11pb 4: electrolytic copper, tin slab, lead pig, zinc are put into electric furnace melting according to above-mentioned part by weight, and in melting, copper alloy liquid volume is less than 99% of electric furnace volume; Smelting temperature is 1075 DEG C, and the time is 4.5h;
2) use Spike direct-reading spectrometer to the copper alloy ZCuSn of preparation 3zn 11pb 4liquid carries out composition detection, to determine that its chemical constitution is within above-mentioned scope;
3) by nano titanium carbide by volume per-cent 7% put into above-mentioned copper alloy ZCuSn 3zn 11pb 4the surface of liquid, opens the shaking device of main frequency furnace and stirs with graphite rod simultaneously, makes the two Homogeneous phase mixing; Further rising furnace temperature to 1250 DEG C also keeps 25min;
4) be incubated in electric furnace by the high strength carbonizing titanium particle enhanced copper base alloy material completed, the time is 1.25h; Adopt the mode of continuous casting that this high strength carbonizing titanium particle enhanced copper base alloy material is cast as high strength carbonizing titanium particle reinforced copper base alloy composite bar afterwards, casting temp is 1050 DEG C;
5) the high strength carbonizing titanium particle reinforced copper base alloy composite bar after having cast is carried out surperficial Vehicle Processing process, and pack according to factory calibration.
embodiment 3
The high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline of the embodiment of the present invention 3, is made up of the component of following volume percent: nano titanium carbide 9%, copper alloy ZCuSn 3zn 11pb 491%; Wherein nano titanium carbide particle diameter is 300 μm-500 μm; Copper alloy ZCuSn 3zn 11pb 4be made up of the component of following mass percent: tin slab 2-4%, lead pig 3.0-6.0%, zinc 9.0-13.0%, impurity is less than 1.0, and all the other are copper.
The high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline of the embodiment of the present invention 3, has following steps (as shown in Figure 1):
1) copper alloy ZCuSn is prepared 3zn 11pb 4: electrolytic copper, tin slab, lead pig, zinc are put into electric furnace melting according to above-mentioned part by weight, and in melting, copper alloy liquid volume is less than 99% of electric furnace volume; Smelting temperature is 1100 DEG C, and the time is 5h;
2) use Spike direct-reading spectrometer to the copper alloy ZCuSn of preparation 3zn 11pb 4liquid carries out composition detection, to determine that its chemical constitution is within above-mentioned scope;
3) by nano titanium carbide by volume per-cent 9% put into above-mentioned copper alloy ZCuSn 3zn 11pb 4the surface of liquid, opens the shaking device of main frequency furnace and stirs with graphite rod simultaneously, makes the two Homogeneous phase mixing; Further rising furnace temperature to 1300 DEG C also keeps 30min;
4) be incubated in electric furnace by the high strength carbonizing titanium particle enhanced copper base alloy material completed, the time is 1.5h; Adopt the mode of continuous casting that this high strength carbonizing titanium particle enhanced copper base alloy material is cast as high strength carbonizing titanium particle reinforced copper base alloy composite bar afterwards, casting temp is 1100 DEG C;
5) the high strength carbonizing titanium particle reinforced copper base alloy composite bar after having cast is carried out surperficial Vehicle Processing process, and pack according to factory calibration.
comparative example 1
Add the Cu alloy material of traditional element cadmium, titanium, composed of the following components: the cadmium accounting for alloy material gross weight 1.5%, account for the titanium of alloy material gross weight 4%, account for the copper alloy ZCuSn of alloy material gross weight 94.5% 3zn 11pb 4.By traditional thermal treatment process, namely repeatedly to anneal, tempering and the thermal treatment process such as to quench, prepare above-mentioned Cu alloy material.
comparative example 2
Add the Cu alloy material of traditional element cadmium, titanium, composed of the following components: the cadmium accounting for alloy material gross weight 3%, account for the titanium of alloy material gross weight 6%, account for the copper alloy ZCuSn of alloy material gross weight 91% 3zn 11pb 4.By traditional thermal treatment process, namely repeatedly to anneal, tempering and the thermal treatment process such as to quench, prepare above-mentioned Cu alloy material.
The embodiment of high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline of the present invention and the mechanical property of traditional copper alloy material of above-mentioned comparative example 1 and 2 and the parts of manufacture as shown in table 1 as the working life of accessory in core steam propulsion system.
Table 1
Data according to above-mentioned table 1 can be found out, the high strength carbonizing titanium particle enhanced copper base alloy material mechanical property after interpolation nano titanium carbide and the parts of manufacture thereof obtain significant raising as the working life of accessory in core steam propulsion system.
The above embodiment only have expressed embodiments of the present invention, and it describes comparatively concrete and detailed, but therefore can not be interpreted as the restriction to the scope of the claims of the present invention.It should be pointed out that for the person of ordinary skill of the art, without departing from the inventive concept of the premise, can also make some distortion and improvement, these all belong to protection scope of the present invention.

Claims (10)

1., for a high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline, it is characterized in that, be made up of the component of following volume percent: nano titanium carbide 5.5-9%, copper alloy ZCuSn 3zn 11pb 491-94.5%.
2. the high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline according to claim 1, is characterized in that, be made up of the component of following volume percent: nano titanium carbide 5.5%, copper alloy ZCuSn 3zn 11pb 494.5%.
3. the high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline according to claim 1, is characterized in that, be made up of the component of following volume percent: nano titanium carbide 7%, copper alloy ZCuSn 3zn 11pb 493%.
4. the high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline according to claim 1, is characterized in that, be made up of the component of following volume percent: nano titanium carbide 9%, copper alloy ZCuSn 3zn 11pb 491%.
5. the high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline as claimed in one of claims 1-4, it is characterized in that, described nano titanium carbide particle diameter is 300 μm-500 μm.
6. the high strength carbonizing titanium particle enhanced copper base alloy material for Nuclear steam pipeline according to claim 1-4, is characterized in that, described copper alloy ZCuSn 3zn 11pb 4be made up of the component of following mass percent: tin slab 2-4%, lead pig 3.0-6.0%, zinc 9.0-13.0%, impurity is less than 1.0, and all the other are copper.
7., for a preparation method for the high strength carbonizing titanium particle enhanced copper base alloy material of Nuclear steam pipeline, it is characterized in that there are following steps:
1) copper alloy ZCuSn is prepared 3zn 11pb 4: electrolytic copper, tin slab, lead pig, zinc are put into electric furnace melting according to part by weight according to claim 6, and in melting, copper alloy liquid volume is less than 99% of electric furnace volume; Smelting temperature is 1050-1100 DEG C, and the time is 4-5h;
2) use Spike direct-reading spectrometer to the copper alloy ZCuSn of preparation 3zn 11pb 4liquid carries out composition detection, to determine that its chemical constitution is within scope according to claim 6;
3) by nano titanium carbide by volume per-cent 5.5-9% put into above-mentioned copper alloy ZCuSn 3zn 11pb 4the surface of liquid, opens the shaking device of main frequency furnace and stirs with graphite rod simultaneously, makes the two Homogeneous phase mixing; Further rising furnace temperature is to 1200-1300 DEG C and keep 20-30min;
4) be incubated in electric furnace by the high strength carbonizing titanium particle enhanced copper base alloy material completed, the time is 1-1.5h; Adopt the mode of continuous casting that this high strength carbonizing titanium particle enhanced copper base alloy material is cast as high strength carbonizing titanium particle reinforced copper base alloy composite bar afterwards, casting temp is 1000-1100 DEG C;
5) the high strength carbonizing titanium particle reinforced copper base alloy composite bar after having cast is carried out surperficial Vehicle Processing process, and pack according to factory calibration.
8. preparation method according to claim 7, is characterized in that, in step 3, the volume percent of described nano titanium carbide is 5.5%.
9. preparation method according to claim 7, is characterized in that, in step 3, the volume percent of described nano titanium carbide is 7%.
10. preparation method according to claim 7, is characterized in that, in step 3, the volume percent of described nano titanium carbide is 9%.
CN201510728638.1A 2015-10-30 2015-10-30 A kind of high strength carbonizing titanium particle enhanced copper base alloy material and preparation method thereof Pending CN105220011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510728638.1A CN105220011A (en) 2015-10-30 2015-10-30 A kind of high strength carbonizing titanium particle enhanced copper base alloy material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510728638.1A CN105220011A (en) 2015-10-30 2015-10-30 A kind of high strength carbonizing titanium particle enhanced copper base alloy material and preparation method thereof

Publications (1)

Publication Number Publication Date
CN105220011A true CN105220011A (en) 2016-01-06

Family

ID=54989276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510728638.1A Pending CN105220011A (en) 2015-10-30 2015-10-30 A kind of high strength carbonizing titanium particle enhanced copper base alloy material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN105220011A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164955A (en) * 1981-04-06 1982-10-09 Mitsubishi Metal Corp Alloy with 2-phase structure for decoration and lock
JPS609604A (en) * 1983-06-30 1985-01-18 Agency Of Ind Science & Technol Cutter blade made of ceramics formed of plural layers of super hard material group and oxide group
CN103305742A (en) * 2013-06-26 2013-09-18 苏州金仓合金新材料有限公司 Method for preparing nanoscale silicon carbide copper alloy material
CN104372196A (en) * 2014-10-09 2015-02-25 河海大学 In situ reaction method for generating TiC dispersion strengthened Cu alloy
CN104630544A (en) * 2015-01-27 2015-05-20 苏州金仓合金新材料有限公司 Novel composite copper-based alloy material for high speed railway and preparation method of novel composite copper-based alloy material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164955A (en) * 1981-04-06 1982-10-09 Mitsubishi Metal Corp Alloy with 2-phase structure for decoration and lock
JPS609604A (en) * 1983-06-30 1985-01-18 Agency Of Ind Science & Technol Cutter blade made of ceramics formed of plural layers of super hard material group and oxide group
CN103305742A (en) * 2013-06-26 2013-09-18 苏州金仓合金新材料有限公司 Method for preparing nanoscale silicon carbide copper alloy material
CN104372196A (en) * 2014-10-09 2015-02-25 河海大学 In situ reaction method for generating TiC dispersion strengthened Cu alloy
CN104630544A (en) * 2015-01-27 2015-05-20 苏州金仓合金新材料有限公司 Novel composite copper-based alloy material for high speed railway and preparation method of novel composite copper-based alloy material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宋德军: "《中华人民共和国国家标准,GB/T 1176-2013,铸造铜及铜合金》", 18 September 2013 *

Similar Documents

Publication Publication Date Title
CN103305742B (en) A kind of nanoscale silicon carbide copper alloy material preparation method
CN103253670B (en) Method for preparing TaC powder at low temperature by carbothermic method
CN104174845A (en) Selective laser melting forming method for preparing titanium alloy component
CN102134444A (en) Temperature-resistance thermal-insulation heavy-duty anticorrosion coating
CN105908218B (en) A kind of high pure rare earth metals and its production and use
CN105177348A (en) High-strength titanium carbide copper-based composite material and preparation method thereof
CN106011556A (en) Aluminum alloy used for casting pot and manufacturing method of aluminum alloy
CN105420533A (en) New high-strength titanium carbide particle reinforced copper-based alloy material for oceanographic engineering
WO2017070806A1 (en) High-strength titanium carbide particle-reinforced copper-based composite material and preparation method therefor
CN103979567B (en) A kind of low-temperature growth CrB or CrB 2the method of powder
CN104372209A (en) Aluminum-base powder-metallurgy composite material and preparation method thereof
CN101967005B (en) Method for preparing neodymium praseodymium fluoride with large granules and large specific surface area
CN101696509B (en) 4000A-electrolytic furnace for producing oxide molten salt through electrolysis
CN106048302A (en) Casting material for nuclear power and wind power and manufacture method thereof
CN101497446B (en) Method for producing calcium boride with high purity
CN105220011A (en) A kind of high strength carbonizing titanium particle enhanced copper base alloy material and preparation method thereof
CN107587168A (en) The method that molten-salt electrolysis prepares Titanium
CN105200264A (en) High-strength titanium diboride particle enhanced copper-based composite and preparation method thereof
CN105908031A (en) High-conductivity aluminum alloy material and preparation method thereof
CN105220000A (en) A kind of high strength titanium diboride particle enhanced copper-based composite material and preparation method thereof
CN105256169A (en) High-strength nanometer silicon carbide strengthening copper-based composite material and preparing method thereof
CN105177349A (en) High-strength nano titanium carbide copper-based corrosion-resisting alloy material and preparation method thereof
CN102492962A (en) Preparation method for tellurium electrolyte
CN104561728A (en) Iron-chromium-aluminum alloy smelting method
CN108070736A (en) A kind of ocean engineering high-strength nano grade carborundum acid bronze alloy new material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160106

RJ01 Rejection of invention patent application after publication