CN105219845A - 可同时检测副溶血弧菌和创伤弧菌的双重lamp方法 - Google Patents

可同时检测副溶血弧菌和创伤弧菌的双重lamp方法 Download PDF

Info

Publication number
CN105219845A
CN105219845A CN201510452614.8A CN201510452614A CN105219845A CN 105219845 A CN105219845 A CN 105219845A CN 201510452614 A CN201510452614 A CN 201510452614A CN 105219845 A CN105219845 A CN 105219845A
Authority
CN
China
Prior art keywords
vibrio
vulnificus
parahaemolyticus
reaction
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510452614.8A
Other languages
English (en)
Other versions
CN105219845B (zh
Inventor
周顺
高志鑫
张敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Agricultural University
Original Assignee
Qingdao Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Agricultural University filed Critical Qingdao Agricultural University
Priority to CN201510452614.8A priority Critical patent/CN105219845B/zh
Publication of CN105219845A publication Critical patent/CN105219845A/zh
Application granted granted Critical
Publication of CN105219845B publication Critical patent/CN105219845B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种双重LAMP检测方法,该方法可同时检测副溶血弧菌和创伤弧菌。属于分子生物学技术领域。所述LAMP检测体系中含有检测副溶血弧菌基因OmpA和创伤弧菌metalloprotease基因的引物组,该引物组分别包含OmpA基因和etalloprotease基因的一对外引物F3、B3和一对内引物FIP、BIP;内引物BIP上分别含有PstI和BamHI酶切位点。该发明方法灵敏度高,特异型好,操作简单,结果观察直观明了,检测速度快。

Description

可同时检测副溶血弧菌和创伤弧菌的双重LAMP方法
技术领域
本发明涉及病原弧菌的检测方法,具体的说是一种可同时检测副溶血弧菌和创伤弧菌的双重LAMP方法。
背景技术
创伤弧菌(Vibriovulnificus)是一种革兰氏阴性嗜盐菌,主要分布于近海海洋环境中,是水产养殖虾、蟹和牡蛎等水生动物中最常见、流行最广、危害最严重的致病菌之一;副溶血弧菌(VibrioParahemolyticus),为革兰氏阴性杆菌,呈弧状、杆状、丝状等多种形状,广泛存在于海水和海产品中,是我国沿海地区常见的食物中毒病原菌。
环介导等温扩增技术(loop-mediatedisothermalamplification,LAMP)是2000年由Notomi等人发明的一种新的病原核酸检测技术,该技术根据靶序列设计四条特异性引物,可以特异性识别靶序列的六个特定区域,在等温条件下,通过BstDNA聚合酶的链置换和链延伸作用,可以在1小时内对靶序列实现109倍的扩增,扩增产物加入荧光染料SYBRGreenI后,阳性结果变为绿色,阴性无变化,可以通过肉眼直接观察。目前,针对创伤弧菌和副溶血弧菌已经有LAMP检测方法的报道,只是这些检测方法均是针对单一致病菌进行的检测。双重或多重LAMP技术相对单重LAMP而言,操作更加快速、简便,并且节约检测成本,适合基层养殖场对病原的快速检测。
发明内容
本发明提供了一种可同时检测创伤弧菌和副溶血弧菌的双重LAMP检测方法,目的是实现对创伤弧菌和副溶血弧菌进行特异、灵敏、快速、简便的现场检测。改善原有检测技术只能检测单一病原的弊端。
为实现上述目的,本发明采用以下技术方案予以实现:
1、提供2组LAMP引物序列,创伤弧菌的引物长度分别为45bp,46bp,20bp,19bp,分别命名为metalloprotease-FIP、metalloprotease-BIP、metalloprotease-F3、metalloprotease-B3,副溶血弧菌引物长度分别为47bp,44bp,19bp,22bp,分别命名为ompA-FIP、ompA-BIP、ompA-F3、ompA-B3;
2、配置LAMP反应体系,通过LAMP反应程序对样品模板进行扩增,确定最佳反应体系和反应条件;
3、反应产物的鉴定:2%琼脂糖凝胶电泳;产物加入SYBRGreenI,观察反应管中颜色变化。
具体包括如下步骤:
1、设计LAMP引物:根据GeneBank中已知V.vulnificus的metalloprotease基因(GenBank:U50548.1)和V.parahaemolyticus的ompA基因(GenBank:JTGT01000603.1)作为靶序列,通过PrimerExploreV4在线设计软件设计四条特异性引物,对于V.vulnificus,在BIP的B1c和B2之间添加BamHI酶切位点,在FIP的F1c和F2之间添加-TTTT-连接子;V.parahaemolyticus,在BIP的B1c和B2之间添加PstI酶切位点,在FIP的F1c和F2之间添加-TTTT-连接子,设计以下两组LAMP引物:
2、配制LAMP反应体系
反应体系的终浓度为:总体系25μl,包括BstDNA聚合酶1μl(8U),10×BstDNABuffer2.5μl,PCR级甜菜碱4μl(5M),dNTPs(2.5mMeach)2.5μl,创伤弧菌和副溶血弧菌DNA模板共计1μl,FIP/BIP各1μl(0.8μM),F3/B3各1μl(0.2μM),加灭菌双蒸水使反应体系总体积达到25μl。
3、LAMP反应体系扩增:将上述反应体系进行扩增反应,反应温度58到65℃,反应时间为15到90min。
4、扩增产物检测:2%琼脂糖凝胶电泳;产物加入SYBRGreenI,观察反应管中颜色变化。
附图说明
图1反应温度温度梯度从左往右依次58℃到65℃8个梯度1,3,5,7,9,11,13,15分别为58℃,59℃,60℃,61℃,62℃,63℃,64℃,65℃的阴性对照;2,4,6,8,10,12,14,16分别为58℃,59℃,60℃,61℃,62℃,63℃,64℃,65℃加模版。M:marker
图2反应时间1—6分别代表15min,30min,45min,60min,75min,90min;M为marker
图3双重LAMP反应的琼脂糖凝胶电泳图谱及酶切分析
图4创伤弧菌和副溶血弧菌双重LAMP检测方法与普通PCR检测方法的灵敏度比较M:Marker;1-81.6×107CFU/ml-1.6×100CFU/mlCFU/ml;N:negativecontrol
图5特异性结果统计只有创伤弧菌和副溶血弧菌有扩增,其他菌均没有扩增
图6SYBRGreenI显色反应对人工感染的大菱鲆鱼的肝、肾、脾、血进行双重LAMP扩增,产物加入SYBRGreenI,感染组显示绿色(+),对照组无变化(-)。
图7双重LAMP检测方法的应用-平板计数法结合双重LAMP计数细菌的最低检出率。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例1
1.创伤弧菌和副溶血弧菌双重LAMP方法的建立
1.1材料
dNTPs、BstDNA聚合酶(含10×缓冲液)、PCR级甜菜碱、
1.2方法
1.2.1引物设计与合成
设计LAMP引物:根据GeneBank中已知V.vulnificus的metalloprotease基因(GenBank:U50548.1)和V.parahaemolyticus的ompA基因(GenBank:JTGT01000603.1)作为靶序列,通过PrimerExploreV4在线设计软件设计四条特异性引物,对于V.vulnificus,在BIP的B1c和B2之间添加BamHI酶切位点,在FIP的F1c和F2之间添加-TTTT-连接子;V.parahaemolyticus,在BIP的B1c和B2之间添加PstI酶切位点,在FIP的F1c和F2之间添加-TTTT-连接子,设计以下两组LAMP引物:
1.2.2LAMP扩增条件的优化
优化反应温度和反应时间:检测所用的模板用煮沸裂解法制备。分别在温度和时间上设置的不同梯度,进行优化。温度上从58℃到65℃每隔1℃设置一个梯度;时间上15min一个梯度,设置6个梯度。扩增产物进行2%琼脂糖凝胶电泳分析;
分析温度电泳图:创伤弧菌在58℃到65℃均可发生反应,产生阶梯状扩增条带,且电泳条带亮度接近;副溶血弧菌在58℃和65℃均无明显阶梯状扩增条带,但在59℃到64℃有阶梯状扩增条带。(见图1-A和图1-B)
分析时间电泳图:创伤弧菌和副溶血弧菌均在45min时,出现明显的阶梯状条带,(见图2-A和图2-B)
比较V.vulnificus和V.parahaemolyticus两种弧菌的电泳图谱,选择62℃反应45min即可产生清晰的阶梯状扩增条带。
实施例2
限制性内切酶酶切分析
为了构建双重LAMP的检测方法,在V.vulnificus和V.parahaemolyticus两种弧菌的内引物BIP的B1互补链(B1c)和B2之间分别添加BamHI限制性酶切位点和PstI限制性酶切位点(两种弧菌的靶序列中都不含该两种限制性酶切位点),利用限制性酶切分析来确定反应的正确性和特异性。在双重LAMP反应体系中只添加一种模板,并分别对扩增产物进行一种限制性酶切。结果表明:创伤弧菌的扩增产物能够被BamHI限制性内切酶酶切,酶切得到的特异性条带见(图3-A1泳道);副溶血弧菌能够被PstI限制性内切酶酶切,酶切得到的特异性条带(见图3-B1泳道),证明了双重LAMP扩增结果的正确性。
实施例3
创伤弧菌和副溶血弧菌双重LAMP检测方法的灵敏度测定
1煮沸法提取DNA。
2为了检测LAMP方法的灵敏度,将提取创伤弧菌和副溶血弧菌基因组DNA进行10倍梯度稀释,共8个梯度,各浓度级分别取1μL作为模版,进行优化条件后的LAMP扩增,扩增产物进行2%琼脂糖凝胶电泳分析。
3分别取1μL作为PCR模板,F3/B3各1μl(20mM),Taq酶0.5μl,dNTPs(2.5mMeach)1μl,Taq10×buffer2.5μl,ddH2O18μl,进行PCR扩增,94℃预变性5min;94℃变性30s,57℃退火40s,72℃延伸40s,25个循环;72℃延伸5min。扩增产物进行2%琼脂糖凝胶电泳分析。
PCR方法对2种致病菌不同稀释度的菌悬液进行灵敏度的检测,结果发现:创伤弧菌最低均能检测到1.6x103CFU/ml,分别产生224bp的扩增条带(图4C);副溶血弧菌最低均能检测到1.6x104CFU/ml,分别产生207bp的扩增条带(图4D)。双重LAMP检测方法灵敏度高,创伤弧菌最低能够检测到16CFU/ml,是普通PCR方法的102倍;副溶血弧菌最低能够检测到16CFU/ml,是普通PCR方法的103倍。
实施例4
1用煮沸法制备鱼肠道弧菌(Vibrioichthyoenteri),创伤弧菌(Vibriovulnificus),副溶血弧菌(Vibrioparahaemolyticus),鳗弧菌(Vibrioanguillarum),哈维氏弧菌(Vibrioharveyi),大肠杆菌(E.coli),恶臭假单胞菌(Pseudomonasputida),藤黄微球菌(Micrococcusluteus),金黄色葡萄球菌(Staphylococcusaureus),无乳链球菌(Streptococcusagalactiae)的DNA模板,进行LAMP扩增,扩增产物进行2%琼脂糖凝胶电泳分析。结果只有创伤弧菌和副溶血弧菌有扩增条带(图5)。
实施例5
双重LAMP方法具体检测鱼体内的创伤弧菌和副溶血弧菌
1选取大菱鲆作为试验动物,通过腹腔注射方式分别人工感染2种弧菌。感染12h后,无菌操作,分别取血、肾、肝及脾组织,匀浆。匀浆液进行10倍梯度稀释,选择合适的稀释度涂布LB固体培养基平板,计数。剩余血、肾、肝及脾组织的匀浆液经煮沸,进行10倍梯度稀释,双重LAMP方法检测其最低检出率,扩增产物进行2%琼脂糖凝胶分析。
结果显示,双重LAMP方法可以在所有的感染组样品中,检测到2种弧菌的存在。向双重LAMP扩增反应管中加入1μl(1:10)SYBRGreenI,目测反应管中颜色的变化。结果发现,感染组的所有组织的反应管中均发生了阳性反应,颜色变为典型的绿色(+);对照组健康大菱鲆的所有组织的反应管中颜色变为橙色(—)(图6)。
2结合平板计数和双重LAMP方法,计算各细菌感染组中所取组织细菌检出率(图7)。结果表明:感染创伤弧菌的大菱鲆,脾、肾、肝和血液中创伤弧菌的最低检出率分别为21CFU/ml、25CFU/ml、19CFU/ml和23CFU/ml;感染副溶血弧菌的大菱鲆,脾、肾、肝和血液中创伤弧菌的最低检出率分别为24CFU/ml、21CFU/ml、18CFU/ml和27CFU/ml。

Claims (2)

1.可同时检测创伤弧菌和副溶血弧菌的双重LAMP检测方法,其特征在于包括下述步骤:
(1)根据GeneBank中已知创伤弧菌metalloprotease基因(GenBankaccessionno::U50548.1)和副溶血弧菌ompA基因(GenBankaccessionno::JTGT01000603.1)作为靶序列,通过PrimerExploreV4在线设计软件设计四条特异性引物,对于V.vulnificus,在BIP的B1c和B2之间添加BamHI酶切位点,在FIP的F1c和F2之间添加-TTTT-连接子;对于V.parahaemolyticus,在BIP的B1c和B2之间添加PstI酶切位点,在FIP的F1c和F2之间添加-TTTT-连接子,设计以下两组LAMP引物:
(2)配制LAMP反应体系
反应体系的终浓度为:总体系25μl,包括BstDNA聚合酶1μl(8U),10×BstDNABuffer2.5μl,PCR级甜菜碱4μl(5M),dNTPs(2.5mMeach)2.5μl,DNA模版1μl,FIP/BIP各1μl(0.8μM),F3/B3各1μl(0.2μM),加双蒸水使反应体系总体积达到25μl;
(3)LAMP反应体系扩增:将上述反应体系进行扩增反应,反应温度58℃到65℃,反应时间为45min到90min;
(4)扩增产物检测:2%琼脂糖凝胶电泳;产物加入SYBRGreenI,观察反应管中颜色变化。
2.如权利要求1所叙述的创伤弧菌和副溶血弧菌的双重LAMP检测方法,其特征在于步骤(3)中的最适反应温度是62℃,最适反应时间45min。
CN201510452614.8A 2015-07-28 2015-07-28 可同时检测副溶血弧菌和创伤弧菌的双重lamp方法 Active CN105219845B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510452614.8A CN105219845B (zh) 2015-07-28 2015-07-28 可同时检测副溶血弧菌和创伤弧菌的双重lamp方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510452614.8A CN105219845B (zh) 2015-07-28 2015-07-28 可同时检测副溶血弧菌和创伤弧菌的双重lamp方法

Publications (2)

Publication Number Publication Date
CN105219845A true CN105219845A (zh) 2016-01-06
CN105219845B CN105219845B (zh) 2018-10-30

Family

ID=54989111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510452614.8A Active CN105219845B (zh) 2015-07-28 2015-07-28 可同时检测副溶血弧菌和创伤弧菌的双重lamp方法

Country Status (1)

Country Link
CN (1) CN105219845B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105506121A (zh) * 2016-01-10 2016-04-20 中国疾病预防控制中心传染病预防控制所 用于副溶血性弧菌和创伤弧菌检测的一组核苷酸序列
CN105695570A (zh) * 2016-01-22 2016-06-22 青岛农业大学 一种可同时检测四种弧菌的多重lamp方法
CN106434900A (zh) * 2016-08-30 2017-02-22 上海生物信息技术研究中心 同时快速恒温检测创伤弧菌和霍乱弧菌的方法、引物及试剂盒
CN107475374A (zh) * 2017-08-01 2017-12-15 北京出入境检验检疫局检验检疫技术中心 一种精确定量检测食品中创伤弧菌的试剂盒及检测方法
CN109097484A (zh) * 2018-08-20 2018-12-28 天津农学院 一种用于检测鱼源创伤弧菌金属蛋白酶基因的引物以及荧光定量pcr检测方法
CN109880896A (zh) * 2019-03-13 2019-06-14 中山大学 一种用于快速鉴别细菌多粘菌素耐药基因mcr具体分型的多重LAMP试剂盒和检测方法
CN110093430A (zh) * 2019-01-30 2019-08-06 宁波大学 一种用于检测海水浴场致病菌的高通量定量检测试剂盒

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024776A1 (fr) * 1998-10-26 2000-05-04 Akira, Shizuo Nouveau recepteur du type toll et gene de ce recepteur
CN102732599A (zh) * 2011-04-12 2012-10-17 南开大学 双重聚合酶链反应方法检测海水样品中的创伤弧菌和副溶血弧菌
CN103525950A (zh) * 2013-10-23 2014-01-22 东南大学 一种用于鉴别cva6和非cva6肠道病毒的rt-pcr引物对及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000024776A1 (fr) * 1998-10-26 2000-05-04 Akira, Shizuo Nouveau recepteur du type toll et gene de ce recepteur
CN102732599A (zh) * 2011-04-12 2012-10-17 南开大学 双重聚合酶链反应方法检测海水样品中的创伤弧菌和副溶血弧菌
CN103525950A (zh) * 2013-10-23 2014-01-22 东南大学 一种用于鉴别cva6和非cva6肠道病毒的rt-pcr引物对及其应用

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105506121A (zh) * 2016-01-10 2016-04-20 中国疾病预防控制中心传染病预防控制所 用于副溶血性弧菌和创伤弧菌检测的一组核苷酸序列
CN105695570A (zh) * 2016-01-22 2016-06-22 青岛农业大学 一种可同时检测四种弧菌的多重lamp方法
CN106434900A (zh) * 2016-08-30 2017-02-22 上海生物信息技术研究中心 同时快速恒温检测创伤弧菌和霍乱弧菌的方法、引物及试剂盒
CN106434900B (zh) * 2016-08-30 2020-02-14 上海生物信息技术研究中心 同时快速恒温检测创伤弧菌和霍乱弧菌的方法、引物及试剂盒
CN107475374A (zh) * 2017-08-01 2017-12-15 北京出入境检验检疫局检验检疫技术中心 一种精确定量检测食品中创伤弧菌的试剂盒及检测方法
CN109097484A (zh) * 2018-08-20 2018-12-28 天津农学院 一种用于检测鱼源创伤弧菌金属蛋白酶基因的引物以及荧光定量pcr检测方法
CN110093430A (zh) * 2019-01-30 2019-08-06 宁波大学 一种用于检测海水浴场致病菌的高通量定量检测试剂盒
CN109880896A (zh) * 2019-03-13 2019-06-14 中山大学 一种用于快速鉴别细菌多粘菌素耐药基因mcr具体分型的多重LAMP试剂盒和检测方法

Also Published As

Publication number Publication date
CN105219845B (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
CN105219845A (zh) 可同时检测副溶血弧菌和创伤弧菌的双重lamp方法
Wood et al. Molecular genetic tools for environmental monitoring of New Zealand's aquatic habitats, past, present and the future
Chistoserdov et al. Bacterial communities associated with lesions of shell disease in the American lobster, Homarus americanus Milne-Edwards
CN101358246B (zh) 用于检测猪瘟病毒的lamp试剂盒及其制备方法
Chen et al. Development and evaluation of specific PCR and LAMP assays for the rapid detection of Phytophthora melonis
CN102747165B (zh) 一种应用环介导等温扩增技术快速检测罗非鱼无乳链球菌的试剂盒
Meng et al. Development of a loop-mediated isothermal amplification assay for rapid detection of iridovirus in the Chinese giant salamander
Caipang et al. Detection of Francisella piscicida in Atlantic cod (Gadus morhua L) by the loop-mediated isothermal amplification (LAMP) reaction
CN107287354B (zh) 一种环介导等温扩增法检测对虾白斑综合症病毒的方法
Sana et al. Phylogenetic and environmental DNA insights into emerging aquatic parasites: implications for risk management
Zeng et al. A one‐step molecular biology method for simple and rapid detection of grass carp Ctenopharyngodon idella reovirus (GCRV) HZ08 strain
Langaoen et al. Antibiotic-resistant bioluminescent vibrios from Philippine aquacultured chanos chanos and oreochromis niloticus
CN105154532B (zh) 一种大菱鲆弧菌和鱼肠道弧菌的双重lamp检测方法
CN105695570A (zh) 一种可同时检测四种弧菌的多重lamp方法
El-Matbouli et al. Rapid diagnosis of Tetracapsuloides bryosalmonae, the causative agent of proliferative kidney disease (PKD) in salmonid fish by a novel DNA amplification method, loop-mediated isothermal amplification (LAMP)
Ren et al. Sensitive and rapid identification of Vibrio vulnificus by loop-mediated isothermal amplification
CN101586157B (zh) 一种鱼类病原菌海豚链球菌分子诊断试剂盒及检测方法
Yang et al. Bacillus subtilis CK3 used as an aquatic additive probiotics enhanced the immune response of crayfish Procambarus clarkii against newly identified Aeromonas veronii pathogen
CN103468806A (zh) 扇贝致病性灿烂弧菌Vibrio splendidus的快速检测方法
Zhou et al. Development of a Loop‐Mediated Isothermal Amplification Assay for Rapid Detection of Trichosporon asahii in Experimental and Clinical Samples
CN104372092A (zh) 一种木香疫霉的lamp检测引物组合物及其lamp检测试剂盒和lamp检测方法
Fujiwara-Nagata et al. Distribution of Flavobacterium psychrophilum and its gyrA genotypes in a river
He et al. Seasonal influence of scallop culture on nutrient flux, bacterial pathogens and bacterioplankton diversity across estuaries off the Bohai Sea Coast of Northern China
CN103952495B (zh) 一种鳜鱼传染性脾肾坏死病毒的lamp检测方法
CN104278102A (zh) 一种沙门氏菌的四重pcr检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant