CN105204051B - 通用定位协议 - Google Patents

通用定位协议 Download PDF

Info

Publication number
CN105204051B
CN105204051B CN201510566317.6A CN201510566317A CN105204051B CN 105204051 B CN105204051 B CN 105204051B CN 201510566317 A CN201510566317 A CN 201510566317A CN 105204051 B CN105204051 B CN 105204051B
Authority
CN
China
Prior art keywords
terminal
time
gpp
cellular cell
wireless access
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510566317.6A
Other languages
English (en)
Other versions
CN105204051A (zh
Inventor
S·W·艾吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN105204051A publication Critical patent/CN105204051A/zh
Application granted granted Critical
Publication of CN105204051B publication Critical patent/CN105204051B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment

Abstract

本发明涉及通用定位协议。在一方面,可使用通用定位协议(GPP)来为不同接入类型支持基于卫星的定位方法和基于陆地的定位方法。终端可交换具有关于GPP所支持的定位方法和接入类型的第一信息的第一GPP消息。终端可交换具有关于定位方法和接入类型的第二信息的第二GPP消息。每个GPP消息可包括至少一个定位元素,并且每个定位元素可对应于特定定位方法。终端可基于第二信息获得对终端的定位估计。在另一方面,可基于对不同无线接入类型的蜂窝小区的测量来执行定位。在又一方面,可基于可应用于多种无线接入类型的公共时基将收到传输时间变换成转换时间。

Description

通用定位协议
本申请是国际申请日为2009年4月2日、国际申请号为PCT/US2009/039349、中国申请号为200980108366.8、发明名称为“通用定位协议”的专利申请的分案申请。
本申请要求皆被转让给本申请人且通过援引明确纳入于此的2008年4月2日提交的题为“Generic Positioning Protocol for Any Wireless Access(用于任意无线接入的通用定位协议)”的临时美国申请S/N.61/041,871和2008年5月23日提交的题为“GenericPositioning Protocol for Any Wireless Access(用于任意无线接入的通用定位协议)”的临时美国申请S/N.61/055,830的优先权。
背景
I.领域
本公开一般涉及通信,尤其涉及用于支持终端的位置服务(LCS)的技术。
II.背景
常常期望且在有时必须知晓例如蜂窝电话等终端的位置。术语“位置”和“定位”在本文中是同义的且被可互换地使用。例如,LCS客户端可能期望知晓终端的位置且可能与位置中心通信以便请求终端的位置。位置中心和终端随后可按照需要和可能根据定位协议交换消息,以获得终端的定位估计。位置中心随后可向LCS客户端返回定位估计。
已定义了若干定位协议来支持对终端的定位。这些定位协议包括由名为“第三代伙伴项目”(3GPP)的组织定义的无线电资源LCS协议(RRLP)和无线电资源控制(RRC)和由名为“第三代伙伴项目2”(3GPP2)的组织定义的C.S0022(也称为IS-801)。各种定位协议皆支持对正以或者特定无线接入类型(例如,GSM或WCDMA)或者相关无线接入类型集合(例如,CDMA20001XRTT和CDMA2000EV-DO)中的无线接入类型通信的无线终端的定位。对于各种定位协议,使用该定位协议所支持的程序和定位方法来找到以一些其它无线接入类型通信的无线终端的位置可能是很难或者是不可能的。可使用多种现有定位协议来支持对不同无线接入类型的定位。然而,部署这些定位协议要求可能大量的实现和测试。还可能需要进一步的实现和测试来支持针对新无线接入类型的新定位协议。
概要
本文描述了用于高效支持针对不同无线接入类型的多种定位方法的技术。在一方面,可使用通用定位协议(GPP)来为不同无线和/或有线接入类型支持基于卫星的定位方法和基于陆地的定位方法。GPP可简化实现并改善互操作性,并且还可提供其它优点。改善的互操作性可实现使用诸如公共定位协议和公共位置服务器之类的公共手段对更多数目的终端的定位以及更多数目的无线网络的支持。
在一种设计中,终端可交换关于GPP所支持的第一定位方法和第一接入类型的第一信息的第一GPP消息。GPP可支持多种定位方法和至少三种接入类型。终端可交换包括关于第一定位方法和第一接入类型的第二信息的第二GPP消息。例如,终端可从位置中心接收包括对位置信息的请求的第一GPP消息,并且可向位置中心发送包括所请求位置信息的第二GPP消息。每个GPP消息可包括至少一个定位元素。每个定位元素是对应于特定定位方法的并且可携带关于定位方法的信息。终端或位置中心可基于第二信息获得对终端的定位估计。
在另一方面,可基于对不同无线接入类型的蜂窝小区的测量来执行定位。在一种设计中,终端可获得第一无线接入类型的至少一个蜂窝小区的至少一个收到传输时间的第一集合。终端还可获得第二无线接入类型的至少一个蜂窝小区的至少一个收到传输时间的第二集合。终端可获得至少一个收到传输时间的第一集合和第二集合之间的至少一个时间差。终端可基于至少一个时间差获得对自身的定位估计。
在又一方面,可基于可应用于多种无线接入类型的公共时基将收到传输时间变换成转换时间。这可允许将不同无线接入类型的收到传输时间用于定位。终端可基于公共时基转换第一无线接入类型的至少一个蜂窝小区的至少一个收到传输时间的第一集合并获得至少一个转换时间的第一集合。终端还可基于公共时基转换第二无线接入类型的至少一个蜂窝小区的至少一个收到传输时间的第二集合并获得至少一个转换时间的第二集合。终端可使用转换时间进行定位或可向位置服务器发送转换时间,该位置服务器随后可基于转换时间推导出对终端的定位估计。
在以下进一步详细描述了本公共的各个方面和特征。
附图简述
图1示出了示例性网络部署。
图2示出了GPP消息的示例性结构。
图3、4和5示出了GPP会话的示例性消息流。
图6示出了从收到传输时间到转换时间的转换。
图7到17示出了GPP协商的示例性消息流。
图18示出了采用GPP执行定位的过程。
图19示出了采用多种无线接入类型的收到传输时间执行定位的过程。
图20示出了采用转换时间执行定位的过程。
图21示出了终端、无线电接入网络(RAN)、和位置服务器的框图。
详细描述
图1示出了示例性网络部署100。终端110可与3GPP RAN 120或3GPP2 RAN 122通信以获得通信服务。RAN也可被称为接入网、无线电网络、无线网络等。RAN 120可以是全球移动通信(GSM)网络、宽带码分多址(WCDMA)、通用分组无线服务(GPRS)接入网、长期演进(LTE)网络等。GSM、WCDMA和GPRS是通用移动电信系统(UMTS)的部分。LTE是3GPP演进分组系统(EPS)的部分。RAN 122可以是CDMA 1X网络、高速分组数据(HRPD)网络、超移动宽带(UMB)网络等。HRPD也可被称为演进数据最优化(EV-DO)。CDMA 1X和HRPD是cdma2000的部分。通常,RAN可支持任意无线接入类型,其中GSM、WCDMA、LTE、CDMA 1X、HRPD和UMB是一些示例。某些其他示例包括由IEEE 802.16标准族定义的WiMax和由IEEE 802.11标准族定义的WiFi。无线接入类型也可被称为无线电技术、无线电接入技术、空中链路接口等。
终端110可以是固定或移动的,且也可被称为移动站(MS)——在GSM和CDMA 1X中、用户装备(UE)——在WCDMA和LTE中、接入终端(AT)——在HRPD中、SUPL启用终端(SET)——在安全用户层面定位(SUPL)中、订户单元、站等。终端110可以是蜂窝电话、个人数字助理(PDA)、无线设备、无线调制解调器、无线路由器、膝上型计算机、遥测设备、跟踪设备等。终端110可与RAN 120或122中的一个或多个基站通信。终端110还可接收和测量来自一个或多个卫星192的信号并获得这些卫星的伪距测量。终端110还可测量来自RAN 120和/或RAN122中的基站的信号并获得对应这些基站的时基测量、信号强度测量、和/或信号质量测量。伪距测量、时基测量、信号强度测量和/或信号质量可被用来推导出终端110的定位估计。定位估计也可被称为位置估计、定位等。
卫星192可以是全球导航卫星系统(GNSS)的部分,该全球导航卫星系统可以是美国全球定位系统(GPS)、欧洲Galileo(伽利略)系统、俄罗斯GLONASS系统、或一些其它GNSS。GNSS也可被称为卫星定位系统(SPS)且典型地包括这样一种发射机系统:其中发射机被定位成使得诸实体能够至少部分地基于接收自这些发射机的信号来确定其在陆地上或上方的位置。如此的发射机通常发射用一组数个码片的重复伪随机噪声(PN)码作掩码操作的信号,并且可位于基于地面的控制站、用户装备和/或太空飞行器上。在具体示例中,此类发射机可位于地球轨道人造卫星(SV)上。例如,诸如GPS、Galile、Glonass或Compass(指南针)等GNSS的星座中的SV可发射用可与由星座中的其它SV所发射的PN码区分开的PN码(例如,如在GPS中对每个卫星使用不同PN码或者如在Glonass中在不同频率上使相同的码)作掩码操作的信号。本文所描述的这些技术可用于全球性系统(例如,GNSS)以及(i)区域性系统,比方诸如日本的准天顶卫星系统(QZSS)、印度的印度区域导航卫星系统、中国的北斗(Beidou)等,和/或(ii)与一个或多个全球和/或区域性导航卫星系统相关联或另外实现与之联用的各种扩增系统(例如,基于卫星的扩增系统(SBAS))。作为示例而非限制,SBAS可包括扩增系统,这些扩增系统提供积分信息、差分校正等,比方诸如广域扩增系统(WAAS)、欧洲对地导航覆盖服务(EGNOS)、多功能卫星扩增系统(MSAS)、GPS辅助Geo(地球同步轨道)扩增导航、或GPS和Geo扩增导航系统(GAGAN)和/或其他。因此,如本文所使用的,GNSS将被认为还包括一个或多个全球和/或区域性导航卫星系统和/或扩增系统的任何组合,且GNSS信号可包括GNSS信号、类GNSS信号和/或其他与一个或多个GNSS相关联的信号。
3GPP RAN 120可耦合至可支持对与RAN 120通信的终端的定位的服务移动位置中心(SMLC)/独立SMLC(SAS)124。SMLC 124可支持基于终端、终端辅助、以及基于网络的定位方法。定位指的是确定目标终端的地理位置的功能。
3GPP RAN 120还可与3GPP拜访公共陆地移动网(V-PLMN)130通信。V-PLMN 130可包括移动交换中心(MSC)132、服务GPRS支持节点(SGSN)134、移动性管理实体(MME)136、服务网关(S-GW)138、拜访网关移动位置中心(V-GMLC)142、拜访SUPL位置平台(V-SLP)144、和演进SMLC(E-SMLC)146。MSC 132可对针对其覆盖区内中的终端的电路交换呼叫执行交换功能。SGSN 134可针对分组交换连接和会话执行交换和路由功能。MME 136可执行各种控制功能,诸如移动性管理、网关选择、认证、承载管理等。S-GW 138可执行与终端的网际协议(IP)数据传输有关的各种功能,诸如数据路由和转发、移动性锚定等。V-GMLC 142可执行各种功能以支持位置服务、与外部LCS客户端接口、以及提供诸如订户隐私、授权、认证、计帐等服务。V-SLP 144可包括SUPL位置中心(SLC)以及可能的SUPL定位中心(SPC)。SLC可执行用于位置服务的各种功能、协调SUPL的操作、以及与SET交互。SPC可支持对SET的定位和辅助数据到SET的投递,并且还可负责供定位计算用的消息和程序。E-SMLC 146可支持对接入LTE的终端的位置服务。
V-PLMN 130可与终端110对其具有服务预订的归属PLMN(H-PLMN)150通信。H-PLMN150可包括归属GMLC(H-GMLC)152、归属SLP(H-SLP)154、网关GPRS支持节点(GGSN)/分组数据网络网关(PDN GW)156和交换机158。交换机158可接收来自LCS客户端(例如,LCS客户端190)的请求并可将每个请求路由至或者H-GMLC 152或者H-SLP 154以供处理。GGSN/PDN GW156可执行各种功能,诸如对终端的数据连通性的维护、IP地址分配等。
SMLC/SAS 124、MSC 132、SGSN 134、MME 136、S-GW 138、V-GMLC 142、E-SMLC 146、H-GMLC 152和GGSN/PDN GW 156是由3GPP定义的网络实体。V-SLP 144和H-SLP 154是由开放移动联盟(OMA)定义的网络相关实体。GGSN/PDN GW 156可如示例性网络部署100中所示地位于3GPP H-PLMN 150中,或者在替换性网络部署中可位于3GPP V-PLMN 130中。
3GPP2RAN 122可与3GPP2V-PLMN 160通信。V-PLMN 160可包括MSC 162、分组数据服务节点(PDSN)164、定位实体(PDE)170、拜访移动定位中心(V-MPC)172、和V-SLP 174。PDSN 164可对分组交换连接和会话执行交换和路由功能。PDE 170可支持对与V-PLMN 160通信的终端的定位。V-MPC 172可执行各种功能以支持位置服务、与外部LCS客户端接口、以及提供诸如订户隐私、授权、认证、计帐等服务。
V-PLMN 160可与H-PLMN 180通信。H-PLMN 180可包括H-MPC 182、H-SLP 184和交换机186。交换机186可接收来自LCS客户端(例如,LCS客户端190)的请求并可将每个请求路由至或者H-MPC 182或者H-SLP 184以供处理。MSC 162、PDSN 164、PDE 170、V-MPC 172和H-MPC 182是由3GPP2定义的网络实体。V-SLP 174和H-SLP 184是由OMA定义的网络相关实体。
图1示出了可包括在每个PLMN中的一些网络实体。每个PLMN还可包括可支持其他功能和服务的其他网络实体。
定位协议可被用来协调和控制终端的定位,该终端可以是移动的且其定位可能是LCS客户端或用户所要求的。定位协议通常定义:(i)可由正被定位的终端和位置服务器执行的程序;以及(ii)终端与位置服务器之间的通信或信令。位置服务器可协调并指导程序并可将有关的信息(例如,定位估计)从一个实体转移至另一实体。位置服务器可以(i)驻留在终端归属网络或拜访网络中或(ii)远离终端并可经由无线和/或例如因特网的有线网络访问。
一些现有定位协议包括RRLP、RRC和IS-801。这些定位协议支持两种主要的定位方法:(i)基于卫星的定位方法,诸如GPS和辅助GPS(A-GPS)以及(ii)利用服务网络中基站对之间的观测时间差(OTD)的基于陆地的定位方法。GSM的OTD方法被称为增强型观测时间差(E-OTD),WCDMA的OTD被称为观测抵达时间差(OTDOA),而cdma2000的OTD方法可被称为高级前向链路三边测量(A-FLT)。每种定位协议可针对单个无线接入类型支持一种或多种基于卫星的定位方法和一种或多种基于陆地的定位方法。例如,RRLP针对GSM和GPRS接入支持A-GPS和E-OTD,RRC针对WCDMA支持A-GPS和OTDOA,而IS-801针对cdma2000支持A-GPS和A-FLT。
在现有定位协议中的A-GPS支持可以是类似的。因此,每个现有定位协议能够支持任何改动有限的RAN中的A-GPS。然而,在现有定位协议中OTD支持可能是不同的,因为辅助数据和定位测量可能是针对特定无线类型定义的,且可能不能支持其他无线接入类型中的OTD。具体而言,已开发了各种现有定位协议来具体地解决特定无线接入类型的OTD。
新的无线接入类型被持续开发出并被部署。新近定义的一些无线接入类型包括IEEE 802.16(WiMax)、IEEE 802.11(WiFi)、LTE和UMB。可为每一种新的无线接入类型定义新的定位协议以支持对由该无线接入类型的RAN服务的终端的定位。然而,每种新的定位协议可能需要相当的工作量和成本来进行标准化、实现、测试和部署。
在一个方面,通用定位协议(GPP)可被用来为不同无线接入类型支持诸如A-GPS和OTD的定位方法。GPP可支持现有定位方法,诸如E-OTD、OTDOA、A-FLT、增强型蜂窝小区身份(E-CID)等。GPP还可随着开发出的新无线接入类型支持这些新无线接入类型的定位。GPP也可被更新以支持对所有所支持无线接入类型的新定位能力(例如,用于GLONASS、现代化GPS(mGPS)、准天顶卫星系统(QZSS)等)。GPP也可支持有线接入,例如,游牧IP接入。GPP可或者代替或者扩增诸如RRL、RRC和IS-801等现有定位协议。
GPP可支持用户层面和控制层面解决方案。用户层面或控制层面解决方案可包括用以支持位置服务和定位的各种网络元件、接口、协议、程序、以及消息。在控制层面解决方案中,支持位置服务和定位的消息可作为在网络实体之间以及网络实体与终端之间通常用网络专用协议、接口、和信令消息传递的信令的部分来携带。在用户层面解决方案中,支持位置服务和定位的消息可作为在网络实体与终端之间通常用诸如TCP和IP等标准数据协议传递的数据的部分来携带。在控制层面解决方案中,通常对每种无线接入类型使用专用定位协议。例如,RRLP可被用于GSM、RRC可被用于WCDMA、而IS-801可被用于cdma2000。在用户层面解决方案中,定位协议可被用于一种以上的无线接入类型但是受到一些限制。例如,在SUPL用户层面解决方案中,RRLP可被用于GSM而没有限制,以及用于WCDMA以支持A-GPS和A-GNSS但不用以支持OTDOA。相反,GPP可支持多种无线接入类型和多种位置解决方案的定位而没有限制。例如,GPP可支持诸如来自OMA的SUPL、来自3GPP2的X.S0024、以及来自CDMA开发组(CDG)的V1和V2等用户层面解决方案的定位。GPP还可支持诸如来自3GPP的3GPP TS23.271、TS 43.059和TS25.305以及来自3GPP2的IS-881和X.S0002等控制层面解决方案的定位。GPP还可通过诸如SUPL、RRC、GSM无线电资源(RR)、CDMA 1X数据突发、HTTP、TCP/IP等各种协议来传输。
GPP可支持针对终端的各种定位方法。GPP可包括“内部”定位方法,这些“内部”定位方法是为GPP设计的定位方法并且可能被标准化为GPP的部分或标准化为GPP的扩展。GPP还可包括“外部”定位方法,这些“外部”定位方法是可由外部源开发并结合到GPP中的定位方法。GPP可通过后向兼容演进来支持新定位方法和新无线接入类型。GPP可与SUPL以及其它用户层面和控制层面解决方案一起操作。GPP可在进行极少改变或不进行改变的情况下结合现有定位方法。GPP可支持诸如辅助数据、测量、能力协商等现有通用能力。GPP还可支持混合定位、初始粗略定位等。
在一种设计中,GPP中的定位方法可以模块化的方式彼此分开和独立地来定义。这可允许添加新定位方法和/或增强现有定位方法而不影响GPP操作或其他定位方法。不同定位方法之间刚性守旧的关联可得以避免。
每种定位方法可在适当的时候支持终端辅助、基于终端、和独立模式。GPP可提供公共框架以在更简单的实现下支持内部和外部定位方法,并且可灵活地允许每种定位方法的高效实现。
图2示出了GPP消息200的结构/格式的示例性设计。在此设计中,GPP消息200可包括GPP版本字段210、会话标识符(ID)字段222、结束会话指示符字段214、和K个定位元素216a到216k,其中K≥0。通常,GPP消息可包括用于其他信息的不同和/或附加元素和字段。ASN.1和/或XML(可扩展标记语言)编码可被用于GPP消息200的元素。
GPP版本字段210可指示哪个版本的GPP正被使用,并且可被包括以供进行GPP会话的两个实体关于相同GPP版本的使用进行协商。发起实体可在其发送的第一GPP消息中将GPP版本设为所支持的最高版本V。接收实体可在GPP答复中返回其所支持的最高版本U——遵从U≤V。经协商的GPP版本可能是两个实体所支持的两个最高版本中的较低者。支持新(较高)GPP版本的实体还应当支持所有较低GPP版本以确保与仅支持较低版本的实体的反向兼容性。GPP版本可主要指示支持哪些定位方法,这可简化对较低版本的支持。
会话ID可标识GPP会话。每个GPP会话可被指派唯一的会话ID。两个实体之间的多个GPP会话可被支持并且可由不同的会话ID来标识。会话ID也可允许对例如归因于一个实体异常中断或丢失GPP会话的失步状况的检测。GPP会话在传输层改变的情况下也可继续。
结束会话指示符可指示发送实体是否已完成GPP会话。如果是,则接收实体不应当继续GPP会话,并且可在起因不严重的情况下开始新的GPP会话。
图2还示出了GPP消息200内定位元素216的结构的设计。定位元素216可包括定位方法ID字段220、定位方法版本(Ver)字段222、引用ID字段224、元素类型字段226、数据类型字段228、和定位方法协议数据单元(PDU)字段230。定位方法ID可指示特定定位方法,例如A-GPS、E-OTD、OTDOA、A-FLT等。将来的定位方法可易于通过指派新的定位方法ID来添加。不同类别的定位方法可通过保留不同的定位方法ID值集合或范围来区分开。这些不同类别可包括:(i)由认可国家和国际标准主体(例如,3GPP、3GPP2、IETF、IEEE、ITU等)定义的一种或多种定位方法类别;以及(ii)由诸如具体无线运营商或无线装备制造商等非标准组织定义的一种或多种其他定位法方法类别。这些定位方法版本可指示定位方法的版本并且可用于版本协商。引用ID可支持请求与响应的关联,例如,对请求的响应可包括与请求相同的引用ID。
元素类型可指示定位元素的用途。可支持多个类,且一个类中的消息可调用相同类中的响应。例如,元素类型可指示定位元素是否对应:(i)第一类中的“请求”、“最后响应”或“非最后响应”;(ii)第二类中的“提供”或“确认”;或(iii)第三类中的“异常中断/差错”。对于第一类,“最后响应”或“非最后响应”可仅在对“请求”答复时被发送。当响应被分段时,一个或多个“非最后响应”实例可先于“最后响应”以支持分段。对于第二类,“提供”可任选地在响应中请求“确认”。通过分段,多个“提供”实例可被发送,例如,并且针对每个“提供”或仅针对最后“提供”发送“确认”。对于第三类,“异常中断/差错”可代替“最后响应”、“非最后响应”或“确认”被发送。数据类型可指示在定位元素中发送的信息类型,例如,辅助数据、位置信息(例如测量、定位估计等)、定位方法的能力、差错信息等。在一种设计中,在每个定位元素中仅发送一种数据类型。定位方法PDU可包含对于元素类型、数据类型和定位方法而言唯一的数据。
GPP可支持内部、外部和公共定位方法。内部定位方法可针对GPP独占地或与之相关联地定义,例如,可由诸如定义GPP或持有对GPP的定义的标准发展组织(SDO)等相同组织来定义。具体GPP版本V可定义应当使用内部定位法方法的哪个版本P。晚于P的版本在比V晚的GPP版本中是有效的。早于P的版本可GPP版本V中继续有效——如果其允许该定位方法的话。内部定位方法可适用于涵盖多种无线接入类型的定位方法(例如,A-GPS、A-GNSS)、新定位方法等。
外部定位方法可被定义成于GPP或可能的其他定位协议联用。外部定位方法可利用定位元素结构,且可包括未针对GPP定义的附加元素类型和/或数据类型。对外部定位方法的源定义(例如,消息和参数表、ASN.1、XML、程序等)可由诸如没有定义GPP或持有对其的定义的国家或国际SDO等组织来创建。对外部定位方法可如何与GPP联用的定义(例如,包括对GPP定位元素结构中定位方法ID、定位方法PDU内容、定位方法元素类型、和定位方法数据类型的定义)可通过显示这些GPP分量与针对外部定位方法所定义的等效分量之间的对应来实现。可通过采用对例如针对外部定位方法定义的ASN.1和XML数据类型的合适引用来协助此映射过程。对于具体GPP版本V,映射可针对以下来定义:(i)仅一个具体外部定位方法版本U,这可意味着GPP版本V仅可与外部定位方法的版本U联用;或(ii)早于和/或晚于U的外部定位方法版本。外部定位方法可适用于为特定无线接入类型或相关无线接入类型族开发的定位方法。外部定位方法也可适用于例如E-OTD、AFLT、A-GPS等现有定位方法而无需进行过多改动。
公共定位方法(CPM)可被用于扩增其他定位方法,并且可拥有其自身的定位方法ID。GPP消息中的CPM定位元素可按以下方式来使用。CPM能力PDU(即,具有指示能力的数据类型的CPM定位元素)可:(i)例如经由定位方法ID列表指示哪些其他定位方法可被设备支持;以及(ii)指示设备的其他公共能力,例如该设备可支持的同时定位方法调用的最大数目。CPM辅助数据PDU(即,具有指示辅助数据的数据类型的CPM定位元素)可向中断输送一般辅助数据,例如,终端的近似位置、近似绝对时间等。CPM位置信息PDU(即,具有指示位置信息的数据类型的CPM定位元素)可输送由终端使用其自身资源获得的位置信息,例如,独立定位估计、速度、加速度、传感器测量、定位估计中的相对变动等。CPM PDU还可输送一种或多种其他定位方法的基于终端的定位结果,例如,在终端自身使用一些其他基于终端的定位方法获得定位估计的情况下。此CPM PDU可避免对支持其他定位方法的GPP定位元素的单独的基于终端的位置请求和基于终端的位置响应的需要。专属于其他定位方法的能力、辅助数据和位置信息仍可在那些定位方法中得到支持,并且可不被CPM输送。还可开发新定位方法来支持各种无线接入类型。
图3示出了GPP会话的消息流300的设计。位置服务器148——其可以是图1中的SLP、GMLC和MPC中的任一者——可向终端110发送具有GPP版本2、会话ID 1、以及N个定位元素的GPP消息,其中N≥1。终端110可支持GPP版本1而不支持GPP版本2,并且可通过发送具有GPP版本1、会话ID 1和M个定位元素的GPP消息来响应,其中M≥1。位置服务器148可选择较低的GPP版本1且可发送具有GPP版本1、会话ID 1和P个定位元素的GPP消息,其中P≥1。终端110可用具有GPP版本1、“结束会话指示符”集合、和Q定位元素的GPP消息来作响应,其中Q≥1。每个GPP消息中的定位元素可携带供定位方法用的任何信息。
图4示出了采用内部GNSS定位方法的GPP会话的消息流400的设计。位置服务器148可向终端110发送具有GPP版本1、会话ID 1和一个定位元素的GPP消息。此定位元素可指示版本1的GNSS定位方法,并且可具有设为A的引用ID、设为“请求”的元素类型、和设为“能力”的数据类型。定位元素可携带可能带有位置服务器148的能力的PDU。终端110可支持版本1的GNSS定位方法,并且可在随后通过发送具有GPP版本1、会话ID 1和两个定位元素的GPP消息来响应。第一定位元素可响应于由位置服务器148发送的在前GPP消息中所包括的定位元素,并且可包括对应GNSS定位方法的终端能力。第二定位元素可请求GNSS定位方法的辅助数据。位置服务器148可发送具有GPP版本1、会话ID 1和两个定位元素的GPP消息。第一定位元素可包括由终端110在在前GPP消息中所请求的GNSS辅助数据。第二定位元素可请求使用GNSS定位方法获得的位置信息。终端110可通过发送具有GPP版本1、会话ID1、“结束会话指示符”集合、和一个定位元素的GPP消息来响应。此定位元素可包括由位置服务器148在在前GPP消息中请求的GNSS位置信息(例如,GNSS卫星测量)。
图5示出了采用GNSS和E-CID定位方法的GPP会话的消息流500的设计。GPP会话使用E-CID获得终端的初始粗略位置并在稍后使用GNSS获得终端的准确位置。位置服务器148可向终端110发送具有GPP版本1、会话ID 1和两个定位元素的GPP消息。第一定位元素可指示版本1的E-CID定位方法并可提供位置服务器148的E-CID能力。第二定位元素可请求E-CID的位置信息。终端110可通过发送具有GPP版本1、会话ID 1、和包含所请求的E-CID的位置信息(即,附近基站的信号测量)的一个定位元素的GPP消息。位置服务器148可发送具有GPP版本1、会话ID 1和两个定位元素的GPP消息。第一定位元素可指示版本1的GNSS定位方法,并可提供GNSS辅助数据。第二定位元素可请求GNSS定位方法的位置信息。终端110可通过发送具有GPP版本1、会话ID 1、“结束会话指示符”集合、和一个定位元素的GPP消息来响应。此定位元素可包括使用GNSS定位方法获得的、由位置服务器148在在前GPP消息中请求的位置信息。
E-CID定位方法可使得位置服务器能够请求与可见基站相关联的测量信息并使得终端能够提供该信息。由位置服务器发送的E-CID能力可通知终端位置服务器更希望接收的信息(例如,特定类型的信号测量)。由终端发送的E-CID能力可通知位置服务器该终端可提供的E-CID相关信息。
GNSS定位方法可支持所有类型的GNSS,包括传统GPS L1C/A、GLONASS、Galileo、现代化GPS(mGPS)、QZSS、EGNOS、WAAS等。GPP中的GNSS定位方法可与RRLP、RRC或IS-801中的GNSS定位方法相同或基于它们。
I.混合和通用OTD–通用精细时间辅助(FTA)
RAN中的基站可支持一个或多个蜂窝小区或扇区。在3GPP中,术语“蜂窝小区”可指代基站的覆盖区或服务该覆盖区的基站子系统,这取决于使用该术语的上下文。在3GPP2中,术语“扇区”或“蜂窝小区-扇区”可指代基站的覆盖区或服务该覆盖区的基站子系统。出于清晰起见,在以下描述中使用3GPP蜂窝小区的概念。
在另一方面,混合OTD定位可被用来基于不同无线接入类型的蜂窝小区之间——例如GSM与WCDMA蜂窝小区之间、CDMA 1X或HRPD蜂窝小区与GSM或WCDMA蜂窝小区之间——的OTD导出对终端的定位估计。与诸如E-OTD、OTDOA和A-FLT等局限于测量一种特定无线接入类型的蜂窝小区之间的OTD的OTD方法相比,混合OTD定位可增加蜂窝小区——终端可测量这些蜂窝小区之间的OTD——的数目。测量更多蜂窝小区之间的OTD可提高准确度和可靠性,且还可减少响应时间,因为其可以不再需要花费时间搜索和测量来自遥远蜂窝小区的信号。
不同无线接入类型的蜂窝小区通常使用不同的传输时基。每种定位协议(例如,RRLP、RRC或IS-801)随后可基于该定位协议所支持的无线接入类型的传输时基来定义OTD测量和OTD辅助数据。例如,RRLP基于GSM时间单位定义OTD测量,该GSM时间单位可包括不适用于其他无线接入类型的帧数目和比特数目。
GPP可以若干方式支持用于无线接入类型的组合的混合OTD以及用于不同无线接入类型的通用OTD。在一种设计中,可在终端110处将不同无线接入类型的蜂窝小区的时间测量与公共时刻对准。终端110可获得一个或多个RAN中诸蜂窝小区的收到传输时间集合。每个收到传输时间可指示由终端110在公共时刻接收到的特定传输信号。例如,对于GSM,每个收到传输时间可提供GSM帧号、比特号、和终端110刚接收到的比特分数。收到传输时间集合可被给定为{T1,T2,…,TK},其中Tk是对应蜂窝小区k的收到传输时间,其中1≤k≤K。Tk可用适用于蜂窝k的传输单位(例如,GSM帧和比特)来表达。所有蜂窝小区的收到传输时间可在终端110处被对准到公共时刻T。例如,终端110可在终端110的时刻Tx测量对应蜂窝小区k的收到传输时间Tkx。终端110随后可将以蜂窝小区k所支持的无线接入类型所用的时间单位表达的时间差(T–Tx)加到测得传输时间Tkx上,以获得在终端110的时刻T对应蜂窝小区k的收到传输时间Tk
终端110还可以其他方式获得在公共时刻T对应不同蜂窝小区的收到传输时间。例如,终端110可测量对应蜂窝小区的若干收到传输时间并可执行外推或内插以获得在时间T对应蜂窝小区的收到传输时间。通常,终端110可基于绝对或参考时基——其可由任何连续时间基来提供——对一次传输时间测量执行外推、内插、或简单的校正。例如,绝对时基可由终端110处的内部时钟、基站或卫星所提供的外部时钟、锁定到外部时钟源的内部时钟等提供。
在第一种设计中,每种无线接入类型的蜂窝小区的收到传输时间可以对应该无线接入类型的时间单位给出。例如,GSM蜂窝小区k的收到传输时间Tk可按GSM帧号、比特号、比特分数来给定。
收到传输时间集合{T1,T2,…,TK}可被传递给位置服务器。每个传输时间可用应用于相关联无线接入类型的时间单位来表达。GPP随后可提供不同类型的参数来输送每种无线接入类型的收到传输时间。为了使GPP支持新的无线接入类型,可将新类型参数添加到GPP定义以输送新类型无线传输时基。位置服务器可使用已知位置处的固定位置测量单元(LMU)获得不同基站之间的真实(或绝对)时间差(RTD)。LMU可测量OTD并将其提供给可从其计算RTD的位置服务器。通过使用基站的已知位置,位置服务器可使用OTD和RTD来计算终端110的定位。位置服务器还可以其他方式从终端所提供的OTD获得基站的RTD和位置。
在第二种设计中,收到传输时间集合{T1,T2,…,TK}可被终端110以某一公共形式发送给网络服务器。例如,每个收到传输时间可被转换成基于公共时间单位(例如,秒)的传输时间。
由于RTD将不是恒定的,因此对于支持不同传输时基单位且具有不同循环周期的诸无线接入类型,直接获得不同无线接入类型的蜂窝小区的收到传输时间之间有意义的OTD也许是不可能的。然而,恒定RTD和有意义的OTD可通过将每个蜂窝小区的传输时间转换成新转换时基——其采用所有接入类型之间公共的时间单位和循环周期两者——来获得。这种转换可如下执行:
步骤1:选取可适于所有无线接入的不同时间单位和不同循环周期进行转换的公共时间单位U和公共循环周期T。使用公共时间单位来表达所有时间测量,例如,转换时间、真实蜂窝小区时基、和绝对时间。这可以是简单变换。例如,GSM的传输时间可被表达为GSM帧的数目x加GSM比特的数目y。到公共时间单位z的变换可通过计算(xF+yB)来实现,其中F是以z为单位计的GSM帧持续时长,而B是以z为单位计的GSM比特持续时长。
步骤2:通过在某个绝对时间的精确或估计值A(例如,基于GPS或基于由特定蜂窝小区传输输送的绝对时间信息估计的)上将每个蜂窝小区的真实时间R与该蜂窝小区的特定转换时间C关联来将该蜂窝小区的真实时基与该蜂窝小区的预期转换时基对准。
步骤3:对于继R之后的任何真实蜂窝小区时间R*,将对应真实时间R*的转换时间C*计算为C*=C+(R*-R)。转换时间C*是真实时间R*基于公共时间单位和公共循环周期的表示。此计算可包括如以下所描述的不同循环周期对真实时间和转换时间的影响。
图6示出了根据以上所描述的步骤的一个蜂窝小区k的真实时间到转换时间的转换。蜂窝小区k的真实时间具有循环周期τ,该循环周期τ可以是任何时长,且可取决于无线接入类型。转换/公共时间具有循环周期T,该循环周期T可比τ长(如图6中所示)或比τ短。出于简便起见,图6假定在步骤2中,在绝对时间A=t00,真实时间R=0与公共时间C=0相关联(即,在步骤2中C=0与R=0相一致)。真实时间的每个连续循环周期(nτ)上的绝对时间可被表达为tnn,其中tn是真实时间(nτ)(即,在真实时间的第(n+1)个循环周期的开始处)上的估计绝对时间,而εn是tn(例如,位置服务器或终端110对tn的估计)中的误差。
真实时间R*可出现在真实时间R之后的任何时间,且可按照真实时基给定为R*=n·τ+x,其中n是整数部分(真实时基的循环周期的数目)而x是分数部分(0≤x<τ)。真实时间R*可出现在绝对时间t+ε,其中t是真实时间R*的估计绝对时间(例如,如终端110或位置服务器所见的)而ε是t(例如,终端110或位置服务器对t的估计)中的误差。与真实时间R*相对应的转换时间C*可按照公共时基被给定为C*=N·T+X,其中N是整数部分(公共时基的循环周期的数目)而X是分数部分(0≤X<T)。步骤3找到与真实时间R*相对应的转换时间参数N和X。
真实时间R*可被表达为:
R*=n·τ+x=N·T+X=(t+ε)-(t00)。 式(1)
转换时间的整数和分数分量可被给定为:
以及 式(2)
X=(n·τ+x)-N·T。 式(3)
整数分量n可能因真实时基的循环特征而不是已知的(例如,可能没有被直接观测到)。然而,可如下从真实时间R*处的估计绝对时间t获得n:
n=Round{[(t-t0)+(ε-ε0)-x]/τ}。 式(4)
式(4)中的舍入是取最接近整数。
如果|(ε-ε0)|<τ/2,则n的正确值可通过在式(4)中假定(ε-ε0)=0来获得。可保证对于具有显著超过绝对时间的估计误差的循环周期τ的任何真实时基,这是成立的。绝对时间可由此允许终端110在获得分数部分x之时确定真实时间R*的整数部分n。转换时间参数N和T随后可使用式(2)和(3)来获得。
可基于合适的时间单位U和循环周期T——其可等于某一整数个时间单位U——来定义公共时基。在具有某一内部时钟的意义上,终端110或位置服务器不维护公共时基。终端110可测量每个蜂窝小区的真实时间(例如,使用绝对时间来助益此测量)。终端110或位置服务器可将真实蜂窝小区时间转换成可以公共时基的时间单位U来表达的转换时间。
根据(2)和(3)来固定真实时基与转换时基之间的关联可意味着真实时基中的任何漂移(例如,其中实际循环周期略大于或小于定义值τ)也将在转换时基中得到反映(例如,导致转换循环周期略大于或小于定义值T)。由于绝对时间不漂移,因此使用式(4)获得n值会在真实蜂窝小区时间的累积漂移达到τ/2之际引入误差。为了避免这种情形,可通过在步骤2中获得与真实时间R的最新值以及相关联的转换时间C的最新值相对应的绝对时间A的新值来定期重新估计绝对时基A与真实时基R的关联。
可测量一个蜂窝小区k的真实时间R*并如以上所描述地将其变换成转换时间C*(或N和X)。可在相同的时刻由终端110测量蜂窝小区集合的真实时间并以类似方式将其变换成转换时间。转换时间可被用来获得相同或不同无线接入类型的蜂窝小区之间的OTD或RTD。具体而言,由于转换时间共用相同的时间单位和相同的循环周期T,因此OTD和RTD可随时间保持不变,除因时间漂移或正测量其的任何终端的位置的改变而造成的改变之外。这些OTD和RTD随后可被用来以与针对相同无线接入类型的蜂窝小区获得的OTD和RTD相同方式来估计位置。
对于支持多个LMU和终端的位置服务器,步骤2中的对准对于所有终端和LMU而言应当是相同的,以从不同终端和LMU处获得一致的OTD和RTD。这可在位置服务器执行转换的情况下达成,因为其可在步骤2中对每个蜂窝小区使用相同对准。如果终端和LMU执行这些转换,则位置服务器可通知每个终端和每个LMU使用怎样的对准(例如,通过提供每个蜂窝小区的R、C和A)。或者,终端或LMU可通知位置服务器其已使用哪种对准,这在随后可允许位置服务器将其从终端或LMU处接收到的转换时间或OTD调节至该位置服务器所用的对准。在一种设计中,可为每种无线接入类型定义固定的协定,这将定义R、C和A的值并由此避免不得不传达它们。为了允许步骤2中的周期性对准以避免如以上所描述的由蜂窝小区时基漂移引入的误差,协定可定义公共时间C在其上从零重新开始的绝对时间序列A1、A2、A3等(例如,每隔一个小时)。随后可测量每个绝对时间Ak上的真实蜂窝小区时基Rk或根据对当前蜂窝小区时间和当前绝对时间的认知来计算它。通过使用这种协定,向位置服务器提供OTD或转换时间的终端或LMU可以只是在绝对时间有一些模糊度的情况下指示已对其发生对准的绝对Ak(例如,在紧接着绝对时间边界之后的时间),否则将不指示。
在另一种设计中,终端110可获得一种或多种无线接入类型的蜂窝小区{1,2,3,…,K}的收到传输时间集合{T1,T2,…,TK}。这些收到时间可不如以上所描述地被转换成公共时间和公共循环周期。终端110还可获得如终端位置处所见的且针对每种无线接入类型所定义的蜂窝小区的时间漂移率{R1,R2,…,RK}。Rk是与蜂窝小区k相关联的信号相对于没有漂移的某一其他信号或诸如GPS等时间源的时基漂移率。终端110还可获得准确度信息,例如误差标准差{S1,S2,…,SK},其中Sk是Tk中误差的标准差。
终端110可向位置服务器发送收到传输时间(以及可能的时间漂移率和/或准确度信息)。对于以上所描述的第一种设计,每个传输时间可用适用于相关联无线接入类型的时间单位来表达。GPP可支持不同无线接入类型的不同时间单位,并且可根据需要为新无线接入类型定义新的时间单位。对于以上所描述的第二种设计,每个收到传输时间可使用适用于所有或众多无线接入类型的公共时间单位和公共循环周期来表达。对于图2中所示的GPP消息格式,终端110可生成一个或多个位置信息PDU,这些位置信息PDU可携带一种或多种无线接入类型的GNSS时间和蜂窝小区的时间元素。每个蜂窝小区时间元素可包括蜂窝小区ID、收到传输时间Tk、时间准确度Sk等。终端110可向位置服务器发送位置信息PDU。
位置服务器可基于这些蜂窝小区的收到传输时间导出不同蜂窝小区之间的OTD。如果终端110根据每一种无线接入技术提供收到传输时间,则位置服务器可如以上所描述地转换收到传输时间。位置服务器还可获得已知固定位置处的LMU测量的OTD,并且可使用来自这些LMU的OTD计算不同蜂窝小区之间的RTD。位置服务器可基于OTD和RTD以及蜂窝小区的已知位置来计算对终端110的定位估计。位置服务器还可例如基于来自各个终端的OTD以其他方式获得诸蜂窝小区的RTD和位置。
II.通用定位模块
在另一方面,可针对每种不同的定位方法定义通用定位模块(GPM)以作为支持该定位方法的参数集合。GPM可包含用于支持定位方法的信令信息并且可被任何定位协议结合——例如被RRLP、RRC和IS-801-B结合——来支持该定位方法。相同的信令信息可被用来跨不同定位协议支持定位方法,并且可以通用的。这会使得新定位方法可使用现有定位协议来支持且具有公共信令的效果。还可从添加到现有定位协议的GPM集合创建新GPP(以支持这些GPM所定义的所有定位方法)。
可针对所有GPM定义公共GPM结构以简化新GPM的创建。公共GPM结构可与图2中所示的GPP定位元素相同或相类似,并且可包括图2中所示的字段。对于诸如其消息类型通常匹配于元素类型的RRLP和RRC定位协议,可省去引用字段ID和元素类型。GPM元素类型由此可从RRLP或RRC消息类型推断出。例如,RRLP测量定位请求可对应于请求GPM元素。使用GPP定位元素定义GPM可允许将GPM用于现有定位协议以及GPP两者。
可将新参数添加到RRLP、RRC、IS-801等中的现有消息以包含GPM从而支持一特定定位方法。此所添加的GPM参数的内容可包括定位方法ID、定位方法版本、数据类型、和定位方法PDU。GPM参数在其被添加的每个消息中可以是任选的,并且可在消息中被重复以支持多种定位方法。
III.SUPL的GPP定位
GPP可被用于支持SUPL的定位。当前定义了SUPL 2.0,且可定义新版本的SUPL(例如,SUPL 3.0)。GPP可如下被SUPL 2.0所支持。在第一种设计中,新定位方法指示符可在SUPL 2.0成为OMA发布版(enabler release)之前被定义以便显式定义GPP将来的使用。在另一种设计中,SUPL 2.0可协商RRLP或IS-801中任一者的使用。GPP随后可被嵌入RRLP或IS-801且可按如下所描述地协商。H-SLP可从其自身的数据确定可能支持GPP的终端。例如,H-SLP可从先前SUPL会话知晓终端能力或可记录GPP支持。
IV.GSM和GPRS控制层面解决方案的GPP定位
GPP可被用于支持GSM中控制层面解决方案的定位。GPP可被用于移动终结位置请求(MT-LR)、移动源起位置请求(MO-LR)、和网络发起位置请求(NI-LR)。对于GSM控制层面,RRLP消息可在基站系统位置服务辅助协议(BSSLAP)和RR消息——这些消息可在终端与对于基站透明的SMLC之间交换——内部传输。在一种设计中,可用GPP消息来替代RRLP消息且在随后对于基站可以是透明的。在另一种设计中,可将GPP消息封装在RRLP消息中,例如,用于封装GPP消息的新RRLP容器组件消息之中。在GSM控制层面中可以各种方式支持GPP。
图7示出了针对GSM控制层面使用现有RRLP能力传输程序进行GPP协商的消息流700的设计。如果终端110支持GPP,则其可经由发送给RAN 120内基站控制器(BSC)126的MS类标(classmark)3来指示对RRLP能力传输的支持。BSC 126可向SMLC 124发送携带终端110的MS类标3的基站系统应用部分-位置服务扩展(BSSAP-LE)执行位置请求(PLR)消息。如果SMLC124支持GPP,则其可在发送给终端110的第一RRLP定位能力请求消息中包括GPP消息。此GPP消息可作为对定位能力-请求(PosCapability-Req)信息元素(IE)的扩展来携带。如果终端110不支持GPP,则其可忽略接收到的GPP消息并向SMLC 124返回正常RRLP定位能力响应消息(未在图7中示出)。SMLC 124和终端110随后可用RRLP而非GPP继续进行。如果终端110支持GPP,则其可在发送给SMLC 124的响应中包括GPP消息。此响应可以是:(i)RRLP定位能力响应消息,例如包括有强制定位能力IE但其为空;或者(ii)RRLP容器消息。终端110和SMLC 124可经由在这些实体之间交换的初始GPP消息协商GPP能力、请求辅助消息、输送辅助数据等。终端110和SMLC 124随后可用GPP继续进行,且GPP消息在或者未封装或者封装在RRLP容器消息中的情况下被发送。
图8示出了针对GSM控制层面使用MS类标3进行GPP协商的消息流800的设计。新标记可被添加到MS类标3以指示终端110对GPP的支持。SMLC 124可在例如RRLP容器消息的第一定位消息中向终端110发送GPP消息。RRLP传输可被用于第一定位消息,因为终端110不知道SMLC 124是否支持GPP。在第一定位消息之后,终端110和SMLC 124可交换或者未封装或者封装在RRLP容器消息中的GPP消息。
图9示出了针对GSM控制层面使用其他RRLP消息进行GPP协商的消息流900的设计。GPP消息可作为新的任选参数添加到RRLP消息中,例如,RRLP测量定位请求消息、RRLP辅助数据消息等之中。SMLC 124可通过向终端110发送携带GPP消息的RRLP消息(例如,具有有限辅助数据的RRLP辅助数据消息)来开始RRLP会话。如果终端110支持GPP,则其可返回携带GPP消息的RRLP消息(例如,RRLP容器消息)。终端110和SMLC 124随后可交换或者未封装或者封装在RRLP容器消息中的GPP消息。
图7到9中的设计可由终端110和SMLC 124来支持。诸如BSC和MSC的其他网络实体不会经由GSM控制层面收到GPP的影响。
在一种设计中,GPP定位方法可替代RRLP定位方法被使用。在这种设计中,RRLP可被用来协商和输送GPP,且可在之后例如如图7到9所示地执行GPP定位方法。在另一种设计中,GPP定位方法(例如,具有新能力)可与RRLP定位方法组合使用。可在现有RRLP消息和/或RRLP容器消息内部携带GPP消息。终端110和SMLC 124可取决于正被执行的定位方法有差别地交互,并且GPP交互被应用于GPP定位方法,而RRLP交互被应用于RRLP定位方法。终端110和SMLC 124可针对GPP和RRLP定位方法两者交换RRLP消息。可在用于GPP定位方法的RRLP消息内部携带GPP消息。
图10示出了在GSM控制层面中使用RRLP和GPP定位方法两者的消息流1000的设计。在此示例中,可并行地支持A-GPS的RRLP定位方法和GPP定位方法。SMLC可发送携带A-GPS辅助数据和可携带GPP辅助数据的GPP消息的RRLP辅助数据消息。终端110可用RRLP辅助数据确认消息或携带GPP消息的RRLP容器消息来作出响应。SMLC 124可发送携带辅助数据和GPP消息的RRLP测量定位请求消息。终端110可用携带A-GPS定位测量和可携带GPP定位方法的定位测量的GPP消息的RRLP测量定位响应消息来作出响应。
图10示出了用以支持A-GPS定位的RRLP和用以支持其他定位方法的GPP的同时使用。相比于在仅通过RRLP使用A-GPS的情况下,返回给SMLC 124的定位测量可实现更准确的定位估计。也可支持RRLP和GPP定位方法的其他组合。在另一种设计中,可用GPM来替代图10中的每个GPP消息。
图11示出了用于GSM控制层面中投递GPP辅助数据的消息流1100的设计。GPP辅助数据可包括RRLP辅助数据以及例如GLONASS、QZSS等的新辅助数据。使用GPP来投递辅助数据可通过以下来请求:(i)使用新MS类标3标记;(ii)通过指派所请求GSP辅助数据消息或所请求GNSS辅助数据消息中的备用位;(iii)通过向MO-LR请求消息、BSSAP执行位置请求消息、BSSAP-LE执行位置请求消息添加新参数;或者(iv)经由某种其他机制。如果SMLC 124不支持GPP,则其可忽略对GPP辅助数据的请求且可仅发送可使用RRLP投递的辅助数据。否则,SMLC 124可在由RRLP容器消息携带的GPP消息内部发送辅助数据。RRLP封装可被用于第一个GPP消息,因为终端110可能不知道SMLC 124是否支持GPP且由此可能预期接收RRLP消息。后继GPP消息可在未封装或封装到RRLP容器消息的情况下发送,因为两个实体都已决定使用GPP。
图12示出了GSM控制层面中用于投递GPP辅助数据的消息流1200的设计。消息流1200可被用于对辅助数据的MO-LR请求。在此设计中,RRLP辅助数据消息可被用于传输RRLP辅助数据和GPP消息。GPP消息可携带GPP辅助数据,例如用于GPP所支持的定位方法的新辅助数据。
GPP可被用于支持GPRS中控制层面解决方案的定位。在此情形中,在终端110与SMLC 124之间,可在BSSLAP、基站系统GPRS协议(BSSGP)、和逻辑链路控制(LLC)未经确认信息/消息隧穿(UI/TOM)消息内部输送RRLP消息。对于RAN 120内的SGSN 134和网络实体而言这些消息是透明的。因此,以上针对GSM控制层面所描述的消息流还可用于对应MT-LR、NI-LR或MO-LR以及MO-LR辅助数据请求所促发的GPRS定位。
V.UMTS控制层面解决方案的GPP定位
GPP可被用于支持UMTS中控制层面解决方案的定位。可更新RAN 120内的无线电网络控制器(RNC)128以支持RNC中心和SAA中心模式中的GPP。
图13示出了针对UMTS控制层面使用现有RRC和定位计算应用部分(PCAP)消息进行GPP传输的消息流1300的设计。可向RRC连接建立完成消息(例如,其GNSS能力参数)添加新标记以指示终端对GPP的支持。对于SAS中心模式,可由RNC 128在PCAP定位发起请求消息中发送的PCAP UE定位能力IE中向SAS 124输送该标记。
对于SAS 124与RNC 128之间的PCAP,可在PCAP定位激活请求和响应消息中以及PCAP信息交换发起请求和响应消息中携带GPP消息。新定位方法可被用在PCAP激活请求消息中以指示GPP。PCAP信息交换发起请求和响应消息中的新任选参数可被用来输送GPP消息。对于RNC 128与终端110之间的RRC,可在RRC测量控制、测量报告、和辅助数据投递消息中携带GPP消息。
图14示出了针对UMTS控制层面使用PCAP和RRC容器消息进行GPP传输的消息流1400的设计。PCAP容器消息可被用来携带在SAS 124与RNC 128之间交换的GPP消息。RRC容器消息可被用来携带在RNC 128与终端110之间交换的GPP消息。
图15示出了针对UMTS控制层面在不使用指示GPP支持的终端标记的情况下使用现有PCAP和RRC消息来进行GPP传输的消息流1500的设计。在不知晓终端110是否支持GPP的情况下,SAS 124和RNC 128可在初始PCAP或RRC消息中向终端110发送GPP消息。如果终端110不支持GPP,则其可忽略GPP消息并可返回包含响应于接收到RRC定义信息的RRC消息(例如,RRC测量报告消息)否则,终端110可在PCAP或RRC消息中返回GPP消息。
对于UMTS控制层面解决方案,用于已定义定位方法的现有PCAP和RRC消息可被用来支持GPP以降低对终端110、RNC 128和SAS 124的影响。PCAP和RRC消息可携带GPP消息,后者可输送用于GPP定位方法的信息。PCAP和RRC消息随后可被用来支持RRC和GPP定位方法两者。
VI.IS-801的GPS定位
GPP可被用于支持IS-801中的定位。当前部署了IS-801-1(3GPP2 C.S0022-0),当前定义了IS-801-B(3GPP C.S0022-B),且可定义新版本的IS-801。GPP可作为新版本的IS-801来支持。例如,在使用cdma2000 1xRTT的控制层面解决方案时,或者在使用SUPL 2.0且GPP在SUPL 2.0中得不到显式支持时,终端110和PDE 170可能预期使用某一版本的IS-801且可能尚未协商GPP。随后可针对IS-801执行GPP协商。
可针对IS-801发送定位数据消息(PDDM),且其可包括:(i)携带已针对IS-801-0、IS-801-A和IS-801-B定义的具体会话字段(例如,会话开始标志和会话标记字段)的第一八位组;(ii)携带消息类型指示(PD_MSG_TYPE)的第二八位组;(iii)携带指示后继PDU的长度(N)的消息长度值(PD_MSG_LEN)的两个附加八位组;以及(iv)携带PDU的N个八位组。PD_MSG_TYPE可对应于IS-801-1设成1x00、对应于IS-801-A设成1x01、或对应于IS-801-B设成1x02,其中“1x”指示十六进制值。为了支持IS-801中的GPP协商,可定义新PD_MSG_TYPE值(例如,十六进制值为1xFF)。可使用新PD_MSG_TYPE值来标识GPP,后者可被当作比IS-801-B更新的IS-801版本来考虑。
除新PD_MSG_TYPE值以及用GPP消息替代IS-801-B PDU之外,可以与IS-801-BPDDM相类似的方式生成GPP PDDM。GPP PDDM可包括:(i)携带与其他IS-801版本相同的标志和字段(例如,SESS_START、SESS_END、SESS_SOURCE和SESS_TAG)的第一八位组;(ii)携带新PD_MSG_TYPE值的第二八位组;(iii)接着携带PD_MSG_LEN的两个八位组;以及(iv)携带GPP消息的其余八位组。
图16示出了在GPP被作为新版本IS-801来支持时进行GPP协商的消息流1600。终端110或PDE 170可支持IS-801-1、GPP和IS-801-B,并且可通过以如下次序发送对应IS-801-1、IS-801-B、GPP的三个PDDM的序列来开始IS-801会话。接收实体(在终端110正在发送的情况下其可以是PDE 170或者在PDE 170正在发送的情况下可以是终端110)随后可处理发送实体所提供的三种备选方案(例如,IS-801-1、IS-801-B和可被作为比IS-801-B更高版本的IS-801来考虑的GPP)当中该实体所支持的最高版本PDDM并作出答复。如果支持GPP,则接收实体将答复收到GPP PDDM,并将在随后返回GPP PDDM响应。接收实体还将忽略其接收到的对应其他两个IS-801版本的PDDM。如果终端110或PDE 170仅支持IS-801-1和GPP,则其将改作通过以如下次序发送仅对应IS-801-1和GPP的两个PDDM的序列来开始会话。接收实体随后可在所提供的两个备选(即,IS-801-1和GPP)当中答复该实体支持的最高版本。如果支持GPP,则接收实体将答复GPP PDDM,并将在随后返回GPP PDDM响应。
图17示出了在IS-801-1、IS-801-B和GPP全部被部署时在IS-801-B中使用快捷方式来避免在最初发送三个完全大小的PDDM进行GPP协商的消息流1700的设计。终端110或PDE 170可支持801-1、801-B和GPP并可通过以如下次序发送完全801-1 PDDM、经截短801-BPDDM和完全GPP PDDM来开始IS-801会话。经截短IS-801-B PDDM可携带指示IS-801-B支持的正常PDDM的前四个八元组但不携带IS-801-B PDU。接收实体可在其支持GPP的情况下返回GPP PDDM,且IS-801会话可用GPP继续进行。接收实体可在其支持IS-801-B但不支持GPP的情况下返回IS-801-B PDDM,且IS-801会话可使用IS-801-B继续进行。
如果IS-801-B部署超过GPP部署或与其相当,则最初可发送完全IS-801-B PDDM和空GPP PDDM来替代空IS-801-B PDDM和完全GPP PDDM。或者,可发送完全801-1PDDM、空IS-801-B PDDM和空GPP PDDM。
PDE 170可支持IS-801-1、IS-801-B和GPP。PDE 110可支持IS-801-1、以及或者IS-801-B或者GPP。终端110还可仅支持IS-801-B或仅支持GPP。终端发起的IS-801会话可能是高效的,因为可仅发送一个或两个PDDM。对于PDE发起的IS-801会话,发送完全IS-801-1PDDM以及对应IS-801-B和GPP的两个空PDDM可减少开销。
VII.LTE的GPP定位
GPP可被用于支持LTE的定位。访问LTE网络的终端的位置服务可用控制层面解决方案或用户层面解决方案支持。在控制层面解决方案中,特定定位协议可被用于每一种无线接入类型,且可支持定位测量(例如,对来自基站的信号的测量)以及与该无线接入类型有关的位置信息。控制层面解决方案下用于LTE的特定定位协议可以是GPP。控制层面解决方案的下用于LTE定位的GPP也可被用于支持诸如SUPL的用户层面解决方案下的LTE定位。GPP也可与控制和用户层面解决方案联用以供诸如WiMax、WiFi、UMB、IMT高级等其他无线接入类型用。
图18示出了用于执行定位的过程1800的设计。过程1800可由终端、位置服务器(例如,SLP)或某一其他实体来执行。可交换包括关于GPP所支持的第一定位方法和第一接入类型的第一信息的第一GPP消息(框1812)。GPP可支持多种定位方法和至少三种接入类型。可交换包括关于第一定位方法和第一接入类型的第二信息的第二GPP消息(框1814)。随后可基于第二信息获得对终端的定位估计(框1816)。
在框1812和1814的一种设计中,位置服务器可向终端发送包括对位置信息的请求的第一GPP消息,并从该终端接收包括位置信息的第二GPP消息。位置服务器还可从终端接收包括对辅助数据的请求的第三GPP消息,并可向终端发送包括该辅助数据的第四GPP消息。第三和第四GPP消息可在第一和第二GPP消息之前或之后被交换。
在框1812和1814的另一种设计中,终端可从位置中心接收包括对位置信息的请求的第一GPP消息,并可向该位置中心发送包括位置信息的第二GPP消息。终端还可向位置中心发送包括对辅助数据的请求的第三GPP消息,并可从该位置中心接收包括该辅助数据的第四GPP消息。
在一种设计中,每个GPP消息可包括至少一个定位元素。每个定位元素可对应于特定定位方法并可携带对应该定位方法的信息。例如,第一GPP消息可包括:(i)第一定位元素,包括关于第一定位方法的第一消息;以及(ii)第二定位元素,包括关于GNSS定位方法的信息。
在一种设计中,对应第二定位协议的至少一个消息可在步骤1812和1814之前被交换,以确定终端是否支持GPP。第二定位协议可包括RRLP、RRC或IS-801。GPP所支持的多种定位方法可包括GNSS定位方法、OTD定位方法、WiFi相关定位方法、传感器(例如,加速计)相关定位方法、E-CID定位方法和/或其他定位方法。GPP所支持的至少三种接入类型可包括:GSM、WCDMA、CDMA 1X、HRPD、LTE、IEEE 802.11、IEEE 802.16和/或某些其他接入类型。
图19示出了用于执行定位的过程1900的设计。过程1900可由终端(如以下所描述的)或由某一其他实体来执行。终端可获得第一无线接入类型的至少一个蜂窝小区的至少一个收到传输时间的第一集合(框1912)。终端还可获得第二无线接入类型的至少一个蜂窝小区的至少一个收到传输时间的第二集合(框1914)。终端可获得至少一个收到传输时间的第一和第二集合之间的至少一个时间差(框1916)。终端可基于至少一个时间差获得对其自身的定位估计(框1918)。
在框1916的一种设计中,终端可基于可应用于多种无线接入类型的公共时基将至少一个收到传输时间的第一集合转换成至少一个转换时间的第一集合。终端还可基于该公共时基将至少一个收到传输时间的第二集合转换成至少一个转换时间的第二集合。随后可基于至少一个转换时间的第一和第二集合来确定至少一个时间差。
终端可通过将每种无线接入类型的蜂窝小区的真实时间与公共时基所定义的转换时间相关联来使该无线接入类型的蜂窝小区的真实时基与公共时基相关。终端可如下转换每个蜂窝小区的收到传输时间。终端可基于终端处的绝对时基来确定收到传输时间的循环周期的整数部分。终端还可基于蜂窝小区的时基测量来获得收到传输时间的循环周期的分数部分。终端随后可基于收到传输时间的整数部分和分数部分来确定蜂窝小区的转换时间。
在框1918的一种设计中,终端可基于至少一个时间差来计算其自身的定位估计。在另一种设计中,终端可向位置服务器发送至少一个时间差,并可从该位置服务器接收其自身的定位估计。
图20示出了用于执行定位的过程2000的设计。过程2000可由位置服务器(如以下所描述的)或由某一其他实体来执行。位置服务器可从终端接收第一无线接入类型的至少一个蜂窝小区的至少一个转换时间的第一集合(框2012)。终端可基于第一无线接入类型的至少一个蜂窝小区的至少一个收到传输时间的第一集合和可应用于多种无线接入类型的公共时基来推导出至少一个转换时间的第一集合。
位置服务器还可从终端接收第二无线接入类型的至少一个蜂窝小区的至少一个转换时间的第二集合(框2014)。终端可基于第二无线接入类型的至少一个蜂窝小区的至少一个收到传输时间的第二集合和公共时基来推导出至少一个转换时间的第二集合。位置服务器可获得至少一个转换时间的第一和第二集合之间的至少一个时间差(框2016)。位置服务器可基于至少一个时间差推导出对终端的定位估计(框2018)。
在框2016和2018的一种设计中,位置服务器可基于蜂窝小区的转换时间确定多个蜂窝小区之间的OTD。位置服务器随后可基于蜂窝小区的OTD和已知位置来推导出对终端的定位估计。在框2016和2018的另一种设计中,位置服务器可基于第一无线接入类型的第一蜂窝小区和第二无线接入类型的第二蜂窝小区的转换时间来确定这些蜂窝小区之间的OTD。位置服务器随后可基于第一和第二蜂窝小区的OTD和已知位置以及可能的其他蜂窝小区的OTD和已知位置来推导出对终端的定位估计。
在另一种设计中,位置服务器可从终端接收时间差,并在随后对收到时间差执行时间转换。
图21示出了图1中终端110、RAN 120和位置服务器148的设计的框图。出于简洁起见,图21示出对应终端110的仅一个控制器/处理器2120、一个存储器2122、和一个发射机/接收机(TMTR/RCVR)2124,对应RAN 120的仅一个控制器/处理器2130、一个存储器2132、一个发射机/接收机2134、和一个通信(Comm)单元2136,以及对应位置服务器148的仅一个控制器/处理器2140、一个存储器2142、和一个通信单元2144。通常,每个实体可包括任何数目个处理器、控制器、存储器、发射机/接收机、通信单元等。
在下行链路上,RAN 120可向其覆盖区内的终端发射话务数据、信令、和导频。这些类型的信息可由处理器2130处理、由发射机2134调理、以及在下行链路上传送。在终端110处,来自RAN 120的下行链路信号可被接收机2124接收到并调理,并由处理器2120进一步处理以获得各种类型的信息。处理器2120可执行图8中的过程1800、图19中的过程1900、和/或本文所描述的技术的其他过程。存储器2122和2132可分别终端110和RAN 120的程序代码和数据。在上行链路上,终端110可向RAN 120发射话务数据、信令和导频。这些类型的信息可由处理器2120处理、由发射机2124调理、以及在上行链路上传送。在RAN 120处,来自终端110和其他终端的上行链路信号可被接收机2134接收到并调理,并由处理器2130进一步处理以获得来自终端的各种类型的信息。RAN 120可经由通信单元2136直接或间接地与位置服务器148通信。
在位置服务器148内,处理器2140可执行处理以支持终端的位置服务。例如,处理器2140可执行图18中的过程1800、图20中的过程2000、和/或本文所描述的技术的其他过程。处理器2140还可计算对终端110的定位估计,向LCS客户端190提供位置信息等。存储器2142可存储位置服务器148的程序代码和数据。通信单元2144可允许位置服务器148与终端110、RAN 120和/或其他网络实体通信。位置服务器148和终端110可经由GPP交换消息,且这些消息可由RAN 120和其他网络实体传输。
本领域技术人员将可理解,信息和信号可使用各种不同技术和技艺中的任何一种来表示。例如,贯穿上面说明始终可能被述及的数据、指令、命令、信息、信号、比特、码元、和码片可由电压、电流、电磁波、磁场或磁粒子、光场或光粒子、或其任何组合来表示。
本领域技术人员将进一步领会,结合本文公开描述的各种说明性逻辑框、模块、电路、和算法步骤可被实现为电子硬件、计算机软件、或两者的组合。为清楚地说明硬件与软件的这一可互换性,各种说明性组件、框、模块、电路、和步骤在上面是以其功能集的形式作一般化描述的。此类功能集是被实现为硬件还是软件取决于具体应用和强加于整体系统的设计约束。技术人员可针对每种特定应用以不同方式来实现所描述的功能集,但此类设计决策不应被解释为致使脱离本公开的范围。
结合本文公开描述的各个说明性逻辑框、模块、以及电路可用通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或其设计成执行本文中描述的功能的任何组合来实现或执行。通用处理器可以是微处理器,但在替换方案中,处理器可以是任何常规的处理器、控制器、微控制器、或状态机。处理器还可以被实现为计算设备的组合,例如DSP与微处理器的组合、多个微处理器、与DSP核心协作的一个或更多个微处理器、或任何其他此类配置。
结合本文公开描述的方法或算法的步骤可直接在硬件中、在由处理器执行的软件模块中、或在这两者的组合中体现。软件模块可驻留在RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动盘、CD-ROM、或本领域中所知的任何其他形式的存储介质。示例性存储介质耦合到处理器以使得该处理器能从/向该存储介质读取和写入信息。在替换方案中,存储介质可以被整合到处理器。处理器和存储介质可驻留在ASIC中。ASIC可驻留在用户终端中。在替换方案中,处理器和存储介质可作为分立组件驻留在用户终端中。
在一个或多个示例性设计中,所述功能可以硬件、软件、固件、或其任意组合来实现。如果在软件中实现,则各功能可以作为一条或更多条指令或代码存储在计算机可读介质上或藉其进行传送。计算机可读介质包括计算机存储介质和通信介质两者,后者包括有助于计算机程序从一地到另一地的转移的任何介质。存储介质可以是能被通用或专用计算机访问的任何可用介质。作为示例而非限定,这样的计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁存储设备、或能被用来携带或存储指令或数据结构形式的合需程序代码手段且能被通用或专用计算机、或者通用或专用处理器访问的任何其它介质。任何连接也被正当地称为计算机可读介质。例如,如果软件使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)、或诸如红外、无线电、以及微波之类的无线技术从web网站、服务器、或其它远程源传送而来,则该同轴电缆、光纤电缆、双绞线、DSL、或诸如红外、无线电、以及微波之类的无线技术就被包括在介质的定义之中。如本文中所使用的碟和盘包括压缩盘(CD)、激光盘、光盘、数字通用盘(DVD)、软盘和蓝光盘,其中碟往往以磁的方式再现数据而盘用激光以光学方式再现数据。上述组合应被包括在计算机可读介质的范围内。
本文中包括小标题以便参考并协助定位某些章节。这些小标题并非旨在限定文中在其下描述的概念的范围,并且这些概念在贯穿整篇说明书始终的其他章节中也可具有适用性。
提供前面对公开的描述是为了使本领域任何技术人员皆能制作或使用本公开。对该公开各种修改对于本领域技术人员将是显而易见的,并且本文中定义的普适原理可被应用于其他变形而不会脱离本公开的精神或范围。由此,本公开并非旨在被限定于本文中所述的示例和设计,而是应被授予与本文中公开的原理和新颖性特征一致的最广泛的范围。

Claims (15)

1.一种执行定位的方法,包括:
在终端处获得第一无线接入类型的至少一个蜂窝小区的至少一个收到传输时间的第一集合;
在所述终端处获得第二无线接入类型的至少一个蜂窝小区的至少一个收到传输时间的第二集合;
获得至少一个收到传输时间的所述第一集合和第二集合之间的至少一个时间差;以及
基于所述至少一个时间差获得对所述终端的定位估计;
其中所述方法进一步包括基于可应用于多种无线接入类型的公共时基将所述至少一个收到传输时间的第一集合转换成至少一个转换时间的第一集合;并且
所述转换至少一个收到传输时间的第一集合包括对于所述第一无线接入类型的蜂窝小区的每个收到传输时间,
基于所述终端处的绝对时基确定所述收到传输时间的整数部分,
基于所述蜂窝小区的时基测量获得所述收到传输时间的分数部分,以及
基于所述收到传输时间的所述整数部分和所述分数部分确定所述蜂窝小区的转换时间。
2.如权利要求1所述的方法,其特征在于,还包括:
通过将所述第一无线接入类型的蜂窝小区的真实时间与由所述公共时基定义的转换时间相关联来将所述第一无线接入类型的至少一个蜂窝小区的真实时基与所述公共时基对准。
3.如权利要求1所述的方法,其特征在于,还包括:
基于所述公共时基将所述至少一个收到传输时间的第二集合转换成至少一个转换时间的第二集合,以及
其中所述至少一个时间差是基于至少一个转换时间的所述第一和第二集合来确定的。
4.如权利要求1所述的方法,其特征在于,所述获得对终端的定位估计包括基于所述至少一个时间差计算对所述终端的所述定位估计。
5.如权利要求1所述的方法,其特征在于,所述获得对终端的定位估计包括
向位置服务器发送所述至少一个时间差,以及
从所述位置服务器接收对所述终端的所述定位估计。
6.一种用于执行定位的装置,包括:
用于在终端处获得第一无线接入类型的至少一个蜂窝小区的至少一个收到传输时间的第一集合的装置;
用于在所述终端处获得第二无线接入类型的至少一个蜂窝小区的至少一个收到传输时间的第二集合的装置;
用于获得至少一个收到传输时间的所述第一集合和第二集合之间的至少一个时间差的装置;以及
用于基于所述至少一个时间差获得对所述终端的定位估计的装置;
其中所述装置包括用于基于可应用于多种无线接入类型的公共时基将所述至少一个收到传输时间的第一集合转换成至少一个转换时间的第一集合的装置;并且
所述用于转换至少一个收到传输时间的第一集合的装置包括,对于所述第一无线接入类型的蜂窝小区的每个收到传输时间,
用于基于所述终端处的绝对时基确定所述收到传输时间的整数部分的装置,
用于基于所述蜂窝小区的时基测量获得所述收到传输时间的分数部分的装置,以及
用于基于所述收到传输时间的所述整数部分和所述分数部分确定所述蜂窝小区的转换时间的装置。
7.如权利要求6所述的装置,其特征在于,还包括:
用于基于所述公共时基将至少一个收到传输时间的所述第二集合转换成至少一个转换时间的第二集合的装置,并且其中所述至少一个时间差是基于至少一个转换时间的所述第一和第二集合来确定的。
8.一种执行定位的方法,包括:
从终端接收第一无线接入类型的至少一个蜂窝小区的至少一个转换时间的第一集合,至少一个转换时间的所述第一集合是由所述终端基于所述第一无线接入类型的所述至少一个蜂窝小区的至少一个收到传输时间的第一集合和可应用于多种无线接入类型的公共时基推导出的;以及
基于所述至少一个转换时间的第一集合来推导所述终端的位置估计;
其中至少一个转换时间的第一集合通过以下操作来确定:
基于所述终端处的绝对时基确定所述收到传输时间的整数部分,
基于所述蜂窝小区的时基测量获得所述收到传输时间的分数部分,以及
基于所述收到传输时间的所述整数部分和所述分数部分确定所述蜂窝小区的转换时间。
9.如权利要求8所述的方法,其特征在于,所述至少一个蜂窝小区包括多个蜂窝小区,并且其中所述推导对终端的定位估计包括
基于所述蜂窝小区的转换时间确定所述多个蜂窝小区之间的观测时间差OTD,以及
基于所述蜂窝小区的所述OTD和已知位置推导出对所述终端的所述定位估计。
10.如权利要求8所述的方法,其特征在于,还包括:
从所述终端接收第二无线接入类型的至少一个蜂窝小区的至少一个转换时间的第二集合,至少一个转换时间的所述第二集合是由所述终端基于所述第二无线接入类型的所述至少一个蜂窝小区的至少一个收到传输时间的第二集合和所述公共时基推导出的;以及
基于至少一个转换时间的所述第一和第二集合推导出对所述终端的定位估计。
11.如权利要求10所述的方法,其特征在于,所述推导出对终端的定位估计包括
基于所述第一无线接入类型的第一蜂窝小区和所述第二无线接入类型的第二蜂窝小区的转换时间确定所述第一和第二蜂窝小区之间的观测时间差OTD,以及
基于所述第一和第二蜂窝小区的所述OTD和已知位置推导出对所述终端的所述定位估计。
12.一种用于执行定位的装置,包括:
用于从终端接收第一无线接入类型的至少一个蜂窝小区的至少一个转换时间的第一集合的装置,至少一个转换时间的所述第一集合是由所述终端基于所述第一无线接入类型的所述至少一个蜂窝小区的至少一个收到传输时间的第一集合和可应用于多种无线接入类型的公共时基推导出的;以及
用于基于所述至少一个转换时间的第一集合来推导所述终端的位置估计的装置;
其中至少一个转换时间的第一集合通过以下操作来确定:
基于所述终端处的绝对时基确定所述收到传输时间的整数部分,
基于所述蜂窝小区的时基测量获得所述收到传输时间的分数部分,以及
基于所述收到传输时间的所述整数部分和所述分数部分确定所述蜂窝小区的转换时间。
13.如权利要求12所述的装置,其特征在于,所述至少一个蜂窝小区包括多个蜂窝小区,并且其中所述用于推导对终端的定位估计的装置包括
用于基于所述蜂窝小区的转换时间确定所述多个蜂窝小区之间的观测时间差OTD的装置,以及
用于基于所述蜂窝小区的所述OTD和已知位置推导出对所述终端的所述定位估计的装置。
14.如权利要求12所述的装置,其特征在于,还包括:
用于从所述终端接收第二无线接入类型的至少一个蜂窝小区的至少一个转换时间的第二集合的装置,至少一个转换时间的所述第二集合是由所述终端基于所述第二无线接入类型的所述至少一个蜂窝小区的至少一个收到传输时间的第二集合和所述公共时基推导出的;以及
用于基于至少一个转换时间的所述第一和第二集合推导出对所述终端的定位估计的装置。
15.如权利要求14所述的装置,其特征在于,所述用于推导出对终端的定位估计的装置包括
用于基于所述第一无线接入类型的第一蜂窝小区和所述第二无线接入类型的第二蜂窝小区的转换时间确定所述第一和第二蜂窝小区之间的观测时间差OTD的装置,以及
用于基于所述第一和第二蜂窝小区的所述OTD和已知位置推导出对所述终端的所述定位估计的装置。
CN201510566317.6A 2008-04-02 2009-04-02 通用定位协议 Active CN105204051B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US4187108P 2008-04-02 2008-04-02
US61/041,871 2008-04-02
US5583008P 2008-05-23 2008-05-23
US61/055,830 2008-05-23
US12/416,348 2009-04-01
US12/416,348 US8660574B2 (en) 2008-04-02 2009-04-01 Generic positioning protocol
CN2009801083668A CN101971048A (zh) 2008-04-02 2009-04-02 通用定位协议

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN2009801083668A Division CN101971048A (zh) 2008-04-02 2009-04-02 通用定位协议

Publications (2)

Publication Number Publication Date
CN105204051A CN105204051A (zh) 2015-12-30
CN105204051B true CN105204051B (zh) 2018-09-18

Family

ID=41133734

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510566317.6A Active CN105204051B (zh) 2008-04-02 2009-04-02 通用定位协议
CN2009801083668A Pending CN101971048A (zh) 2008-04-02 2009-04-02 通用定位协议

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2009801083668A Pending CN101971048A (zh) 2008-04-02 2009-04-02 通用定位协议

Country Status (11)

Country Link
US (3) US8660574B2 (zh)
EP (1) EP2297981B1 (zh)
JP (2) JP5524175B2 (zh)
KR (2) KR101185760B1 (zh)
CN (2) CN105204051B (zh)
CA (1) CA2718323C (zh)
ES (1) ES2681684T3 (zh)
HU (1) HUE039461T2 (zh)
RU (1) RU2477022C2 (zh)
TW (1) TWI424773B (zh)
WO (1) WO2009124206A2 (zh)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007226896B2 (en) * 2006-03-20 2010-12-23 Qualcomm Incorporated Extended capability transfer between a user equipment and a wireless network
US8660574B2 (en) 2008-04-02 2014-02-25 Qualcomm Incorporated Generic positioning protocol
US8660540B2 (en) 2009-04-21 2014-02-25 Qualcomm Incorporated Supporting version negotiation for positioning for terminals in a wireless network
US9435874B2 (en) 2009-04-21 2016-09-06 Qualcomm Incorporated Method and apparatus for supporting positioning for terminals in a wireless network
US8917206B2 (en) * 2009-06-09 2014-12-23 Qualcomm Incorporated Mobile-based positioning with non-conforming use of assistance data
US9743228B2 (en) * 2009-06-22 2017-08-22 Qualcomm Incorporated Transport of LCS-related messages for LTE access
KR101657121B1 (ko) * 2009-07-02 2016-09-13 엘지전자 주식회사 위치 기반 서비스를 지원하는 듀얼 모드 단말기 및 이를 위한 제어 방법
CN102006547B (zh) * 2009-08-28 2016-01-20 北京三星通信技术研究有限公司 定位方法、广播邻基站位置信息方法及定位能力协商方法
US8548491B2 (en) * 2009-12-17 2013-10-01 Broadcom Corporation Method and system for internet protocol initial positioning through calibrated ranging
CN102123419B (zh) * 2010-01-12 2015-12-16 中兴通讯股份有限公司 长期演进系统中的定位异常处理方法、终结点和系统
US9363633B2 (en) 2010-02-22 2016-06-07 Nokia Technologies Oy Accurate GNSS time handling in dual/multi-SIM terminals
EP2899569A1 (en) * 2010-02-22 2015-07-29 Nokia Corporation Accurate GNSS Time Handling In Dual/Multi-Sim Terminals
US10383166B2 (en) 2010-04-14 2019-08-13 Qualcomm Incorporated Method and apparatus for supporting location services via a home node B (HNB)
US9119028B2 (en) 2010-04-14 2015-08-25 Qualcomm Incorporated Method and apparatus for supporting location services via a Home Node B (HNB)
US9374798B2 (en) * 2010-05-26 2016-06-21 Qualcomm Incorporated Support of multiple positioning protocols
US10034205B2 (en) * 2010-10-01 2018-07-24 Telefonaktiebolaget Lm Ericsson (Publ) Positioning measurements and carrier switching in multi-carrier wireless communication networks
US8942102B2 (en) * 2010-11-05 2015-01-27 Qualcomm Incorporated Segmented data transfer with resume capability
US8675474B2 (en) * 2010-12-10 2014-03-18 Htc Corporation Method and system for handling error in LPP messages exchange
US8866670B2 (en) * 2011-06-02 2014-10-21 Qualcomm Incorporated Hybrid positioning using synchronous and asynchronous techniques
US9363782B2 (en) 2011-06-22 2016-06-07 Qualcomm Incorporated Methods and apparatus for wireless device positioning in multicarrier configurations
US9780861B2 (en) 2011-10-04 2017-10-03 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for configuring uplink transmission diversity
KR102077746B1 (ko) * 2012-08-03 2020-02-14 엘지전자 주식회사 무선 통신 시스템에서 측정 보고 방법 및 이를 지원하는 장치
WO2014026715A1 (en) * 2012-08-15 2014-02-20 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for determining relationships in heterogeneous networks
US8855678B2 (en) 2012-09-27 2014-10-07 Qualcomm Incorporated Selected acknowledgment positioning optimizations
US9354322B2 (en) * 2013-05-15 2016-05-31 General Motors Llc Configuring Global Navigation Satellite System receiver units via over-the-air communications with control center
US10255328B2 (en) * 2013-10-09 2019-04-09 Microsoft Technology Licensing, Llc Location source ranking for determining device location
CN106415303B (zh) * 2014-05-27 2018-05-25 高通股份有限公司 使用由定位协议递送的装置识别的位置支持
WO2015183965A1 (en) * 2014-05-27 2015-12-03 Qualcomm Incorporated Location support using a device identification conveyed by a positioning protocol
CN105277915A (zh) * 2014-07-22 2016-01-27 上海巨江信息技术有限公司 适用于多硬件数据接口和多场景的模块型无线定位系统
WO2018028941A1 (en) * 2016-08-12 2018-02-15 Sony Corporation Location server, infrastructure equipment, communications device and methods for the use of supplementary postioning reference signals
EP3301484A1 (en) * 2016-09-29 2018-04-04 Intel IP Corporation Communication device and method for performing positioning
CA3041966A1 (en) 2016-11-01 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Providing estimated accuracy of mobile station synchronization and mobile station transmission offset to the network
EP3535598B1 (en) * 2016-11-01 2021-02-24 Telefonaktiebolaget LM Ericsson (publ) Providing estimated accuracy of mobile station synchronziation to the network
CN106533539A (zh) * 2016-11-29 2017-03-22 西北大学 一种嵌入式北斗卫星短报文通信控制系统
CN110622566B (zh) 2017-05-05 2021-04-20 华为技术有限公司 一种辅助数据传输方法、设备及系统
WO2018202924A1 (es) * 2017-05-05 2018-11-08 Fernandez Gomez De Aranda Miguel Angel Método para la autenticación de la posición proporcionada por sistemas gnss también valido en situaciones de arranque en frío del receptor
CN107422300A (zh) * 2017-09-05 2017-12-01 芜湖华创光电科技有限公司 一种对非配合无线通信终端信号到达时差提取方法
CN109936404B (zh) * 2017-12-15 2021-09-14 海鹰航空通用装备有限责任公司 一种无人机多目标测控装置及方法
CN109164475A (zh) * 2018-11-16 2019-01-08 大连大学 基于北斗gps定位系统的集装箱监控方法
EP3888381A4 (en) * 2018-11-30 2021-12-15 Telefonaktiebolaget LM Ericsson (publ) POSITIONING IN WIRELESS COMMUNICATION NETWORKS
CN109541650B (zh) * 2018-12-13 2020-04-21 北京无线电计量测试研究所 一种长周期伪随机序列本地同步码生成方法和装置
US11265076B2 (en) * 2020-04-10 2022-03-01 Totum Labs, Inc. System and method for forward error correcting across multiple satellites
KR102466398B1 (ko) 2021-10-05 2022-11-11 주식회사 블랙핀 무선 이동 통신 시스템에서 시스템정보의 도움데이터상태와 위치확인프로토콜 메시지의 도움데이터유효성을 이용해서 위치확인을 위한 도움데이터를 송수신하는 방법 및 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1449209A (zh) * 2002-03-01 2003-10-15 日本电气株式会社 改进的定位系统和蜂窝通信网络
GB2382270B (en) * 2001-11-16 2006-06-14 Nec Technologies Improved location systems in cellular communications networks
CN101009942A (zh) * 2007-01-22 2007-08-01 华为技术有限公司 一种蜂窝定位系统、方法及装置

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327144A (en) 1993-05-07 1994-07-05 Associated Rt, Inc. Cellular telephone location system
US6021433A (en) 1996-01-26 2000-02-01 Wireless Internet, Inc. System and method for transmission of data
US6393294B1 (en) 1998-09-22 2002-05-21 Polaris Wireless, Inc. Location determination using RF fingerprinting
US6603976B1 (en) * 1999-08-03 2003-08-05 Ericsson, Inc. Architecture for TOA positioning with LMU control functionality in BSC
US6606501B1 (en) * 1999-11-10 2003-08-12 Ericsson, Inc. TOA Positioning of GPRS mobiles within the BSS centric architecture of a GSM network
GB0000528D0 (en) 2000-01-11 2000-03-01 Nokia Networks Oy Location of a station in a telecommunications system
CA2428899A1 (en) 2000-12-21 2002-06-27 Nokia Corporation Method and system for transferring gps data in mobile network
US6823260B1 (en) * 2001-03-07 2004-11-23 Palm Source, Inc. Method and apparatus for device and carrier independent location systems for mobile devices
JP4223698B2 (ja) * 2001-06-18 2009-02-12 ソニー株式会社 情報処理装置および方法、情報処理システム、記録媒体、並びにプログラム
US6628934B2 (en) 2001-07-12 2003-09-30 Earthlink, Inc. Systems and methods for automatically provisioning wireless services on a wireless device
JP3449366B2 (ja) * 2001-07-26 2003-09-22 株式会社デンソー 無線通信端末、コンピュータプログラムおよび基地局識別番号の送信方法
US7010290B2 (en) * 2001-08-17 2006-03-07 Ericsson, Inc. System and method of determining short range distance between RF equipped devices
CN100403811C (zh) * 2001-09-20 2008-07-16 诺基亚公司 使用广播信号的预定部分提供定位服务的方法和网络单元
MXPA04003609A (es) 2001-10-17 2004-07-27 Nokia Corp Metodo para la provision de informacion sobre ubicacion.
JP3563389B2 (ja) * 2001-12-28 2004-09-08 株式会社東芝 移動通信端末
CA2485991A1 (en) * 2002-05-15 2003-11-27 United Energy Corporation Stimulation and injection system
US6961541B2 (en) * 2002-05-24 2005-11-01 Aeroscout, Inc. Method and apparatus for enhancing security in a wireless network using distance measurement techniques
US6999762B2 (en) * 2002-06-05 2006-02-14 Qualcomm, Incorporated Method and apparatus for handling roaming lists in a wireless communication system
EP1518432B1 (en) * 2002-06-28 2007-08-01 Nokia Corporation Communicating information associated with provisioning of a service, over a user plane connection
DE60320260T2 (de) * 2002-07-31 2009-08-06 Interdigital Technology Corp., Wilmington Weiterreichen zwischen einem zellularen system und einem drathlosen lokalen netz
JP2004104349A (ja) * 2002-09-06 2004-04-02 Toshiba Corp 無線端末装置及び無線通信システム
DE10256457B4 (de) * 2002-12-03 2005-05-25 Siemens Ag Austausch geographischer Positionsinformation zwischen Positionsinformations-Server und Kernnetzwerk-Element
DE60233606D1 (de) * 2002-12-11 2009-10-15 Ericsson Telefon Ab L M Verfahren und system zur positionierung in einem mobilkommunikationsnetz
US8755822B2 (en) * 2003-01-13 2014-06-17 Nokia Corporation Method and system for locating a mobile terminal
JP4474831B2 (ja) * 2003-01-28 2010-06-09 日本電気株式会社 移動通信網における移動局位置特定システム、制御装置及び移動局
JP3794413B2 (ja) 2003-02-28 2006-07-05 セイコーエプソン株式会社 測位システムおよび測位端末
US8010124B2 (en) 2003-03-24 2011-08-30 Sony Ericsson Mobile Communications Ab Methods, systems and computer program products for providing location determination information to an assisted location service
CN1833462A (zh) 2003-06-27 2006-09-13 高通股份有限公司 用于无线网络混合定位的方法和设备
US8971913B2 (en) 2003-06-27 2015-03-03 Qualcomm Incorporated Method and apparatus for wireless network hybrid positioning
EP1494488A1 (en) * 2003-07-01 2005-01-05 Precisa Instruments AG Mobile phone comprising position computation means
US7016693B2 (en) * 2004-01-06 2006-03-21 Nokia Corporation Method and apparatus for reporting location of a mobile terminal
JP2005207888A (ja) 2004-01-22 2005-08-04 Denso Corp 衛星測位用信号受信装置
US7370118B2 (en) 2004-02-04 2008-05-06 International Business Machines Corporation Methods, systems, and computer program products for dynamic inter-operability of nodes in service grids
US20070005335A1 (en) 2005-05-16 2007-01-04 Cinnober Financial Technology Ab Methods for protocol compatibility
WO2007011861A2 (en) * 2005-07-18 2007-01-25 Telecommunication Systems, Inc. Integrated services user part (isup)/session initiation protocol (sip) gateway for unlicensed mobile access (uma) emergency services call flow
US9137770B2 (en) * 2005-09-15 2015-09-15 Qualcomm Incorporated Emergency circuit-mode call support
KR101133850B1 (ko) * 2005-10-10 2012-04-06 삼성전자주식회사 위치 서비스 제공 시스템의 단말 및 서버와 그 방법
JP5726402B2 (ja) 2005-11-07 2015-06-03 クゥアルコム・インコーポレイテッドQualcomm Incorporated Wlan及び他の無線ネットワークの位置測定方法
CN100571268C (zh) 2005-11-29 2009-12-16 华为技术有限公司 一种协议兼容性处理方法与装置
US8185128B2 (en) * 2005-11-30 2012-05-22 Qualcomm Incorporated Method and apparatus for supporting location services with roaming
CN103713301A (zh) * 2006-01-10 2014-04-09 高通股份有限公司 全球导航卫星系统
US20070178913A1 (en) 2006-01-27 2007-08-02 Nokia Corporation Method, apparatus and computer program product for self-learning location method selection logic
US20080008157A1 (en) * 2006-07-06 2008-01-10 Edge Stephen W Method And Apparatus For Parallel Registration And Call Establishment
KR101217939B1 (ko) * 2006-08-01 2013-01-02 퀄컴 인코포레이티드 로케이션 서버에 정보 업데이트를 제공하는 시스템 및/또는방법
US7920875B2 (en) 2006-12-01 2011-04-05 Trueposition, Inc. Subscriptionless location of wireless devices
US8798639B2 (en) 2007-01-17 2014-08-05 Qualcomm Incorporated Method and apparatus for using historic network information for determining approximate position
US9083745B2 (en) 2007-03-12 2015-07-14 Qualcomm Incorporated Network independent location services
US20080227463A1 (en) * 2007-03-14 2008-09-18 Motorola, Inc. Determining location information
US8000725B2 (en) * 2007-03-30 2011-08-16 Andrew, Llc Method and apparatus for transparent invocation and transport of encrypted position location data
US8797209B2 (en) 2007-09-11 2014-08-05 Qualcomm Incorporated Optimized ordering of assistance data in a mobile radio network
US20090088180A1 (en) 2007-10-01 2009-04-02 James Lamance Computing geographical location of a mobile receiver using network measurement reports
US7595754B2 (en) * 2007-12-24 2009-09-29 Qualcomm Incorporated Methods, systems and apparatus for integrated wireless device location determination
US8712439B2 (en) * 2008-01-11 2014-04-29 Qualcomm Incorporated Method and apparatus for using service capability information for user plane location
US8306523B2 (en) * 2008-02-15 2012-11-06 Qualcomm Incorporated Methods and apparatuses supporting multiple positioning protocol versions in wireless communication networks
US8660574B2 (en) 2008-04-02 2014-02-25 Qualcomm Incorporated Generic positioning protocol
US8483706B2 (en) 2008-04-15 2013-07-09 Qualcomm Incorporated Location services based on positioned wireless measurement reports
US8639271B2 (en) * 2008-07-02 2014-01-28 Qualcomm Incorporated Method and apparatus for supporting location-based services by a removable module
US8358243B2 (en) * 2008-07-18 2013-01-22 Qualcomm Incorporated Methods and apparatuses for requesting/providing sensitivity assistance information associated with various satellite positioning systems in wireless communication networks
US8786491B2 (en) * 2008-07-18 2014-07-22 Qualcomm Incorporated Methods and apparatuses for requesting/providing assistance data associated with various satellite positioning systems in wireless communication networks
US7940740B2 (en) * 2009-02-03 2011-05-10 Motorola Mobility, Inc. Apparatus and method for communicating and processing a positioning reference signal based on identifier associated with a base station
KR101738162B1 (ko) * 2009-04-10 2017-05-22 엘지전자 주식회사 무선 통신 시스템에서 포지셔닝 참조 신호 전송 방법 및 장치
US8660540B2 (en) 2009-04-21 2014-02-25 Qualcomm Incorporated Supporting version negotiation for positioning for terminals in a wireless network
US9435874B2 (en) 2009-04-21 2016-09-06 Qualcomm Incorporated Method and apparatus for supporting positioning for terminals in a wireless network
JP5571783B2 (ja) 2009-06-24 2014-08-13 テレフオンアクチーボラゲット エル エム エリクソン(パブル) セルラネットワークにおける測位支援方法及び装置
US8463292B2 (en) 2009-06-29 2013-06-11 Telefonaktiebolaget Lm Ericsson (Publ) TDOA—based reconstruction of base station location data
US8676226B2 (en) 2009-07-09 2014-03-18 Htc Corporation Method of handling location service and related communication device
US8838132B2 (en) 2009-08-12 2014-09-16 Qualcomm Incorporated Enhanced positioning assistance data for reduced signaling
US20110039575A1 (en) * 2009-08-14 2011-02-17 Manuel Del Castillo Method and system for positioning neighbor cells in a cellular network using learned cell data
US8248997B2 (en) * 2009-08-17 2012-08-21 Nokia Corporation Apparatus and method for positioning a wireless user equipment
US9277523B2 (en) * 2009-11-05 2016-03-01 Qualcomm Incorporated Method and apparatus for assisted positioning in a wireless communication system
US9270587B2 (en) 2010-01-08 2016-02-23 Qualcomm Incorporated Method and apparatus for routing messages of a positioning protocol in a wireless network
US8725167B2 (en) * 2010-08-11 2014-05-13 Optis Cellular Technology, Llc Methods of providing cell grouping for positioning and related networks and devices
RU2015140827A (ru) 2010-08-16 2018-12-26 Телефонактиеболагет Л М Эрикссон (Пабл) Узлы и способы для улучшения позиционирования
EP2606692B1 (en) 2010-08-16 2016-10-19 Telefonaktiebolaget LM Ericsson (publ) Positioning node, user equipment and methods therein
BR112013013247A2 (pt) 2010-12-13 2016-09-13 Ericsson Telefon Ab L M troca de parâmetros relativos a períodos de medição
EP2666319B1 (en) 2011-01-19 2016-11-16 Telefonaktiebolaget LM Ericsson (publ) Enhanced measurement gap configuration support for positioning related applications
US9363782B2 (en) * 2011-06-22 2016-06-07 Qualcomm Incorporated Methods and apparatus for wireless device positioning in multicarrier configurations
KR102076280B1 (ko) * 2013-08-23 2020-02-11 삼성전자 주식회사 이동 통신 시스템에서 전자 장치의 통신 수행 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2382270B (en) * 2001-11-16 2006-06-14 Nec Technologies Improved location systems in cellular communications networks
CN1449209A (zh) * 2002-03-01 2003-10-15 日本电气株式会社 改进的定位系统和蜂窝通信网络
CN101009942A (zh) * 2007-01-22 2007-08-01 华为技术有限公司 一种蜂窝定位系统、方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"An architecture for location aware applications";James Nord等;《Proceedings of the 35th annual Hawaii international conference on system sciences》;20020110;第3805-3810页 *

Also Published As

Publication number Publication date
WO2009124206A2 (en) 2009-10-08
KR101185760B1 (ko) 2012-09-25
EP2297981B1 (en) 2018-05-30
RU2010144766A (ru) 2012-05-10
KR101282547B1 (ko) 2013-07-15
JP2011523244A (ja) 2011-08-04
US9386408B2 (en) 2016-07-05
TW200952524A (en) 2009-12-16
TWI424773B (zh) 2014-01-21
RU2477022C2 (ru) 2013-02-27
JP5770254B2 (ja) 2015-08-26
CA2718323C (en) 2015-06-23
US9832612B2 (en) 2017-11-28
KR20120062010A (ko) 2012-06-13
WO2009124206A3 (en) 2010-09-10
CN101971048A (zh) 2011-02-09
EP2297981A2 (en) 2011-03-23
JP5524175B2 (ja) 2014-06-18
US8660574B2 (en) 2014-02-25
ES2681684T3 (es) 2018-09-14
US20090253440A1 (en) 2009-10-08
US20160286357A1 (en) 2016-09-29
JP2014090458A (ja) 2014-05-15
CA2718323A1 (en) 2009-10-08
US20140206390A1 (en) 2014-07-24
HUE039461T2 (hu) 2019-01-28
KR20110002854A (ko) 2011-01-10
CN105204051A (zh) 2015-12-30

Similar Documents

Publication Publication Date Title
CN105204051B (zh) 通用定位协议
CN102461126B (zh) 用流线化的位置服务层来支持位置服务的方法和装置
JP5678219B2 (ja) Supl3.0に基づいて処理する装置、システム及びその方法
CN104076326A (zh) 用于支持对无线网络中的终端的定位的方法和装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant