CN105195736A - 一种用油胺改性聚琥珀酰亚胺对疏水纳米颗粒的亲水化表面修饰方法 - Google Patents
一种用油胺改性聚琥珀酰亚胺对疏水纳米颗粒的亲水化表面修饰方法 Download PDFInfo
- Publication number
- CN105195736A CN105195736A CN201510609679.9A CN201510609679A CN105195736A CN 105195736 A CN105195736 A CN 105195736A CN 201510609679 A CN201510609679 A CN 201510609679A CN 105195736 A CN105195736 A CN 105195736A
- Authority
- CN
- China
- Prior art keywords
- nano
- particles
- hydrophobic
- polysuccinimide
- chloroform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002105 nanoparticle Substances 0.000 title claims abstract description 36
- 230000002209 hydrophobic effect Effects 0.000 title claims abstract description 26
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 title claims abstract description 22
- 238000012986 modification Methods 0.000 title claims abstract description 19
- 230000004048 modification Effects 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 12
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 36
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 24
- 239000006185 dispersion Substances 0.000 claims description 11
- 238000003756 stirring Methods 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 8
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 239000003446 ligand Substances 0.000 claims description 4
- 229910017768 LaF 3 Inorganic materials 0.000 claims description 3
- 239000004567 concrete Substances 0.000 claims description 2
- 238000001704 evaporation Methods 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 238000003808 methanol extraction Methods 0.000 claims description 2
- 239000008363 phosphate buffer Substances 0.000 claims description 2
- 239000002086 nanomaterial Substances 0.000 abstract description 11
- 239000007864 aqueous solution Substances 0.000 abstract description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 abstract description 3
- 238000004945 emulsification Methods 0.000 abstract description 3
- 239000002245 particle Substances 0.000 abstract description 3
- 239000011248 coating agent Substances 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract description 2
- 238000002296 dynamic light scattering Methods 0.000 abstract description 2
- 125000005462 imide group Chemical group 0.000 abstract description 2
- 238000004020 luminiscence type Methods 0.000 abstract description 2
- 229920002521 macromolecule Polymers 0.000 abstract description 2
- 230000000704 physical effect Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 238000002604 ultrasonography Methods 0.000 abstract 2
- 150000001875 compounds Chemical class 0.000 abstract 1
- 230000001276 controlling effect Effects 0.000 abstract 1
- 230000005389 magnetism Effects 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000006557 surface reaction Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 7
- 239000002114 nanocomposite Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 239000002405 nuclear magnetic resonance imaging agent Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000007626 photothermal therapy Methods 0.000 description 1
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
Landscapes
- Luminescent Compositions (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
本发明公开了一种用油胺改性聚琥珀酰亚胺对疏水纳米颗粒的亲水化表面修饰方法。本发明通过用油胺改性的聚琥珀酰亚胺包覆不同形状、尺寸与化学成分的疏水性无机纳米颗粒进行表面功能化,油胺改性的聚琥珀酰亚胺再在碱性水溶液中发生水解,原有的酰亚胺环发生反应变成亲水的羧基,经超声,疏水纳米颗粒表面包覆上一层双亲高分子,可在水中稳定分散。通过调控超声乳化过程中NaOH浓度,能够可控得到单个纳米颗粒或包含多个颗粒的纳米复合球。包覆前后纳米材料的大小、形貌、发光或磁性等物理性能几乎不受影响,动态光散射粒径增加不超过10nm。最终得到的功能化的纳米颗粒具有良好的水溶液稳定性、生物兼容性以及可以修饰多种分子性能。
Description
技术领域
本发明属于纳米材料表面修饰技术领域,特别涉及一种用油胺改性聚琥珀酰亚胺对疏水纳米颗粒的亲水化表面修饰方法。
技术背景
纳米材料的合成技术在最近二十年来飞速发展,对纳米材料的形貌、尺寸的控制也达到了很高的水平。各种纳米材料的功能各异,诸多具有特殊功能的纳米材料纷纷被应用到生物医学领域,如Fe3O4超顺磁性纳米颗粒用作磁共振成像对比剂,各种发光量子点(包括ZnS、ZnSe、Ag2S量子点)用作细胞或体内的荧光成像、金纳米棒、碳纳米管等由于其近红外光热效应在光热治疗中起到重要作用。然而这些纳米材料大多数都是在高沸点有机溶剂中合成得到,表面多是像油酸、油胺等疏水配体,这些纳米材料不溶于水,不能直接用到生物医药领域。
要使这些在生物医药领域有应用潜力的疏水纳米材料得以实际应用,需要对他们进行表面修饰,使它们在水中稳定分散。现有的纳米材料表面修饰方法主要包括二氧化硅层包覆、配体交换和利用表面活性剂等方法,而这些方法都面临着修饰过程中引起团聚、修饰后缺少偶联基团产生进一步生物偶联受阻、生物相容性不佳等问题。
发明内容
本发明的目的是提供一种用油胺改性聚琥珀酰亚胺对疏水纳米颗粒的亲水化表面修饰方法。具体通过用油胺改性的聚琥珀酰亚胺包覆不同形状、尺寸与化学成分的疏水性无机纳米颗粒进行表面功能化,油胺改性的聚琥珀酰亚胺再在碱性水溶液中发生水解,原有的酰亚胺环发生反应变成亲水的羧基,经超声,疏水纳米颗粒表面包覆上一层双亲高分子,可在水中稳定分散。
本发明所述的用油胺改性聚琥珀酰亚胺对疏水纳米颗粒的亲水化表面修饰方法,其具体步骤为:
a.60-80℃并搅拌条件下,将0.5-1.6g数均分子量5000-7500的聚琥珀酰亚胺溶于30-90mLN,N-二甲基甲酰胺中,再加入0.5-3.0mL油胺,60-100℃下反应2-10小时,冷却到室温;最后加入甲醇沉淀出PSIOAm,离心,蒸发掉甲醇,然后分散到氯仿中,得到PSIOam的氯仿分散液;
b.5-10mL水中加入0.05-2.0mL浓度0.1M的NaOH溶液,再加入PSIOAm氯仿分散液和疏水纳米颗粒的氯仿分散液,其中PSIOAm含量为20-100mg,疏水纳米颗粒2-10mg,超声分散2-10分钟;
c.步骤b最终得到的分散液在30-60℃下搅拌蒸掉氯仿,离心得到亲水化表面修饰的纳米晶,最后将纳米晶分散到去离子水中或磷酸盐缓冲液中。
所述的疏水纳米颗粒为表面带疏水配体的纳米颗粒。
所述的纳米颗粒包括但不仅限于Ag、ZnS、Fe3O4、LaF3、NaYF4,以及掺杂的纳米颗粒。
本发明的有益效果:本发明中涉及的疏水纳米材料表面修饰方法为一种简易、通用、低成本的策略。疏水纳米材料经包覆后再超声乳化,纳米颗粒表面带有丰富羧基,可在多种含水介质中稳定分散,不发生聚集,并可作进一步生物偶联。通过调控超声乳化过程水中NaOH浓度,能够可控得到单个纳米颗粒或包含多个颗粒的纳米复合球。包覆前后纳米材料的大小、形貌、发光或磁性等物理性能几乎不受影响,动态光散射粒径增加不超过10nm。最终得到的功能化的纳米颗粒具有良好的水溶液稳定性、生物兼容性以及可以修饰多种分子性能。
附图说明
图1无机纳米晶修饰前(1、4)和修饰后(2、3、5)的TEM照片和数码照片;标号4和5中上层是水,下层是氯仿;a)日光;b,d)254nm紫外光;c)日光,磁铁作用下;e)980nm二极管激光。(a)Ag;(b)ZnS:Mn2+;(c)Fe3O4;(d)LaF3:Ce3+/Tb3+;(e)NaYF4:Yb3+/Er3+;标号3是放大倍数的标号2。
图2实施例3亲水化表面修饰的ZnS纳米复合球的TEM照片,插图为分散于水中的纳米复合球254nm紫外光在光照下的数码照片;上层是水,下层是氯仿。
具体实施方式
实施例1
a.1.6g聚琥珀酰亚胺在70℃并搅拌条件下溶于32mLN,N-二甲基甲酰胺(DMF),加入2.17mL油胺,80℃下反应5小时,冷却到室温;加入90mL甲醇将(油胺改性的聚琥珀酰亚胺按)PSIOAm沉淀出来,离心,蒸发掉残留甲醇,最后,加入20mL氯仿制得PSIOAm溶液;
b.9.0mL水中加入1.0mL0.1MNaOH水溶液,再加入包含40mgPSIOAm和含5mg疏水NaYF4纳米颗粒的氯仿溶液,超声(350W,6分钟);
c.58℃下搅拌30分钟蒸掉氯仿,离心(11000转/分)10分钟得亲水纳米晶,将其重新分散到去离子水中。
实施例2
a.1.6g聚琥珀酰亚胺在70℃并搅拌条件下溶于32mLN,N-二甲基甲酰胺(DMF),加入2.17mL油胺,80℃下反应5小时,冷却到室温;加入90mL甲醇将(油胺改性的聚琥珀酰亚胺按)PSIOAm沉淀出来,离心,蒸发掉残留甲醇,最后,加入氯仿制得PSIOAm溶液;
b.9.0mL水中加入1.0mL0.1MNaOH水溶液,再加入包含40mgPSIOAm和含14mg疏水ZnS纳米颗粒的氯仿溶液,超声(350W,6分钟);
c.58℃下搅拌30分钟蒸掉氯仿,离心(11000转/分)10分钟得亲水纳米晶,将其重新分散到PBS中。
实施例3
a.1.6g聚琥珀酰亚胺在70℃并搅拌条件下溶于32mLN,N-二甲基甲酰胺(DMF),加入2.17mL油胺,80℃下反应5小时,冷却到室温;加入90mL甲醇将(油胺改性的聚琥珀酰亚胺按)PSIOAm沉淀出来,离心,蒸发掉残留甲醇,最后,加入氯仿制得PSIOAm溶液;
b.9.95mL水中加入0.05mL0.1MNaOH水溶液,再加入包含40mgPSIOAm和14mg疏水ZnS纳米颗粒和2.5mg的氯仿溶液,超声(350W,6分钟);
c.58℃下搅拌30分钟蒸掉氯仿,离心(11000转/分)10分钟得亲水纳米晶,将其重新分散到去离子水中。
Claims (3)
1.一种用油胺改性聚琥珀酰亚胺对疏水纳米颗粒的亲水化表面修饰方法,其特征在于,其具体步骤为:
a.60-80℃并搅拌条件下,将0.5-1.6g数均分子量5000-7500的聚琥珀酰亚胺溶于30-90mLN,N-二甲基甲酰胺中,再加入0.5-3.0mL油胺,60-100℃下反应2-10小时,冷却到室温;最后加入甲醇沉淀出PSIOAm,离心,蒸发掉甲醇,然后分散到氯仿中,得到PSIOam的氯仿分散液;
b.5-10mL水中加入0.05-2.0mL浓度0.1M的NaOH溶液,再加入PSIOAm的氯仿分散液和疏水纳米颗粒的氯仿分散液,其中PSIOAm含量为20-100mg,疏水纳米颗粒2-10mg,超声分散2-10分钟;
c.步骤b最终得到的分散液在30-60℃下搅拌蒸掉氯仿,离心得到亲水化表面修饰的纳米晶,最后将纳米晶分散到去离子水中或磷酸盐缓冲液中。
2.根据权利要求1所述的一种用油胺改性聚琥珀酰亚胺对疏水纳米颗粒的亲水化表面修饰方法,其特征在于,所述的疏水纳米颗粒为表面带疏水配体的纳米颗粒。
3.根据权利要求2所述的一种用油胺改性聚琥珀酰亚胺对疏水纳米颗粒的亲水化表面修饰方法,其特征在于,所述的纳米颗粒包括但不仅限于Ag、ZnS、Fe3O4、LaF3、NaYF4,以及掺杂的纳米颗粒。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510609679.9A CN105195736B (zh) | 2015-09-22 | 2015-09-22 | 一种用油胺改性聚琥珀酰亚胺对疏水纳米颗粒的亲水化表面修饰方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510609679.9A CN105195736B (zh) | 2015-09-22 | 2015-09-22 | 一种用油胺改性聚琥珀酰亚胺对疏水纳米颗粒的亲水化表面修饰方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105195736A true CN105195736A (zh) | 2015-12-30 |
CN105195736B CN105195736B (zh) | 2017-11-28 |
Family
ID=54943878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510609679.9A Expired - Fee Related CN105195736B (zh) | 2015-09-22 | 2015-09-22 | 一种用油胺改性聚琥珀酰亚胺对疏水纳米颗粒的亲水化表面修饰方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105195736B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106706894A (zh) * | 2017-01-20 | 2017-05-24 | 安徽师范大学 | 一种基于间接竞争酶联免疫法定量检测油胺枝接聚琥珀酰亚胺高分子纳米药物载体的方法 |
CN110152025A (zh) * | 2019-05-27 | 2019-08-23 | 北京化工大学 | 一种利用双模板策略制备仿生纳米影像探针的方法 |
CN115011148A (zh) * | 2022-04-28 | 2022-09-06 | 中国科学院合肥物质科学研究院 | 一种可喷涂的太阳光热转换功能凝胶及其制备方法和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009142604A1 (en) * | 2008-05-23 | 2009-11-26 | Nanyang Technological University | Polymer encapsulated particles as surface enhanced raman scattering probes |
CN102757083A (zh) * | 2011-04-28 | 2012-10-31 | 昆山智集材料科技有限公司 | 一种乳化超声法制备纳米氧化锌工艺 |
CN102775543A (zh) * | 2012-08-14 | 2012-11-14 | 北京化工大学 | 一种聚合物包覆疏水纳米颗粒的复合功能纳米球及其制备方法 |
CN103194235A (zh) * | 2013-03-28 | 2013-07-10 | 北京化工大学 | 一种水相上转换发光纳米聚集体和水相金纳米颗粒的制备方法及其在tnt检测中的应用 |
CN104162681A (zh) * | 2014-07-30 | 2014-11-26 | 青岛科技大学 | 一种银-氧化锌纳米复合结构的制备方法 |
CN104730052A (zh) * | 2015-03-20 | 2015-06-24 | 北京化工大学 | 一种基于亲水性上转换纳米NaYF4的过氧化氢和葡萄糖传感器 |
-
2015
- 2015-09-22 CN CN201510609679.9A patent/CN105195736B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009142604A1 (en) * | 2008-05-23 | 2009-11-26 | Nanyang Technological University | Polymer encapsulated particles as surface enhanced raman scattering probes |
CN102757083A (zh) * | 2011-04-28 | 2012-10-31 | 昆山智集材料科技有限公司 | 一种乳化超声法制备纳米氧化锌工艺 |
CN102775543A (zh) * | 2012-08-14 | 2012-11-14 | 北京化工大学 | 一种聚合物包覆疏水纳米颗粒的复合功能纳米球及其制备方法 |
CN103194235A (zh) * | 2013-03-28 | 2013-07-10 | 北京化工大学 | 一种水相上转换发光纳米聚集体和水相金纳米颗粒的制备方法及其在tnt检测中的应用 |
CN104162681A (zh) * | 2014-07-30 | 2014-11-26 | 青岛科技大学 | 一种银-氧化锌纳米复合结构的制备方法 |
CN104730052A (zh) * | 2015-03-20 | 2015-06-24 | 北京化工大学 | 一种基于亲水性上转换纳米NaYF4的过氧化氢和葡萄糖传感器 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106706894A (zh) * | 2017-01-20 | 2017-05-24 | 安徽师范大学 | 一种基于间接竞争酶联免疫法定量检测油胺枝接聚琥珀酰亚胺高分子纳米药物载体的方法 |
CN106706894B (zh) * | 2017-01-20 | 2018-04-13 | 安徽师范大学 | 一种基于间接竞争酶联免疫法定量检测油胺枝接聚琥珀酰亚胺高分子纳米药物载体的方法 |
CN110152025A (zh) * | 2019-05-27 | 2019-08-23 | 北京化工大学 | 一种利用双模板策略制备仿生纳米影像探针的方法 |
CN115011148A (zh) * | 2022-04-28 | 2022-09-06 | 中国科学院合肥物质科学研究院 | 一种可喷涂的太阳光热转换功能凝胶及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN105195736B (zh) | 2017-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Salgueiriño‐Maceira et al. | Increasing the complexity of magnetic core/shell structured nanocomposites for biological applications | |
Sounderya et al. | Use of core/shell structured nanoparticles for biomedical applications | |
Insin et al. | Incorporation of iron oxide nanoparticles and quantum dots into silica microspheres | |
Xu et al. | Monodisperse magnetic nanoparticles for biomedical applications | |
Frimpong et al. | Magnetic nanoparticles in biomedicine: synthesis, functionalization and applications | |
Deng et al. | A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core–shell structure | |
Niu et al. | Preparation of uniform, water‐soluble, and multifunctional nanocomposites with tunable sizes | |
US20050186337A1 (en) | Colloidal core-shell assemblies and methods of preparation | |
Roy et al. | Assembly and degradation of inorganic nanoparticles in biological environments | |
Li et al. | Highly controllable synthesis of near-infrared persistent luminescence SiO 2/CaMgSi 2 O 6 composite nanospheres for imaging in vivo | |
Nifontova et al. | Next-generation theranostic agents based on polyelectrolyte microcapsules encoded with semiconductor nanocrystals: development and functional characterization | |
CN106970215A (zh) | 一种检测噻吩磺隆的Fe3O4@PEG@SiO2人工抗体的制备方法 | |
CN105195736A (zh) | 一种用油胺改性聚琥珀酰亚胺对疏水纳米颗粒的亲水化表面修饰方法 | |
Xu et al. | Bleomycin loaded magnetite nanoparticles functionalized by polyacrylic acid as a new antitumoral drug delivery system | |
CN107961378A (zh) | 一种磁性氧化石墨烯-壳聚糖/葡聚糖复合物的制备方法及应用 | |
Zhang et al. | Self-assembled core-shell Fe3O4@ SiO2 nanoparticles from electrospun fibers | |
CN101607742A (zh) | 一种水溶性纳米四氧化三铁的制备方法 | |
Zhang et al. | Influence of chitosan modification on self-assembly behavior of Fe 3 O 4 nanoparticles | |
Uchman et al. | CdS-containing nano-assemblies of double hydrophilic block copolymers in water | |
Khosroshahi et al. | Characterization and Cellular Fluorescence Microscopy of Superparamagnetic Nanoparticles Functionalized with Third Generation Nano-molecular Dendrimers: In-vitro Cytotoxicity and Uptake study. J Nanomater Mol Nanotechnol 5: 3 | |
Yao et al. | Synthesis and self‐assembly of multiple‐responsive magnetic nanogels | |
Liu et al. | An iron silicate based pH-sensitive drug delivery system utilizing coordination bonding | |
Yin et al. | Study of gold nanostar@ SiO 2@ CdTeS quantum dots@ SiO 2 with enhanced-fluorescence and photothermal therapy multifunctional cell nanoprobe | |
Sun et al. | Examining the roles of emulsion droplet size and surfactant in the interfacial instability-based fabrication process of micellar nanocrystals | |
CN103571494B (zh) | 甘露寡糖磁性微球连接荧光量子点制备磁性荧光双功能微球 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171128 |