CN105186067B - 一种基于氧-金属电池的电极-电解液相互分离结构 - Google Patents

一种基于氧-金属电池的电极-电解液相互分离结构 Download PDF

Info

Publication number
CN105186067B
CN105186067B CN201510410474.8A CN201510410474A CN105186067B CN 105186067 B CN105186067 B CN 105186067B CN 201510410474 A CN201510410474 A CN 201510410474A CN 105186067 B CN105186067 B CN 105186067B
Authority
CN
China
Prior art keywords
electrolyte
battery
reserve tank
battery case
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510410474.8A
Other languages
English (en)
Other versions
CN105186067A (zh
Inventor
张涛
徐洪杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Chengcheng Institute Of Life And Matter
Beijing University of Aeronautics and Astronautics
Original Assignee
Harbin Chengcheng Institute Of Life And Matter
Beijing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Chengcheng Institute Of Life And Matter, Beijing University of Aeronautics and Astronautics filed Critical Harbin Chengcheng Institute Of Life And Matter
Priority to CN201510410474.8A priority Critical patent/CN105186067B/zh
Publication of CN105186067A publication Critical patent/CN105186067A/zh
Application granted granted Critical
Publication of CN105186067B publication Critical patent/CN105186067B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hybrid Cells (AREA)

Abstract

一种基于氧‑金属电池的电极‑电解液相互分离结构,具体是封闭式注满电解液的电池箱体内插入电极,通过导线外接负载,并设有排液口和进液口,排液口经电解液循环机接入储液箱,再连接进液口,构成循环;电池工作时,电解液正常在循环内通过电解液循环机进行循环;一旦电池停止工作,电池箱体内的电解液被排入储液箱,防止自腐蚀反应。或者没有储液箱,排液口直接接连进液口,构成循环。电池工作时,电解液在设备内循环;一旦电池停止工作,电池箱体内的电极上升,离开电解液,防止自腐蚀反应。本发明可以用于氧‑金属电池(包括空气电池),对电解液循环式电池改造后便可使用,简单方便。

Description

一种基于氧-金属电池的电极-电解液相互分离结构
技术领域
本发明涉及一种基于氧-金属电池的电极-电解液相互分离结构,主要分为排液式和电极升降式两种。这里的氧-金属电池包含了空气电池。
背景技术
电池的出现大大方便了室外作业的电力供应,人们相继开发出了铅蓄电池、镍氢蓄电池、锂离子电池、聚合物锂电池、燃料电池等电池。但由于它们有着像“电压低、不宜放电过度、环境不友好、原材料稀少、价格高、对基础设施依赖高、不安全、循环次数较少”等或多或少的问题,空气电池虽然克服了上述问题,但在电池不放电时存在着强烈的自腐蚀行为,影响电池的总能量效率。空气电池中金属阳极的合金化研究虽然降低了自腐蚀速率,但不能彻底根绝,因此研发一种没有自腐蚀行为的放电方式显得尤为重要。
发明内容
本发明的目的:为了克服氧-金属电池在电池不放电时发生的强烈自腐蚀反应,提高金属有效放电效率,减少析氢腐蚀产生氢气排放的问题,本发明另辟蹊径,利用电极-电解液相互分离结构,彻底根绝电池闲时自腐蚀现象。
本发明所使用的技术方案之一:一种基于氧-金属电池的电极-电解液相互分离结构,所述氧-金属电池包含了空气电池,封闭式电池箱体内插入电极,通过导线外接负载,电池箱体注满电解液,并设有排液口和进液口;电池箱体的排液口经电解液循环机连接储液箱,再通过进液口接回电池箱体构成循环,或电池箱体的排液口经储液箱连接电解液循环机,再通过进液口接回电池箱体,构成循环;当电池工作时,电解液正常在循环内通过电解液循环机进行循环;一旦电池停止工作,储液箱阀门关闭,电池箱体内电解液被电解液循环机抽入储液箱,防止电池反应停止后发生长时间的自腐蚀反应。
本发明所使用的技术方案之二:一种基于氧-金属电池的电极-电解液相互分离结构,所述氧-金属电池包含了空气电池,封闭式电池箱体内插入电极,通过导线外接负载,电池箱体注满电解液,并设有排液口和进液口,排液口通过电解液循环机连接进液口,构成一个循环。当电池工作时,电解液正常在循环内通过电解液循环机进行循环;一旦电池停止工作,电池箱体内的电极迅速上升,与电解液分离,防止电池反应停止后发生长时间的自腐蚀反应。
所述储液箱安装了隔板和阀门,方便排液;或者在储液箱进出口均安装阀门,方便排液及整体移除电解液。
当电池停止放电时,储液箱阀门关闭,也可以通过气阀的充气或抽气将电池箱体内电解液压入或吸入储液箱;或者电解液循环机和气阀同时工作。
本发明与现有技术的优点在于:
(1)本发明改变传统合金化降低自腐蚀速率的思路,采用机械式分离方法能够隔断金属电极与电解液的接触;
(2)本发明机械分离的方法可以在现有电解液循环的装置上做少许改装即可使用,方便改装,成本低廉;
(3)本发明机械分离的方法可以同时用于电池长时间不用时的处理;
(4)本发明在抽空电池内电解液的同时,方便清洗电池、更换电解液等操作;
(5)本发明电极上升式结构在上升后即把自腐蚀产生的氢气排走,减少内部压力。
附图说明
图1为电解液循环机排液式的结构简图;
图2为气体排液式的结构简图;
图3为双阀门排液式的结构简图;
图4为电极升降式的结构简图。
图中1.电解液,2.电解液循环机,3.电极,4.电池外壳,5.进液管,6.导线,7.储液箱,8.隔板,9.阀门,10.排液管,11.电极安装版,12.电极上升位,13气压平衡孔,14气阀,15出气阀,16储液箱出液阀,17储液箱进液阀。
具体实施方式
本发明一种基于氧-金属电池的电极-电解液相互分离结构,具体是封闭式注满电解液的电池箱体内插入电极,通过导线外接负载,并设有排液口和进液口,排液口经电解液循环机接入储液箱,再连接进液口,构成循环;电池工作时,电解液正常在循环内通过电解液循环机进行循环;一旦电池停止工作,电池箱体内的电解液被排入储液箱,防止自腐蚀反应。或者没有储液箱,排液口直接接连进液口,构成循环;电池工作时,电解液在设备内循环;一旦电池停止工作,电池箱体内的电极上升,离开电解液,防止自腐蚀反应。本发明可以用于氧-金属电池,对电解液循环式氧-金属电池经少量改造后便可使用,简单方便。
下面结合附图和实施例对本发明进一步说明。
在图1中,电池外壳4下部连接排液管5,排液管5经电解液循环机2与储液箱7相连,储液箱7通过钻有气压平衡孔13的隔板8分为两部分,隔板8下部有阀门9,可以控制储液箱7两部分的连通与隔断,储液箱7连接进液管10,进液管10另一头连接电池外壳4的上部。工作时将电极3放入电池外壳4,电极3连接导线6接入外部负载,开启阀门9,灌注电解液1,电解液通过电解液循环机2以箭头所示方向在系统内循环。需要停止工作时,只需将阀门9关闭,电解液1被电解液循环机2抽入储液箱7右部,电池外壳4内电解液1被排空,电池便停止工作。再次工作时,只需打开阀门9,就可以继续工作。若这里电池外壳4带有空气电极,则电极3指金属阳极;若为普通外壳,电极3指若干阴阳电极对。
在图2中,电池外壳4下部连接排液管5,排液管5经电解液循环机2与储液箱7相连,储液箱7通过隔板8分为两部分,隔板8下部有阀门9,可以控制储液箱7两部分的连通与隔断,储液箱7连接进液管10,进液管10另一头连接电池外壳4的上部。工作时将电极3放入电池外壳4,电极3连接导线6接入外部负载,开启阀门9,灌注电解液1,电解液通过电解液循环机2以箭头所示方向在系统内循环。需要停止工作时,只需将阀门9关闭,利用外部器械通过气阀14充入高压气体,电解液1被压入储液箱7右部,电池外壳4内电解液1被排空,电池便停止工作。再次工作时,只需打开阀门9,从气阀14放气就可以继续工作。若这里电池外壳4带有空气电极,则电极3指金属阳极;若为普通外壳,电极3指若干阴阳电极对。把气阀14与出气阀15互换安装位置,并通过抽气减压把电解液1排入储液箱7右边部分认为是该装置的合理变形。
在图3中,电池外壳4下部连接排液管5,排液管5经电解液循环机2与储液箱7相连,储液箱7进口和出口分别有储液箱进液阀17和储液箱出液阀16,储液箱7连接进液管10,进液管10另一头连接电池外壳4的上部。工作时将电极3放入电池外壳4,电极3连接导线6接入外部负载,开启储液箱进液阀17和储液箱出液阀16,灌注电解液1,电解液通过电解液循环机2以箭头所示方向在系统内循环。需要停止工作时,打开出气阀15,,从气阀14充入高压气体,电解液1被压入储液箱7,电池外壳4内电解液1被排空,电池便停止工作,此时再关闭储液箱进液阀17和储液箱出液阀16就可以整体移除储液箱7,并更换或清理电解液1。再次工作时,只需关闭气阀14,打开储液箱出液阀17液箱进液阀16就可以继续工作。若这里电池外壳4带有空气电极,则电极3指金属阳极;若为普通外壳,电极3指若干阴阳电极对。把气阀14与出气阀15互换安装位置,并通过抽气减压把电解液1排入储液箱7右边部分认为是该装置的合理变形。
在图4中,电池外壳4上部连接排液管5,排液管5经电解液循环机2与进液管10相连,进液管10另一头连接电池外壳4的下部。工作时将电极3(下降位)放入电池外壳4,电极下降位3连接导线6接入外部负载,灌注电解液1,电解液通过电解液循环机2以箭头所示方向在系统内循环。需要停止工作时,只需将电极3(下降位)升起,进入电极上升位12,电池便停止工作。再次工作时,只需将电极上升位12切换为电极3(下降位)即可重新开始工作。若这里电池外壳4带有空气电极,则电极3指金属阳极;若为普通外壳,电极3指若干阴阳电极对。改变电解液循环机2送液方向认为是该装置的合理变形。
提供以上实施例仅仅是为了描述本发明的目的,而并非要限制本发明的范围。本发明的范围由所附权利要求限定。不脱离本发明的精神和原理而做出的各种等同替换和修改,均应涵盖在本发明的范围之内。

Claims (2)

1.一种基于氧-金属电池的电极-电解液相互分离结构,所述氧-金属电池包含了空气电池,其特征在于:封闭式电池箱体内插入电极,通过导线外接负载,电池箱体注满电解液,并设有排液管和进液管;电池箱体的排液管经电解液循环机连接储液箱,再通过进液管接回电池箱体构成循环,具体结构为:电池箱体下部连接排液管,排液管经电解液循环机与储液箱相连,储液箱设置了钻有气压平衡孔的隔板,隔板下部有阀门,控制储液箱两部分的通与断,储液箱连接进液管,进液管另一头连接电池箱体的上部;工作时将电极放入电池箱体,电极连接导线接入外部负载,开启阀门,灌注电解液,电解液通过电解液循环机在系统内循环,需要停止工作时,只需将阀门关闭,电解液被电解液循环机泵入储液箱右部,电池箱体内电解液被排空,电池便停止工作,电解液与电极相互分离能防止电池反应停止后发生长时间的自腐蚀反应,重新工作时,只需打开阀门就可继续工作。
2.一种基于氧-金属电池的电极-电解液相互分离结构,所述氧-金属电池包含了空气电池,其特征在于:封闭式电池箱体内插入电极,通过导线外接负载,电池箱体注满电解液,并设有排液管和进液管;电池箱体的排液管经电解液循环机连接储液箱,再通过进液管接回电池箱体构成循环;具体结构为:电池箱体下部连接排液管,排液管经电解液循环机与储液箱相连,储液箱通过隔板分为左右两部分,隔板下部有阀门,控制储液箱两部分的通与断,储液箱连接进液管,进液管另一头连接电池箱体的上部;工作时将电极放入电池箱体,电极连接导线接入外部负载,开启阀门,灌注电解液,电解液通过电解液循环机在系统内循环;需要停止工作时,只需将阀门关闭,利用外部器械通过气阀充入高压气体,电解液被压入储液箱右部,电池箱体内电解液被排空,电池便停止工作,电解液与电极相互分离能防止电池反应停止后发生长时间的自腐蚀反应;重新工作时,只需打开阀门,打开气阀放气就可以继续工作。
CN201510410474.8A 2015-07-14 2015-07-14 一种基于氧-金属电池的电极-电解液相互分离结构 Expired - Fee Related CN105186067B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510410474.8A CN105186067B (zh) 2015-07-14 2015-07-14 一种基于氧-金属电池的电极-电解液相互分离结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510410474.8A CN105186067B (zh) 2015-07-14 2015-07-14 一种基于氧-金属电池的电极-电解液相互分离结构

Publications (2)

Publication Number Publication Date
CN105186067A CN105186067A (zh) 2015-12-23
CN105186067B true CN105186067B (zh) 2019-11-12

Family

ID=54908011

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510410474.8A Expired - Fee Related CN105186067B (zh) 2015-07-14 2015-07-14 一种基于氧-金属电池的电极-电解液相互分离结构

Country Status (1)

Country Link
CN (1) CN105186067B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3905383A1 (de) * 2020-04-30 2021-11-03 LINDIG GmbH Metall-luft-brennstoffzelle

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025308B (zh) * 2016-07-14 2019-08-09 苏州讴德新能源发展有限公司 一种底部开放式的电池
CN109004318A (zh) * 2018-07-30 2018-12-14 上海交通大学 可分离式的铝空气电池装置
CN109167125A (zh) * 2018-08-31 2019-01-08 清华大学 规避金属空气燃料电池停机腐蚀的系统和方法
CN111313128B (zh) * 2018-12-11 2021-06-22 中国科学院大连化学物理研究所 一种通信基站用铝空气电池和控制方法
CN109659646B (zh) * 2018-12-21 2021-03-02 宁波石墨烯创新中心有限公司 一种空气电池的阴极保护系统和方法
CN110970692B (zh) * 2019-12-16 2024-05-24 王江辉 一种金属空气电池及其使用方法
CN114335759B (zh) * 2020-09-25 2023-07-25 包头昊明稀土新电源科技有限公司 离液式长寿命水系动力电池及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2405317Y (zh) * 1999-12-16 2000-11-08 刘文西 铝空气电池
CN102157764A (zh) * 2011-03-15 2011-08-17 余建岳 电解液均衡循环的金属空气电池
CN102244310A (zh) * 2011-05-19 2011-11-16 周建林 一种新型金属燃料电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832750B2 (ja) * 1976-03-09 1983-07-14 工業技術院長 電解液循環式金属空気二次電池の作動方法
CN102157765B (zh) * 2011-03-15 2013-08-21 余建岳 电解液自流循环的金属空气电池
CN202083137U (zh) * 2011-04-20 2011-12-21 霍国辉 一种高位水箱排空装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2405317Y (zh) * 1999-12-16 2000-11-08 刘文西 铝空气电池
CN102157764A (zh) * 2011-03-15 2011-08-17 余建岳 电解液均衡循环的金属空气电池
CN102244310A (zh) * 2011-05-19 2011-11-16 周建林 一种新型金属燃料电池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3905383A1 (de) * 2020-04-30 2021-11-03 LINDIG GmbH Metall-luft-brennstoffzelle

Also Published As

Publication number Publication date
CN105186067A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
CN105186067B (zh) 一种基于氧-金属电池的电极-电解液相互分离结构
US11431010B2 (en) Redox flow battery having electrolyte flow path independently provided therein
US20120164498A1 (en) Systems and methods for redox flow battery scalable modular reactant storage
WO2014045337A1 (ja) レドックスフロー電池
CN109962264B (zh) 燃料电池的水箱内置去离子系统
TW201633591A (zh) 氧化還原液流電池
CN110121808A (zh) 氧化还原液流电池
CN103573626A (zh) 用于压缩机并联系统的双转子压缩机及压缩机并联系统
CN206134809U (zh) 一种铅酸蓄电池自动补液装置
CN105024108B (zh) 一种基于电解液循环氧‑金属电池的筋板散热结构
CN107919494B (zh) 一种控温型车用锂离子电池模块
CN108461661A (zh) 一种新型电堆钒电池储能系统
CN209312925U (zh) 一种带漏液防护的燃料电池
KR101362055B1 (ko) 연료 전지용 냉각장치
CN105119004B (zh) 一种燃料电池壳体及输出功率稳定的燃料电池装置
CN208767362U (zh) 一种散热型阀控式铅酸蓄电池
CN204630201U (zh) 用于冷液机组的高效补排液系统
CN105024111B (zh) 一种基于氧‑金属电池的旋转式电极‑电解液分离结构
US8709624B2 (en) Energy storage device package
CN203910908U (zh) 蓄电池补充液体的专用塞子及蓄电池补充液体的装置
WO2017183158A1 (ja) コンテナ型電池
CN104332573B (zh) 燃料电池组、燃料电池及壳体
CN103943813A (zh) 蓄电池补充液体的专用塞子及蓄电池补充液体的装置
CN111448694A (zh) 氧化还原液流电池
CN209150584U (zh) 一种风循环散热箱式变电站

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191112

Termination date: 20210714

CF01 Termination of patent right due to non-payment of annual fee