CN105185857A - Photovoltaic solar cell assembly welding band - Google Patents
Photovoltaic solar cell assembly welding band Download PDFInfo
- Publication number
- CN105185857A CN105185857A CN201510574718.6A CN201510574718A CN105185857A CN 105185857 A CN105185857 A CN 105185857A CN 201510574718 A CN201510574718 A CN 201510574718A CN 105185857 A CN105185857 A CN 105185857A
- Authority
- CN
- China
- Prior art keywords
- welding
- belt body
- solar cell
- cell assembly
- face
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 164
- 229910000679 solder Inorganic materials 0.000 claims abstract description 68
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000000463 material Substances 0.000 abstract description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052802 copper Inorganic materials 0.000 abstract description 6
- 239000010949 copper Substances 0.000 abstract description 6
- 239000002002 slurry Substances 0.000 abstract description 6
- 239000011248 coating agent Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 abstract description 3
- 238000002161 passivation Methods 0.000 abstract description 2
- 238000007747 plating Methods 0.000 abstract 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 8
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 6
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 6
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 6
- 238000009713 electroplating Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/05—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
- H01L31/0504—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/05—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/05—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
- H01L31/0504—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
- H01L31/0508—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
The invention relates to a solar cell assembly welding band. The photovoltaic solar cell assembly welding band is characterized by comprising a welding band body, a front face and a back face of the welding band body are sequentially provided with welding faces and non-welding faces alternately, the welding faces are provided with multiple chamber zones denting into surfaces of the welding faces, the chamber zones can greatly improve the contact area of the welding band and solder paste, SMT welding performance is improved, and insufficient welding risks can be greatly reduced compared with the traditional welding band welding technology; solidified column-shaped welding slurry is formed in the chamber zones, mechanical connection and electrical connection of the welding slurry and welding portions can be greatly improved, and exhaustion of air generated by the welding slurry in a welding band welding face in the welding process is facilitated. According to the photovoltaic solar cell assembly welding band, the welding band body employs copper bands or surface-processed copper bands instead of tin-plated welding bands utilized by routine photovoltaic assembly, the welding band body does not require tin-plating surface processing, the welding band body employs the surface passivation treatment process or a non-welding face coating anticorrosion material, or the non-welding surfaces are plated with a reflection material layer.
Description
Technical field
The present invention relates to a kind of photovoltaic solar cell assembly welding, especially a kind of welding of photovoltaic solar crystal silicon cell assembly SMT welding procedure.
Background technology
Solar cell welding is also known as tin-coated copper strip or be coated with tin copper strips, for the connection of photovoltaic module cell piece.Welding is the important raw and processed materials in welding photovoltaic component process, and the quality of welding quality will directly have influence on the collection efficiency of photovoltaic module electric current, very large to the power influences of photovoltaic module.Welding must accomplish firm welding in the process of series cells, avoids the generation of rosin joint dry joint phenomenon.There is following defect in existing welding: (1) welding surface needs zinc-plated, adds manufacturing cost and the manufacture difficulty of welding; (2) due to welding electroplating surfaces with tin, thus the conductive capability of solder side is reduced; (3) in existing crystalline silicon battery plate welding procedure, use traditional electric iron or string welder tin-coated copper strip, easily occur the phenomenon of rosin joint.
Summary of the invention
The object of the invention is to overcome the deficiencies in the prior art, provide a kind of photovoltaic solar cell assembly welding, this welding coordinates the special SMT tin cream of photovoltaic can ensure welding firm welding, can avoid rosin joint phenomenon.
According to technical scheme provided by the invention, described photovoltaic solar cell assembly welding, it is characterized in that: comprise welding belt body, in front and back cycle arrangement solder side and the non-solder face successively of welding belt body, arrange the cavity area on some recessed solder side surfaces at solder side.
In an embodiment, described solder side and non-solder face are plane, arrange the through hole being communicated with solder side and non-solder face at welding belt body.
In an embodiment, the solder side of described welding belt body and non-solder face are serrated face.
In an embodiment, process the shrinkage pool arranging recessed solder side surface along the length direction of welding belt body, in the projection that the processing of the non-solder face of welding belt body is corresponding with the shrinkage pool of solder side at the solder side of described welding belt body more.
In an embodiment, process through hole at the shrinkage pool of described solder side with between the projection in corresponding non-solder face.
In an embodiment, in described shrinkage pool and adjacent row, the adjacent line at shrinkage pool center and the Width of welding belt body have angle.
In an embodiment, it is 5 ~ 12 at the sawtooth number of the Width serrated face of described welding belt body, serration depth is 0.1 ~ 0.3mm, angle Φ between serrated surface and welding band surface 1=140 ° ~ 170 °, the sawtooth angle Φ of welding belt body front and back 2=110 ° ~ 130 °.
In an embodiment, the serration depth 0.04 ~ 0.1mm of described serrated face, sawtooth angle Φ=110 of welding belt body front and back ° ~ 140 °.
In an embodiment, the degree of depth of described shrinkage pool is 0.04 ~ 0.24mm, and protruding height is 0.04 ~ 0.1mm; Angle between the sidepiece of described projection and the non-solder face of welding belt body is 110 ° ~ 130 °.
In an embodiment, described shrinkage pool and protruding employing triangle, circle or rectangle.
Welding of the present invention can improve welding contact greatly, reduces the generation of rosin joint and the generation of thermal stress on the one hand, and the raising conductivity of welding, brings the raising of component power, reduce the integrated cost of material simultaneously on the other hand.
Accompanying drawing explanation
Fig. 1-1 is the structural representation of a kind of execution mode of welding in embodiment one.
Fig. 1-2 is the structural representation of the another kind of execution mode of welding in embodiment one.
Fig. 2 is the structural representation of welding described in embodiment two.
Fig. 3 is the structural representation of welding described in embodiment three.
Fig. 4 is the structural representation of welding described in embodiment four.
Fig. 5 is the structural representation of welding described in embodiment five.
Fig. 6 is the structural representation in welding non-solder face described in embodiment six.
Fig. 7 is the structural representation of welding solder side described in embodiment six.
Fig. 8 is the overall diagram of welding described in embodiment six.
Fig. 9 is the structural representation of welding described in embodiment seven.
Figure 10 is the structural representation of welding described in embodiment eight.
Figure 11 is the structural representation of welding described in enforcement nine.
Figure 12 is the structural representation of welding described in embodiment ten.
Figure 13 is the structural representation of welding described in embodiment 11.
Embodiment
Below in conjunction with concrete accompanying drawing, the invention will be further described.
Embodiment one:
As Figure 1-1, described photovoltaic solar cell assembly welding comprises welding belt body 1, and the front and back of welding belt body 1 is plane.
As shown in Figure 1-2, described welding belt body 1 can also adopt the mode of roll extrusion or punching press process the through hole 2 of various sizes and shape, through hole 2 is arranged side by side 1 ~ 5 on the Width of welding belt body 1, and the diameter d of through hole 2 is 0.1 ~ 0.5mm.
Embodiment two:
As shown in Figure 2, described photovoltaic solar cell assembly welding comprises welding belt body 1, and the front and back of welding belt body 1 is shape, measure-alike serrated face; It is 5 ~ 12 at the sawtooth number of the Width serrated face of described welding belt body 1, serration depth is 0.1 ~ 0.3mm, angle Φ between serrated surface and welding belt body 1 surface 1=140 ° ~ 170 °, the sawtooth angle Φ of welding belt body 1 front and back 2=110 ° ~ 130 °.
Embodiment three:
As shown in Figure 3, welding belt body 1 described in embodiment two is processed the through hole 2 of various sizes and shape.
Embodiment four:
As shown in Figure 4, described photovoltaic solar cell assembly welding comprises welding belt body 1, and the front and back of welding belt body 1 is shape, measure-alike serrated face; Be 5 ~ 12 at the sawtooth number of the Width serrated face of described welding belt body 1, serration depth is 0.04 ~ 0.1mm, sawtooth angle Φ=110 of welding belt body 1 front and back ° ~ 140 °.
Embodiment five:
As shown in Figure 5, welding belt body 1 described in embodiment four is processed the through hole 2 of various sizes and shape.
Embodiment six:
As shown in Figure 6 to 8, described photovoltaic solar cell assembly welding comprises welding belt body 1, according to the size of required connection cell piece, at the front and back cycle arrangement solder side S1 and non-solder face S2 successively of welding belt body 1, in welding procedure, the solder side of welding belt body 1 and welding of battery film; Concrete welding belt body 1 front is the region of solder side S1 as shown in Figure 8, and the corresponding back side is non-solder face S2; The front of welding belt body 1 is the region of non-solder face S2, and the corresponding back side is solder side S1; The length of solder side S1 and non-solder face S2 determines, as 156mm, 125mm, 78mm, 52mm, 39mm according to the size of required connection cell piece;
Process the shrinkage pool 3 arranging recessed solder side surface at the solder side S1 of described welding belt body 1 along the length direction of welding belt body 1 more, process the projection 4 corresponding with the shrinkage pool 3 of solder side S1 at the non-solder face S2 of welding belt body 1; The degree of depth of described shrinkage pool 3 is 0.04 ~ 0.24mm; Angle between the non-solder face S2 of the described sidepiece of protruding 4 and welding belt body 1 is 110 ° ~ 130 °.
As shown in Figure 6, Figure 7, in described shrinkage pool 3 and adjacent row, the adjacent line at shrinkage pool 3 center and the Width of welding belt body 1 have angle.
Described shrinkage pool 3 and protruding 4 adopts triangle or other shapes.
Embodiment seven:
As shown in Figure 9, welding belt body 1 is identical with embodiment six, processes through hole 2 at the shrinkage pool 3 of solder side S1 with between the projection 4 of corresponding non-solder face S2; This through hole 2 can adopt triangle through hole.
Embodiment eight:
As shown in Figure 10, welding belt body 1 is identical with embodiment six, arranges 1 ~ 5 row's shrinkage pool 3, process corresponding protruding 4 at non-solder face S2 at solder side S1 along the length direction of welding belt body 1.Wherein, the shape of shrinkage pool 3 is circular, and the shape of protruding 4 is also correspondingly circular.
The described height of protruding 4 is 0.04 ~ 0.1mm.
Embodiment nine:
As shown in figure 11, welding belt body 1 is identical with embodiment eight, processes through hole 2 at the shrinkage pool 3 of solder side S1 with between the projection 4 of corresponding non-solder face S2; This through hole 2 can adopt manhole.
Embodiment ten:
As shown in figure 12, welding belt body 1 is identical with embodiment six, and wherein, the shape of shrinkage pool 3 is rectangle, and the shape of protruding 4 is also correspondingly rectangle; The described height of protruding 4 is 0.04 ~ 0.1mm, and the length of protruding 4 is 1 ~ 5mm, and the width of protruding 4 is 0.05 ~ 0.15mm; Angle between the described sidepiece of protruding 4 and non-solder face S2 is 110 ° ~ 130 °.
Embodiment 11:
As shown in figure 13, welding belt body 1 is identical with embodiment ten, processes through hole at the shrinkage pool 3 of solder side S1 with between the projection 4 of corresponding non-solder face S2; This through hole 2 can adopt rectangular through holes.
Above-mentioned welding belt body all adopts the zinc-plated welding being different from conventional photovoltaic assemblies, and directly adopt the copper strips after copper strips or surface treatment, welding belt body does not need electroplating surfaces with tin.Described welding belt body adopts surface passivating treatment technique or at non-solder face coating anti-rot material, prevents welding be oxidized, prolongation welding useful life; Or at non-solder plated surface one deck reflectorized material.
The present invention has the following advantages:
(1) welding of the present invention can improve welding contact greatly, reduces the generation of rosin joint and the generation of thermal stress on the one hand, and the raising conductivity of welding, brings the raising of component power, reduce the integrated cost of material simultaneously on the other hand;
(2) welding belt body of the present invention does not need electroplating surfaces with tin, greatly reduces low cost of manufacture and the manufacture difficulty of welding;
(3) welding belt body of the present invention does not need electroplating surfaces with tin, and compared with the zinc-plated welding of tradition, identical solder side conductive capability strengthens;
(4) the solder side shrinkage pool structure of welding belt body of the present invention can improve the contact-making surface of welding and tin cream greatly, improves SMT welding performance, can greatly reduce rosin joint hidden danger compared with traditional welding welding procedure;
(5) the present invention greatly can increase welding by punching on welding belt body and weld the bond area starched, the column weldering slurry of solidification is formed in through hole or shrinkage pool, greatly can improve weldering slurry and the mechanical connection welded and electrical connection, and through hole is conducive to the gas discharge that the weldering slurry in welding procedure in welding solder side produces;
(6) sunlight be radiated on welding face can reflex on battery by the bulge-structure in welding belt body non-solder face of the present invention, can improve the power of assembly; The Passivation Treatment in the non-solder face of welding belt body or coating reflectorized material, can increase the reflection of welding, so improve further cell piece by optical density, improve the power output of assembly.
Claims (10)
1. a photovoltaic solar cell assembly welding, it is characterized in that: comprise welding belt body (1), at front and back cycle arrangement solder side (S1) and non-solder face (S2) successively of welding belt body (1), arrange the cavity area on some recessed solders side (S1) surface at solder side (S1).
2. photovoltaic solar cell assembly welding as claimed in claim 1, is characterized in that: described solder side (S1) and non-solder face (S2) are plane, arranges the through hole (2) being communicated with solder side (S1) and non-solder face (S2) at welding belt body (1).
3. photovoltaic solar cell assembly welding as claimed in claim 1, is characterized in that: solder side (S1) and non-solder face (S2) of described welding belt body (1) are serrated face.
4. photovoltaic solar cell assembly welding as claimed in claim 1, it is characterized in that: arrange the surperficial shrinkage pool (3) of recessed solder side (S1) along the length direction processing of welding belt body (1), in the projection (4) that the processing of the non-solder face (S2) of welding belt body (1) is corresponding with the shrinkage pool (3) of solder side (S1) at the solder side (S1) of described welding belt body (1) more.
5. photovoltaic solar cell assembly welding as claimed in claim 4, is characterized in that: process through hole (2) at the shrinkage pool (3) of described solder side (S1) with between the projection (4) in corresponding non-solder face (S2).
6. photovoltaic solar cell assembly welding as claimed in claim 4, is characterized in that: in described shrinkage pool (3) and adjacent row, the adjacent line at shrinkage pool (3) center and the Width of welding belt body (1) have angle.
7. photovoltaic solar cell assembly welding as claimed in claim 3, it is characterized in that: be 5 ~ 12 at the sawtooth number of the Width serrated face of described welding belt body (1), serration depth is 0.1 ~ 0.3m, angle Φ between serrated surface and welding belt body (1) surface 1=140 ° ~ 170 °, the sawtooth angle Φ of welding belt body (1) front and back 2=110 ° ~ 130 °.
8. photovoltaic solar cell assembly welding as claimed in claim 3, is characterized in that: the serration depth of described serrated face is 0.04 ~ 0.1mm, sawtooth angle Φ=110 of welding belt body (1) front and back ° ~ 140 °.
9. photovoltaic solar cell assembly welding as claimed in claim 4, is characterized in that: the degree of depth of described shrinkage pool (3) is 0.04 ~ 0.24mm, and the height of protruding (4) is 0.04 ~ 0.1mm; Angle between the sidepiece of described projection (4) and the non-solder face (S2) of welding belt body (1) is 110 ° ~ 130 °.
10. photovoltaic solar cell assembly welding as claimed in claim 4, is characterized in that: described shrinkage pool (3) and protruding (4) adopt triangle, circle or rectangle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510574718.6A CN105185857B (en) | 2015-09-11 | 2015-09-11 | Photovoltaic solar cell assembly welding band |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510574718.6A CN105185857B (en) | 2015-09-11 | 2015-09-11 | Photovoltaic solar cell assembly welding band |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105185857A true CN105185857A (en) | 2015-12-23 |
CN105185857B CN105185857B (en) | 2017-02-01 |
Family
ID=54907830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510574718.6A Expired - Fee Related CN105185857B (en) | 2015-09-11 | 2015-09-11 | Photovoltaic solar cell assembly welding band |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105185857B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108493282A (en) * | 2018-06-15 | 2018-09-04 | 浙江晶科能源有限公司 | A kind of segmentation optically focused welding applied to photovoltaic module |
CN108717952A (en) * | 2018-08-15 | 2018-10-30 | 浙江晶科能源有限公司 | A kind of optically focused welding |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1812135A (en) * | 2005-01-24 | 2006-08-02 | 外山机械股份有限公司 | Lead structure |
WO2008139994A1 (en) * | 2007-05-09 | 2008-11-20 | Hitachi Chemical Company, Ltd. | Conductor connection member, connection structure, and solar cell module |
CN202004027U (en) * | 2011-04-30 | 2011-10-05 | 常州天合光能有限公司 | Solar battery module and welding tool for welding solder strip of module |
CN102569470A (en) * | 2012-02-28 | 2012-07-11 | 常州天合光能有限公司 | Solder strip of solar module |
CN203071086U (en) * | 2013-01-11 | 2013-07-17 | 阿特斯(中国)投资有限公司 | Solar battery assembly |
CN203386785U (en) * | 2013-07-31 | 2014-01-08 | 凡登(常州)新型金属材料技术有限公司 | Photovoltaic solder strip |
CN204375774U (en) * | 2014-12-26 | 2015-06-03 | 江阴爱康光伏焊带有限公司 | The efficient welding of photovoltaic module transfer matic low resistance |
CN204441304U (en) * | 2015-02-10 | 2015-07-01 | 秦皇岛市昌联光伏电子有限公司 | A kind of hot dip reflective solder strip |
CN204966519U (en) * | 2015-09-11 | 2016-01-13 | 刘畅 | Photovoltaic solar cell subassembly welds area |
-
2015
- 2015-09-11 CN CN201510574718.6A patent/CN105185857B/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1812135A (en) * | 2005-01-24 | 2006-08-02 | 外山机械股份有限公司 | Lead structure |
WO2008139994A1 (en) * | 2007-05-09 | 2008-11-20 | Hitachi Chemical Company, Ltd. | Conductor connection member, connection structure, and solar cell module |
CN202004027U (en) * | 2011-04-30 | 2011-10-05 | 常州天合光能有限公司 | Solar battery module and welding tool for welding solder strip of module |
CN102569470A (en) * | 2012-02-28 | 2012-07-11 | 常州天合光能有限公司 | Solder strip of solar module |
CN203071086U (en) * | 2013-01-11 | 2013-07-17 | 阿特斯(中国)投资有限公司 | Solar battery assembly |
CN203386785U (en) * | 2013-07-31 | 2014-01-08 | 凡登(常州)新型金属材料技术有限公司 | Photovoltaic solder strip |
CN204375774U (en) * | 2014-12-26 | 2015-06-03 | 江阴爱康光伏焊带有限公司 | The efficient welding of photovoltaic module transfer matic low resistance |
CN204441304U (en) * | 2015-02-10 | 2015-07-01 | 秦皇岛市昌联光伏电子有限公司 | A kind of hot dip reflective solder strip |
CN204966519U (en) * | 2015-09-11 | 2016-01-13 | 刘畅 | Photovoltaic solar cell subassembly welds area |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108493282A (en) * | 2018-06-15 | 2018-09-04 | 浙江晶科能源有限公司 | A kind of segmentation optically focused welding applied to photovoltaic module |
CN108717952A (en) * | 2018-08-15 | 2018-10-30 | 浙江晶科能源有限公司 | A kind of optically focused welding |
Also Published As
Publication number | Publication date |
---|---|
CN105185857B (en) | 2017-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN204966519U (en) | Photovoltaic solar cell subassembly welds area | |
WO2018223868A1 (en) | Photovoltaic solar cell sheet assembly | |
CN104485365B (en) | Compound type embossing photovoltaic welding strip and machining method thereof | |
CN105215497B (en) | Photovoltaic module crystalline silicon battery plate welding procedure | |
JP2006012802A5 (en) | ||
WO2021013275A2 (en) | Shingled assembly, solar cell pieces, and manufacturing method for shingled assembly | |
CN102938432A (en) | Manufacture method of metal wrap through (MWT) solar cell module | |
CN112447874A (en) | Photovoltaic solder strip and no main grid solar energy module thereof | |
CN218414596U (en) | Back contact battery and photovoltaic module | |
CN109585908A (en) | A kind of flexible packing lithium ion electric core and battery | |
CN204632766U (en) | Compound embossing photovoltaic welding belt | |
WO2018218473A1 (en) | Battery piece back side structure for reducing fragment rate of solar modules | |
CN105185857A (en) | Photovoltaic solar cell assembly welding band | |
CN204464302U (en) | photovoltaic welding belt | |
CN203950824U (en) | Solar module | |
CN203607433U (en) | Solder strip capable of improving welding effect and photovoltaic assembly packaging power | |
CN206271739U (en) | A kind of photovoltaic L-type busbar batch welding tooling | |
JP2024003747A (en) | Photovoltaic module structure | |
TWI483403B (en) | Method for manufacturing conductive channel of photovoltaic panel | |
CN108054332A (en) | A kind of duralumin pole piece and battery modules | |
CN107895748A (en) | High-efficiency solar is without main grid crystal-silicon battery slice | |
TWM328077U (en) | Electrode of solar cell | |
CN206727079U (en) | Dereliction grid cell piece solar components | |
CN206516646U (en) | Strengthen the dereliction grid cell piece solar components of welding effect | |
CN218333824U (en) | Welding-free bus bar for interconnection of solar cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170201 Termination date: 20170911 |